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Summary. Of the energy decay laws of isotropic turbulence in the initial period, the so-
called linear decay law and Lin’s decay law are well known. The linear decay law was
first derived theoretically by Batchelor on the assumption of partial self-preservation of
velocity correlation functions, but there is involved a self-contradiction that it eventually

' necessitates the premise of complete self-preservation of correlation functions. On the
other hand, Lin’s decay law, which was derived by assuming the similarity of spectrum for
wave numbers except at small end, holds only after neglecting the self-preservation of cor-
relation functions near r=0, very important characteristics confirmed by experiments.
Therefore, at first in this paper, we criticize these decay laws and find out the points of
self-contradiction inherent in these two theories.

Then eliminating the above mentioned points of self-contradictions and making a simple
assumption that the partial self-preservation of correlation functions holds and S and G
stay constant during decay, as confirmed by experiments, we try to calculate the decay
curves by solving the energy decay equation (5. 7),
d¥ da¢ d¢ \32

C_+C(dc) E(E) =0,

which is derived from the energy equation (2.10) and the vorticity equation (3.1), in which
¢=U%u?, ¢=a/M, C=(7/15)G-2, E= (7/3)S«/R,,,/10 Ry=UM/v, S=—0u/ox)y/[(0u/
9x)2]*/? and G=u¥0%/8x%)?/[(8u/0z)2]%. Since this equation contains statistical quantities
of turbulence, S, G and Ry, as parameters, the decay curves obtained by solving this equa-
tion vary with the initial conditions of turbulence generation and also with the values of
these parameters. Thus, we can, through such parameters, examine quantitatively the
effect of the initial conditions upon the energy decay of turbulence. This equation is ac-
tually solved by numerical integration for cases corresponding to the experiments done by
the present author and by Batchelor and Townsend. The calculated results are in good
agreement with these experimental values.

1. INTRODUCTION

It is well known that the problem of isotropic turbulence can be reduced to
that of solving the Kdrméan-Howarth equation for the propagation of the double
velocity correlation [ /],

(u2f) (uz)w{ ok +4£} 2 u2{ of | 4 _ai}, (1.1)
art ' r or
or its Fourier transformation, i.e., the spectrum equation,
ilti+ W=—20kF. | (12)
[87]
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88 H. Tsuji

These equations govern the motion of turbulence during decay, in which ¢ denotes
the time of decay, r the distance between the two points at which the velocities
are taken, v the kinematic viscosity, u2 the mean-square of any turbulent velocity
component, f(r,t) the longitudinal double velocity correlation coefficient [I],
k(r,t) the longitudinal triple velocity correlation coefficient [ /], F(k,t) the three-
dimensional energy spectum function, W(k,t) the three-dimensional energy trans-
fer function, and % the wave-number magnitude. However, these equations can
not be solved, in the general case, because of its non-linear nature. Only when
the Reynolds number of turbulence is small, i.e., the decay is in the final period,
the non-linear term, which expresses the transfer of energy between frequency
components, can be neglected so that the solution can be obtained in an explicit
form as confirmed by experiments [2] [3] [4]. On the other hand, for the case
where the Reynolds number of turbulence is large and the energy transfer between
frequency components plays an important role, the problem has been treated by
many authors by making plausible assumptions, such as self-preservation of cor-
relation functions or the similarity of spectrum during the process of decay. Von
Karmén and Howarth themselves in 1938 made a pioneering work along these
lines [ 1], and the prominent works by Robertson, Kolmogoroff, Heisenberg, Bat-
chelor, and others, opened an era of systematic studies of these equations.

About ten years ago Batchelor, assuming partially self-preserving solutions for
the correlation functions near »=0 at decay times which are not large, derived
theoretically the so-called linear decay law [4],

ut~t1,

A= 10ut, ' (1.3)

R,=+u? 2fv=const.,

in which 2 is the microscale of turbulence introduced by Taylor [5], and R, the
Reynolds number of turbulence. Batchelor and Townsend, in fact, verified by
experiments that for the isotropic turbulence produced by a grid of regular mesh
and in the initial period of decay, the linear decay law, (1.3), was valid for dis-
tances up to about 150 mesh-lengths from the grid [6] [7].

Later, however, Lin, and also Goldstein, had doubt about the validity of this
linear decay law and derived independently the so-called Lin’s decay law, i.e.,

u=at '+B, (a and B are constants)

22:10vt(1 +£~t> ,

(1.4)
R1=~/Ta/v(1+§ )

by assuming that the actual deviation from similarity of the energy spectrum
would be limited only to small values of wave numbers and hence the effect of
the deviation would enter only in the calculation of energy but be negligible in
the computation of the rate of energy dissipation [8] [9] [10]. As will be dis-
cussed later, this decay law may be considered more reasonable than the linear
decay law from the physical point of view, and has been shown to be in good

LAY
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The Energy Decay Law of Isotropic Turbulence in the Initial Period 89

agreement with the experimental results for the turbulence behind two grids car-
ried out by the present author as shown in Figs. 1, 2 and 3 [11] [12] [13].
These decay laws, however, contain the contents which are inconsistent with
the first assumption made in the derivation of the decay law, or the defect that
the decay law holds only by neglecting the facts confirmed by experiments.
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FIGURE 1. Decay of energy of turbulence behind a single grid or two
grids; M,=5cm, M;=1cm, X= the distance between two grids
(after Tsuji and Hama, 1953, Ref. [11]).

