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The Stress Distribution in a Swept-back Box-beam
under Torsional and Bending Loads”
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Ken IKEDA and Megumi SUNAKAWA

Summary An approximate solution is presented to obtain the static stress distributions in
a swept-back box-beam having asymmetrical section. The box-beam is assumed to consist
of four concentrated flanges of different cross-sectional area and four thin walls of dif-
ferent thickness, which connect the flanges. The ribs are assumed perfectly stiff except the

one nearest to the root.
. GENERAL

1.1. Introduction

We present an approximate method for the stress analysis of swept-back wing
structures.

Hitherto, the wing structure has been reduced to a box-beam for the convenience
of analysis. After World War Il the performance of airplane has progressed very
quickly, and most of them fit swept-back wings. In these cases, too, the wings
have been frequently analyzed as box-beams by many investigators. For example,
Dr. Levy [/] solved the problems using “influence coeflicients”. However, the
calculation seemed rather difficult and tedious.

In this paper, we have analyzed the stress distribution in wing structures on
the basis of the general method for the statically indeterminate structural analysis.
The method for the statically indeterminate structural analysis was proposed by
H. Reissner [2] originally. The key-point of applying this method to the struc-
tural analysis is how to construct the equilibrating systems in the object.

The fundamental principle of this method is the theory of least work and even
complex statically indeterminate structures can be analyzed easily by constructing
the equilibrating systems.

In this analysis, the ribs parallel to air stream are replaced by the ones per-
pendicular to the spars. And it was ascertained by Lang and Bisplinghoff [3] that

this replacement had little effect on the strength of box-beam and the processes
of analysis were greatly simplified by such a replacement.

1.2.

Symbols and abbreviations
a,b depth and width of the cross-section of box-beam (Fig. 2).

* Presented at the Annual Vli\/lﬂcéting of the Japan Socicty of Acronautical Engineering, April 11,
1958.
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FilGURE 2. Cross-section of box-beam.

distance between the root and the first rib 7 in the front spar.

.,t,, thicknesses of webs at the i-th bulkhead (Fig. 2).

.., A,, cross-sectional areas of flanges at the 7-th bulkhead (Fig. 2).

statically indeterminate quantity in the equilibrating system.
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FIGURE 1. Schematic drawing of box-beam.
d, distance between (i-1)th and ¢-th ribs.
d,
q shear flow.
tli’
t.;, thickness of the 7-th rib.
Ali’
E  Young’s modulus.
G modulus of shear rigidity.
P axial force in flange.
Q vertical load.
T torsional load.
X
A angle of sweep.
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Subscripts:

«“(0” denotes the amount referring to principal system.
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rand 1,2, .--,7,k, --- denote amounts referring to self-equilibrating
systems at root and other places.

2. THE METHOD OF ANALYSIS

2.1. Systems of stresses

As described above, the construction of equilibrating systems is the kernel of
this analysis. We accomplished the analysis successfully by using the following
systems.

2.1.1. The principal system

The principal systems are taken so as to equilibrate the external forces and the
primary stresses of the structure for each case.

2.1.2. The self-equilibrating systems

In the analysis of a swept-back box-beam, we construct the self-equilibrating
systems at the root and at each rib station except the tip one as shown in Fig. 3.
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(a) X -system (Xr = 1) (b) X,-system (Xl = 1) (o) X, -system (Xk = 1)
FIGURE 3. Self-equilibrating system.
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FIGURE 4. Relation between flange force and shear flow.

From the equilibrium condition between flange force and shear flow (Fig. 4),

the following equation can be obtained:
J
;@{,, I 2(1 R
dx

Using the boundary conditions,
P=0 at 2= and P=1 at =0
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on a flange force in each of self-equilibrating systems, then, the shear flow is given

by

2.2. Elasticity equations

On the swept-back box-beam with n-+1 ribs, the elasticity equations can be

summarized as follows:

o o N o
Opy Opp ** 0 Oy, Xr oy
00 Oy =00 Oy X, 0oy
o o o ~

Opy Oy * 00 Opy Xn Oy,

where
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By solving the elasticity equations (2.2-1), we can obtain flange forces and shear

flows in webs in a swept-back box-beam.

2.3. Flange force

By using Xs solved from the elasticity equations (2.2-1), the flange force Py

between (k—1)th and k-th ribs is represented as Eq. (2.2-3), taking the position

of (k—1)th rib as the origin of coordinates.

Py =Pyt Xk<1 —-;3) £X, (- ;) :

k k

(2.2-3)
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)
2.4. Shear flow in web
The shear flow ¢, between (k—1)th and k-th ribs is represented as follows:
Tx = @+ GXe— Qe 1 Xior - (2.2-4)
3. EXAMPLES OF APPLICATION OF THE METHOD
We present how to apply this method to