5 T

s =10m
X10 fUO/s
4

S

15 20 25
(X-008)", m

FIGURE 2. Decay of energy of turbulence behind a single grid or two
grids; M;=5cm, M,=1cm, X= the distance between two grids
(after Tsuji and Hama, 1953, Ref. [11]).
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FIGURE 3. Variation of R, during decay of turbulence behind a single
grid or two grids; M;=5cm, M,=1cm, X= the distance between
two grids (after Tsuji, 1955, Ref. [12]).

Therefore, at first in this paper, we shall criticize the linear decay law and Lin’s

decay law, and point out the points of self-contradiction inherent in these decay

laws. Then we shall try to determine the decay curves by a new method, in ’
which only a simple assumption, confirmed by experiments, will be made and the gl |
points of self-contradiction inherent in the above decay laws will be eliminated.
Consequently, we can make clear the significance of the statistical parameters of
turbulence to the decay, and show how the decay curves change with the change

in the relation of magnitude of these statistical parameters, and point out the

effect of the initial conditions of turbulence generations upon the decay.

2. LINEAR DEcAY Law

Let us first examine the linear decay law, u2~¢-!. If we expand the double and
triple velocity correlation coefficients f{(r,t) and k(r, t) in powers of 7, we have

— , o i
fAr, t)= uu ‘—‘-—1:{%7-!——;774 aur2 —!—Lu—at‘i’r‘ +—61—'—u 9 Ypsy... }

w2 ur dx? 4! ox* ox®
ou \? o*u \? o )2_
:1_(_3_00_)_12, %L)__r‘__(a_w?‘_ﬁi
Y Y @ 6!
,'.2 iv ,,.4 irﬁ
=1+fo”—5!—+fo “ZT"*‘fov—gr“" s (2~1)

and

I | . 0°u 1
T («72)3/2{“ 5T

(6u)3
AT ZAN T
(W) 3!

3
=k (2.2)

respectively, in which f¢’, fi¥, f¥i and kl” indicate (9f/0r%),.s, (3*f/07*),-0
(@%f/or®),_, and (0%k/ar®),_,, respectively [I] [5]. Now we introduce three sta-
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“n
tistical quantities defined by the following equations;
Ao '/:_L(_aﬁy ‘ 23
2 * T\ /)’ (23)
o _(u\ ou 22 A
G=2fy =24 [(__> I 2.4
si=w(23) /(G (24)
7 ow N /[ ou \'P* |
S=— 2l =—( 2% [ ou_ ] , 2.5
| ’ o ) / ( ox ) (2:3)
in which S is minus the skewness factor of the probability distribution of du/ox
! (the minus sign is introduced here, because the skewness has been found to be
: negative), and u is the turbulent velocity component in the direction of x-axis.
By using these quantities, the above expansion equations may be rewritten as
L/r\, G[(r\, 25/ r\®
7/, t :1——__(_> ___(__) ___0_(_> cee 2.6
&. Frid ) 2!2+4!1+6! 1+ (2.6)
@ s
k(r/2, £)= -_35'_(%) e @2.7)

The linear decay law was first derived theoretically by Batchelor on an as-
sumption of partial self-preservation of velocity correlation functions [4]. It
has been known that, in the initial period of decay, the correlation functions do
not obey complete self-preservation, but to some extent self-preservation exists
when the decay time is not large. The function f(r,t) is always parabolic in
form near »=0. Detailed experiments, carried out by Batchelor and Townsend,
of the isotropic turbulence produced by a grid of regular mesh, have indicated
that the expansion of f(r,t) in powers of /2 as far as the term of fourth degree,
and of k(r,t) as far as the term of third degree, are independent of ¢ at decay
times which are not large, i.e., S and G are approximately constants during decay,
as shown in Fig. 4 (from Figs. 7, 8 and 10 of Reference [6])*. It has also been
confirmed by another experiment by Batchelor and Townsend that accurate self-
preservation of the lateral double velocity correlation coefficient g(r,t) holds for
values of 7/4 between 0 and about 1, the range becoming larger at high Reynolds
numbers [7]. Considering these experimental facts, it seems reasonable to in-
troduce the assumption of partial self-preservation for the correlation functions
when the theory on isotropic turbulence in the initial period is attempted.

Now we assume that [ is an unknown length and the self-preserving solutions
for the correlation functions expressed as

fr,)=1), kr,t)y=k(y), »=r/2, (2.8)

are valid for a range of r, 0<r<l. From the above evidence [ must be at least
as large as the maximum value of 7, for which a fourth degree polynomial

* It has also been confirmed by measurements by H. W. Liepmann, J. Laufer and K. Liepmann
that G is constant during decay [/4]. Moreover, it has been revealed by later experiments by Bat-
chelor and Townsend that the expansion of f(r,t) in powers of /4 as far as the term of sixth
degree are independent of ¢, i.e., 48f,7! is also constant during decay [15] (See Fig. 2 of Reference

[15]).
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FIGURE 4. Variation of G, S and R; during the initial period
(after Batchelor and Townsend, 1947, Ref. (6 ]).

| gives a good representation of f(r,t). The Karman-Howarth equation (1.1) is then
reduced to
dif | 4 df 5y df ) 22 dR,( 1 (dk+4k> 0 (2.9
(d;y"’ +7] d77 2 dy o T)T 2vR, dt drr)+ dyp 7p (29)
for the restricted range of r. If we assume that u? decays as some power of ¢, the
energy equation [/] [5],

du? ut
= —10v—-, 2.10
dt R (2.10)
shows that the decay will be
Wr~t", 2=10wt/n, Ri~t"", (2.11)

and hence

2 dR, _ 5(1—n)
2vR, dt 2n
According to equation (2.12), the coefficient of the second term in equation (2.9)

(2.12)
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is a constant, so that the first two groups of terms in equation (2.9) are function
of » only and the equation can only be satisfied by

R, = constant. (2.13)

This leads to n=1 provided that the constant value of R, is not zero (in which
case we should have n > 1, {=o0), i.e., it may be concluded that the so-called
linear decay law, equation (1.3), holds and R, is constant during decay in the
initial period. This theoretical result has often been compared with experimental
results. The measured values of %? are plotted usually in a form U?/u? against
x/M, where x is the distance of the point of measurement from the grid of mesh
size M, and U is the velocity of stream flowing past the grid. As is usual, the
time of decay in the idealized theoretical problem of homogeneous turbulence is
identified with the quantity x/M occurring in the experimental turbulence which
is slightly nonhomogeneous (Taylor’s hypothesis [5]). The abscissa x/M, is there-
' fore, the decay time made dimensionless by the use of the factors M and U. The
ol ¢ experimental points of U?%/u? given by many workers may be considered to lie
approximately on a straight line for the decay range x/M =20 to about 150 [6]
[7] [14]. R, is also approximately constant during comparatively short decay
times, so that this linear decay law has been supported generally after the study
of Batchelor and Townsend [4] [6] [7].

On the other hand, as pointed out and emphasized by Lin [ /0], it is necessary
by all means that the energy spectrum should hold the complete similarity over
the whole wave-number range, i.e., the correlation should hold the complete self-
preservation over the whole range of r, in order that the linear decay law should
hold !!

The linear decay law, which was derived by making the assumption of the
partial self-preservation of the correlatioh functions, necessitates, in fact, such
important premise that the correlation should hold the complete self-preservation.
Therefore, it is inconsistent with the assumption from which the linear decay law
was derived. Why does such a self-contradiction arise? The assumption of the
partial self-preservation of the correlation functions is quite correct, but in the
process of deriving the decay law from this assumption, an unreasonable method,
inconsistent with this assumption, was used. As will be mentioned later again, it
must be noticed that using yu? and 2 as the similarity parameters and, moreover,
assuming the power decay law to hold are nothing but assuming the complete
self-preservation of the correlation functions implicitly!! The self-preservation
which was assumed to hold at first for the range 0<r <l was extended to hold
over the whole range of 7, i.e., 0<7r< o, in consequence of the assumption of
the power decay law. In the general case, in which the complete self-preservation
is. not assumed, the decay curve, (u?)~! vs. ¢, is not expressed by a simple power
law, but usually as a polynomial of ¢ (Lin’s decay law is an example of such
cases).

Therefore, it may be easily concluded that the linear decay law which was
derived only on the assumption of the complete self-preservation of correlation
functions is not correct for the isotropic turbulence in the initial period of decay
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for which only the partial self-preservation holds actually. In fact, examining
in detail the results of the experiments conducted not only by the present author
[11] [12] [13], but also by Batchelor and Townsend [6] [7] and other workers,
it may be pointed out that the linear decay law does not hold, as shown in Fig.
1 as an example. Also R, is not constant during the initial period of decay as
shown in Figs. 3 and 4.

3. LiN’s DEcAY Law

The so-called Lin’s decay law, which has been originally put forward by Lin
[8] and later endowed with firmer reasoning by Goldstein [9], may be derived
on the assumption that the actual deviation from the similarity of the spectrum
will be limited only to small values of wave numbers and hence the effect of
deviation will enter only in the calculation of energy but be negligible in the
computation of the rate of energy dissipation [/0],

_ s, f FF(E, ¢ dk . 3.1)
dt
This decay law may be considered to be more reasonable than the linear decay
law from the physical point of view, and experiments by the present author have
shown it to be valid for the turbulence either behind a single grid or with a super-
posed disturbances of low frequencies as shown in Figs. 1,2 and 3 [1/] [12] [13].

However, reference velocity V(t) and scale L(t), which are employed as the
similarity parameters in deriving this decay law, are not exactly equal to the
turbulent intensity Yyu? and microscale 2, respectively. Therefor, for example, if
the correlation functions are expressed non-dimensionally by using V and L as
the similarity parameters, the correlation curves are not expressed as a single
curve near =0. Hence, this theory developed by Lin and Goldstein neglects the
self-preservation of the correlation functions near =0 (very important charac-
teristics confirmed by the experiments as discussed in §2 [6] [7] [/2] [I3])!
The fact that Lin’s decay law holds after neglecting the self-preservation of the
correlation function near =0 will be verified theoretically by using the vortxclty
equation of turbulence.

If we expand both sides of equation (1.1) in powers of 7, and equate coefficients,
the constant term gives simply the well-known energy equatlon L] [5],

‘f;f = -1%72— . (2.10)
The coefficient of r* gives
1"’
d(”;{ ) 3 ( URY L = 134 VUEfI (3.1)

This equation describes the rate of change of mean square vorticity, and may be
called the vorticity equation [/]. Now the mean square of the component of
vorticity in any direction, «?, is expressed as

P= — SWf =S W2 . (3.2)
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Using this »? and introducing G and S defined by the equations (2. 4) and (2.5)
respectively, equation (3.1) may be written in a form as

or
i

If we assume the right-hand side of equation (3.4) is a constant independent
of time, then the equation (3.4) can be integrated immediately. Now, if

—é—:’/—s_-[ S -—glg—]z constant = _(%)_)1/2 , say, (3.5)
equation (3.4) becomes

) LIRS oo
N e

Integrating equation (3.6), we get

ie.,
—_ R
d= 3.7
5 (3.7)
Using equations (2.10) and (3.3), we obtain
— 1 du? _R
wz_—: —_— =, 3.8
2v dt  2t? (3:8)
Integrating equation (3.8) once more, we finally obtain the decay law,
m:ﬂtﬁ(l—At)_—.uR(t-l—-A), (3.9)
in which A is an integrating constant. Equation (3.9) is nothing but Lin’s decay
law.
‘, As will be well understood by the above discussion, we must notice that Lin’s
decay law holds under a major premise,
2G
S—Z— = const. 3.10
% (3.10)

Then, if we investigate what kind of combination exists between S, G and R, to

satisfy the necessary condition (3.10) of Lin’s decay law, the following five cases
may be noticed.

S G/R; G R,
a. const. const. const. const.
b. const. const. not const. not const.
c. not const. not const. not const. const.
d. not const. : not const. const. not const.
e. not const. not const. not const. not const.
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In the case (a), B,=const. Then the linear decay law holds and the correla-
tion functions show the complete self-preservation®. This is the special case of
Lin’s decay law (which corresponds to the case of =0 in equation (1.4)). In the
case (c), as R,=const., the correlation functions must show the complete self-
preservation and hence S and G must be constants. Therefore, it contradicts the
condition imposed on S and ( in this case and such a case does not exist actually.
In other cases (b), (d) and (e), it is required that both S and G are, or at least
either one of them is, necessarily not constant. Namely, it is required as the
premise of validity of Lin’s decay law that, in general case of this law except the
special case of =0, both S and G are not constant or at least either one of them
is necessarily not constant, and it becomes clear that this decay law holds only
by neglecting the fact that S and G are constant during decay as confirmed by the
experimental results. In other words, Lin’s decay law may be considered to be
the theory in which the self-preservation of the correlation functions near r=0 "
as confirmed by the experiments is denied. ’

Since Lin’s decay law was derived on the assumption of the complete similarity
of the vorticity spectrum, not energy spectrum, the assumption used is reasonable
from the physical point of view and, in fact, it is supported by experiments as
~ shown in Figs. 1 and 2. Therefore, Lin’s decay law may be thought to be better
than the linear decay law at these points. But on the other hand, this decay law
contains a defect that it holds only by neglecting the self-preservation, confirmed
by experiments, of the correlation functions near »=:0. Hence we must say that
Lin’s decay law, too, contains self-contradiction.

4. AN ATTEMPT TO DERIVE A NEW DECAY LAw

In the preceding two chapters, we have discussed on the two decay laws of
isotropic turbulence in the initial period of decay. However, the linear decay law
holds under the premise of the complete self-preservation of the correlation func-
tions, and, on the other hand, Lin’s decay law holds only by neglecting the self-
preservation of the correlation functions near »=0, so that both of these decay ’
laws involve characteristics, which are inconsistent with the fact confirmed by
the experiments. Considering the incompleteness of these existing decay laws, we
have reconsidered the decay law over again, and using a simple assumption which
is confirmed by experiments, we have tried to derive a new decay law by a new
method, in which the discrepancies that appear in the above two decay laws are
excluded.

The most reliable assumption to be used seems to be the partial self-preserva-
tion of the correlation functions near »=0, which was confirmed by experiment
done by Batchelor and Townsend [6] [7] and employed in the theoretical study
developed by Batchelor [4]. Namely, careful experiments carried out by Bat- 2
chelor and Townsend on the isotropic turbulence produced by a grid of regular

* If we solve the energy equation (2.10) under the condition of R; = const., we can get easily
the solution, w2~t-1,
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mesh have indicated that the expansion of f{(r,t) in powers of 7/ as far as the
term of fourth degree, and of (7, t) as far as the term of third degree, are indepen-
dent of ¢ at decay times which are not large, i.e., S and G are approximately con-
stant during decay, as shown in Fig. 4 [6]. It has also been confirmed by an-
other experiment by Batchelor and Townsend that accurate self-preservation of
the lateral double velocity correlation coefficient g(r,t) seems to hold for values
of /4 between 0 and some figure of the order of 1 [7]. These characteristics of
g(r, t) was also confirmed by the present author by experiments carried out on the
isotropic turbulence behind a single grid and two grids [/2]. Namely, as con-
firmed in Figs. 5 and 6, the precise self-preservation of the measured g(r/i,t)
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FIGURE 5. Correlation coefficient g(r/4) of turbulence
behind a single grid; M=1cm, U=10m/s (after
Tsuji, 1955, Ref. [12]).
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FIGURE 6. Correlation coefficient g(r/4) of turbulence
behind two grids; M,=5cm, M,=1cm, X=450cm,
U=10m/s (after Tsuji, 1955, Ref. [12]).

holds for values of 7/ less than 1 for the turbulence behind a single grid or the
turbulence behind two grids with the exception of the case where high frequency
fluctuations are superposed. Considering these experimental results, it seems to
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be reasonable to assume that S and G are constant during decay for the turbulence
in the initial period of decay. Therefore, we shall use this assumption as a start-
ing point of the present study*.

Now, if we assume that S and G are constant during decay, we can expect that
it is convenient to study the decay process by using the vorticity equation (3.1)
which contains S and G explicitly. This equation is an ordinary differential
equation with u? and 2 as dependent variables, so that %) and A(f) can not be
determined only from this equation even if S and G are constant. Lin’s decay
law is derived from this equation by using another condition, S—2G/R,;=const.,
which relates %%(f) and A(t) through R,. On the other hand, linear decay law is
derived from the assumption of power decay law and the condition, R;=const. ;
As discussed in the preceding two chapters, both conditions, S—2G/R,=const., :
and R,=const., contain characteristics inconsistent with experimental results.
Therefore, we reject both of these conditions and propose a new method in which
u2(t) and A(f) are determined by solving the vorticity equation (3.1) and the energy
equation (2.10) simultaneously under the simple condition, S=const. and G=
const.

For the sake of convenience for comparison, the assumptions on the parameters,
S, G and R,, for linear decay law, Lin’s decay law and the new decay law are |
shown in the following table. ?

S G R; S—2G/R;

Linear Decay Law const. const. const. const.
const. not const. not const.

Lin’s Decay Law { not const. const. not const. const. z
not const. not const. not const.

New Decay Law const. const. not const. not const. *

5. THE FUNDAMENTAL EQUATION GOVERNING THE ENERGY A
DECAY IN THE INITIAL PERIOD

By using A, the vorticity equation (3.1) may be written as
_ d@¥2) (’W)‘” P_14 w?
—v—0G. 5.1
dt + a8 302 (5-)
Hence, the problem to derive the energy decay law is reduced to solving the equa- !
tion (5.1) and the energy equation,

ddf - —10,_)1;;, (2.10)

%
s

* In the experiments by the present author, S and G were not measured and the fact that S and
G are constant during decay was not confirmed directly. However, since it was confirmed that
the self-preservation of the correlation coefficient g(r, t) holds for the range r/4<1, considering
the experimental results by Batchelor and Townsend, there would be no objection to conclude
that S and G are constant in the case of our experiments.
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simultaneously under suitable initial conditions (u?=uZ and 1=2, at t =t,)* for the
given constant values of S and G. If we substitute equation (2.10) into equation
(5.1) so as to eliminate A, equation (5.1) becomes

dwr | 7 1\~ der\*2?_ 7 @G du? \?

dt? +?S(1_ou_> ( dt ) 15 a‘z(_ dt>’ (52)
so that we obtain a second-order non-linear ordinary differential equation. Equa-
tion (5.2) is the fundamental equation which governs the energy decay of isotropic
turbulence in the initial period of decayf. Therefore, if we solve this equation
under the initial conditions,

u:=u? and dut :( du2) at t=t,t,
dt dt /o

the decay curve may be easily obtained. Now, if we put

L 7 1/2 7
z=21, A:_s( > , B=_g, (5.3)

£ uz 3 101) 15
y ‘ and substitute equation (5.3) into equation (5.2), equation (5.2) is transformed into

dZ\*"
5 A2 A s |

d 2 Z +(B-2) 7 , (5.9)

which is the differential equation on Z(¢). It is more convenient to use equation
(5.4) in general, in order to discuss the decay process.

In the study of isotropic turbulence, however, we often consider the so-called
frozen pattern in order to compare with the wind-tunnel experiments, and discuss
the decay process in the form U?/u? against /M instead of the from 1/u? against
t. Hence using the relation,

(5.5)

which means the so-called Taylor’s hypothesis [ 5], let us transform the indepen-
dent variable ¢ in equation (5.4) into /M. If we put

:*[_1_2“, E:-—-a—:-:-__t’
p 2 M M
o B 7 B

E='§“S¢R,,7To, Ry=UM

v

* As the result, the Reynolds number of turbulence R;D:\/ig_lo/v at t=t, is given.
t If we assume the power decay law, u#(t)~t-", and substitute it into equation (5.2), we obtain

7 1 \12 7
g — 1/24- (/2 +1 — 1
(n—i—1)+3 S(lOu) n'/% _lsnG.

Therefore, if S and G are constant, n=1 is the solution and in this case R;=(10/vn)!/2t= /D +U/2
=const. This is nothing but the solution in the case of complete self-preservation of correlation
functions. Namely, even though we assume the partial self-preservation of correlation function
near r=0(i.e., S=const. and G=const.), if we assume, in addition, the power decay law, the solu-
tion reduces to that of the complete self-preservation in the end.

1 To give the initial condition, (d%%/dt), at ¢=t,, has the same meaning as to give the initial
condition, 2=4, at t=%,, on account of equation (2.10).
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and substitute into equation (5.4), then equation (5.4) is reduced to

S | o

This is the fundamental energy decay equation in the non-dimensional form for
the turbulence in the initial period of decay. The variables and coefficients that
appear in this equation are expressed in such a form that we can measure them
directly in the experiments. Consequently, if we solve this equation, we can
readily compare the solution with experiments, so that we shall discuss hereafter
by using this equation. If we solve this equation under the initial conditions,

=(U*/w), and dg/dé=(dL/dE)=[d(U*/W)/d(x/M)], at &=E,=(2/M),, the
decay curve, U?/u? vs. /M, can be readily obtained, but this equation involves
Cand E, i.e., Ry, G and S as the parameters. Therefore, it may be expected that ’

\

the form of the decay curve may vary with the values of these parameters and
the initial conditions. After the relation between U/u? and x/M is obtained, the
relation between 2* and /M can be derived from the energy equation (2.10).
Namely,

o 1OM* L _10M*  (UYw) (5.8)
R, dtjdé ~ R, d(UYw)d(/M)
The Reynolds number of turbulence can be calculated by the equation,
R0 _ 10Ry _ 10R, (5_9)'

v dgde d(U¥w)/d(x/M)

6. THE GENERAL CHARACTERISTICS OF THE SOLUTION
OF THE ENERGY DECAY EQUATION

Before we try to solve the equation (5.7) for the examples, let us examine the
general characteristics of the solution of this equation. Equation (5.7) may be
written in the form,

=B oy =CX F —c]

_ (C) [D—C], (6.1)

in which

D=E|NC (6.2)
and the dashes denote differentiation with respect to £. Since S is positive, the
parameter E appearing in equation (6.1) is naturally positive. G is usually
greater than 30/7 (=4.286) when the Reynolds number of turbulence is not small
[6], so that C is also positive. {’ can not be negative from the physical point of
view. Consequently, we may consider the following three cases according to the
values of D and C. Now we express the value of D corresponding to &, as D,.

I) Case when D,=C.

In this case {i’=0 and the linear decay law holds. The slope of the decay curve
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in this case becomes

,_ 5 SR, R
-_— . = 10 M 6.3
$=3 ( G_ 30 )2 R (63)
7

This result has been already given by Batchelor and Townsend* [6].

II) Case when D,>C.

In this case (i’ >0 and the decay curve, U%/%? vs. /M, is convex downwards.
] As z/M increases and décay proceeds, {’ becomes greater and (D—C) smaller,
and {” decreases monotonously. As the decay proceeds further, the value of D ap-
s proaches the value of C and { tends to 0, and the decay curve approaches asymp-
totically a straight line with a slope, |

==

SR,

(e=F7)

Do> C

(6.4).

go = . ;c:

%

. ;C’= 0

vr!
o

§

FIGURE 7. A solution of Eq. (5.7) when D,>C.

* When the linear decay law holds, the relation, G=(30/7)+(1/2)R;S, is obtained from equa-
tion (3.4).
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The circumstance is represented qualitatively in Fig. 7. The curve, A2 vs. /M, is
also convex downwards, and as /M increases, 2* increases monotonously and ap-
proaches the straight line with the slope, 10M?/R,. On the other hand, R,
decreases monotonously*, and as x/M increases, it approaches the critical value

Ric= %(G—-?’_%) , (6.5)

asymptotically. Such a tendency that appears in this case is observed usually on
the turbulence behind a single grid.

IIT) Case when D,<C.

In this case, {’ <0 and the decay curve, U* u? vs. x/M, is convex upwards. As
x/M increases and the decay proceeds, the absolute value of (D—C) becomes
smaller and also the absolute value of {”” decreases. As decay proceeds further,
the value of D approaches the value of C and ¢ tends to 0, and the decay curve
approaches asymptotically a straight line with a slope,

Cé:% : ZES%%!_); . (6.6)
7

The circumstance is represented qualitatively in Fig. 8. The curve, % vs. z/M, is
also convex upwards, and as x/M increases, A* increases monotonously and ap-
proaches asymptotically the straight line with the slope, 10M?/R,. On the other
hand, R, increases monotonously and as x/M increases, R, approaches the critical
value,

2

Ra=2(6-2),

asymptotically. Such a tendency that appears in this case is observed usually on
the turbulence with superposed disturbances of low wave numbers behind two
grids.

The important conclusions derived from the general characteristics of the solu-
tion of the energy decay equation (5.7) for the turbulence in the initial period of
decay are: (1) in the initial period of decay when the partial self-preservation
of the correlation functions holds and S and G are constant, the linear decay law
does not hold in general and also R, is not constant, (2) the energy decay of turbu-
lence varies according to the initial conditions of turbulence generation. Namely,
even when the mesh Reynolds number, R,, of turbulence produced by a grid is
the same, if the initial conditions are altered and the values of S and G vary, the

decay curve may be convex upwards or downwards, or may be nearly a straight
line or not.

* According to equation (5.9), RZ=10R,/{’. Therefore,
dRY _ —10Ry{” _ 10R4(C—D)
R (4 L 4 )
Hence dR%/d§ <0 when D>C and dR%/d6é>0 when C>D. In both cases, as z/M increases, the

value of dR?}/d& tendsto 0. In Lin’s decay law, on the other hand, R; is a linear function of z/M
as indicated by equation (1.4), so that the critical value does not exist.
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Dp< C
3
, %
O
gl
—— ;C‘
PEPE—— gc”=0
z
1 5 ’ 5
FIGURE 8. A solution of Eq. (5.7) when D,<C.

The theory on the decay law which has been developed in this paper has the
important significance in view of the fact that the effect of the initial conditions
upon the energy decay could be examined quantitatively through such statistical
parameters as S, G and R,. But it must be noticed that, since this theory is de-
veloped under the assumption of S=const. and G=const., the range, over which
this theory can be possibly applied, is limited to the range,

/M < (150~200)
for which the conditions of S=const. and G=const. are confirmed by the experi-
ments. ’ ‘
Finally, let us examine 2*-curve. 4° may be calculated by equation (5.8),

. 10M* ¢ oo
A= R. o .(5.8)
Therefore,
d_z"*: 10ME[ (¢ —CL” — 10M3 1 _D
s o R s LAl (68)

A* must increase as the decay proceeds from the physical point of view. Namely,
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&
the relation such as
(1+C—-D) >0 (6.9)
must be satisfied always in the decay process. If this condition is not satisfied,
we must have the unreasonable result that 2*> decreases as the decay time proceeds.
If we denote the value of {’ which satisfies the condition,
1+C—D—zl+C—-f£T:0, (6.10)
as {4, ¢} becomes
2
C;:i-_—SR_M.__. (6'11)
 o-1s
7
Namely, this theoy can bs applied for a limited range,
o>, (6.12)
Hence, the possible range for {’ is ) b
> >t for the case where D >C, } 6.13) a ®
>t >t for the case where D <C. )

Therefore, the case where D<C is out of question. However, when D>C and if
the Reynolds number of turbulence becomes larger and the value of G increases,

the ratio
(G———IS )2
e _ 7

& ey
7

approaches 1 and the possible range for.{’ decreases, so that the decay curve
becomes nearly a straight line. Considering these characteristics, we conclude
that if there exists a value of {’ which lies outside the range given by equation i
(6.13) (such circumstance may come about actually in the very early period of
decay in the case when D>C and the Reynolds number of turbulence is large and
G is also large—See the calculation of an example presented in § 7), both S and
G become, or at least one of them becomes not constant in this stage of decay.

(6.14)

7. EXAMPLES OF CALCULATION OF THE ENERGY DECAY EQUATION

Considering the general characteristics of the solution of the energy decay equa-
tion (5.7), we may expect that the decay curve determined by solving this equation
will show a good concidence with the decay curve obtained in the experiments.
Then we shall try to solve this equation actually for the cases of our experiments
[117 [12] and of the experiments by Batchelor and Townsend [6] [7], and to
compare these calculated results with the experimental results.

The calculation was made with four cases. (I) Experiment by the present
author on the turbulence behind a single grid of M=1cm*. (II) Experiment by

. See Fig. 1.

This document is provided}



The Energy Decay Law of Isotropic Turbulence in the Initial Period 105

the present author on the turbulence behind a single grid of M=5 cm*, (III) Ex-
periment by the present author behind two grids (M;=5cm and M,=1 cm) placed
450 cm apart™. (IV) Experiment by Batchelor and Townsend on the turbulence
behind a single grid of M=1.27cmf. The values of the parameters employed
actually in the calculation are presented in the following table (in Table 1).

TABLE 1.
Calculation No. I I 111 IV
. .. .. .. Batchelor
Experimenter Tsuji Tsuji Tsuji { Townsend
M, =5
g Mzsr}ildl,egr%:h of the 1 5 M, =1 } 1.27
X =450
U m/s. 10 10 10 12.86
¢ ¥ ® Ry 6.317x 10 3.191 x 10¢ 6.916 x 108 1.125x 10¢
. (z/ M), 20 30 20 20
U/ uz) 1.170x 103 1.015x10° 9.517x 102 1.10 x10?
[d(U?/u2)/d(x/ M)]e 66.8 43.2 102 84
S* 0.420 0.300 0.390 0.390
G* 8.71 15.06 11.02 9.32
Cc 2.065 5.028 3.143 2.349
E 24.63 39.54 23.93 30.52
D, 3.014 6.016 2.370 . . 3.330
A 142.3 61.85 57.99 168.8
A 64.60 43.01 33.38 83.04
Figure No. 9 . 10 11 12

* As already mentioned in footnote on p. 98, S and G were not measured directly in
our experiments. Therefore, we estimate the values of S and G by referring to the ex-
perimental results by Batchelor and Townsend (Refer to Figs. 8, 9, 10 and 11 of Re-

ference [6] and by considering the measured values of B, and Ry obtained in our
experiments.

We solved the equation (5.7) by numerical integrations. The results of the
theoretical calculation and the experimental values for examples (I), (II), (III)
and (IV) are presented in Figs. 9, 10, 11 and 12, respectively. In the examples
(I), (IIT) and (IV), the calculation proceeded starting from (x/M),=20. In the
example (II), on the other hand, when we advance the numerical integration start-
ing from (x/M),=20, it becomes (14+C—D,)<0 and <%, so that the value of ¢’
gets out of the limited range as discussed in the preceding chapter. Therefore, we
start the calculation from (x/M),=30 in this case. As will be seen in these figures,
it was confirmed that the results of the theoretical calculation of the energy decay
show good agreement with the measured values. On the other hand, the results
of the theoretical calculation about R, seem to agree not so well with the measured

* See Fig. 1.
T We employ the experimental values presented in Fig. 5 of Reference [6].
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values quantitatively as the case of energy decay, but satisfactory agreement is
observed qualitatively. Since the accuracy of the measurements of 2 is not so

good as measurements of %2, discrepancies to this extent may be thought to be
unavoidable.

8. CONCLUSIONS

In this paper, we have discussed the self-contradiction involved in the theory
about the linear decay law and Lin’s decay law, which are well known energy
decay laws of isotropic turbulence in the initial period of decay. Then eliminat-
ing these self-contradictions and using the simple assumption that the partial
self-preservation of the correlation functions near »=0 holds and both S and G
are constant during decay as confirmed by experiments, we have tried to deter-
mine the decay curve by solving the energy decay equation (5.7) which has been
derived from the energy equation (2.10) and the vorticity equation (3.1). The
conclusions drawn from these theoretical studies are follows:

1. The linear decay law can not be derived by assuming the partial self-pre-
servation of the correlation functions, but can be derived only on the assumption
of the complete self-preservation of the correlation functions.

2. The linear decay law does not hold actually nor R, is ever constant in the
initial period of decay.

3. It is necessary that both S and G are, or at least either one of them is, not
constant during decay in order that Lin’s decay law should hold, therefore Lin’s
decay law contains a self-contradiction that the law holds only by neglecting the
experimentally confirmed fact of the self—preservatlon of the correlation funCtIOIlS
near r=0. L

4. The new method to determine the decay curve by solving the energy decay
equation (5.7) under the condition of S=const. and G'=const. during decay, is
reasonable, because the assumption used is confirmed by experiments and it con-
tains no self-contradiction such as those contained in the linear decay law and
Lin’s decay law. In fact, it was confirmed that the results of the theoretical cal-
culation show good agreement with the experimental results.

5. The decay curve varies with the initial conditions of turbulence generation
and we can examine the effect of the initial conditions of turbulence generation

upon the energy decay quantitatively through such statistical parameters as S,
G and R,,.

The author would like to express his sincere thanks to Professor Itiro Tani for
his stimulating interest and valuable discussions, to Mrs. Chiyoko Asano for car-
ring out the numerical integration of the energy decay equation, and to Mr. Su-
sumu Ekida for his help in numerical calculations. This work is supported by
the grant-in-aid for scientific research of the Ministry of Education.
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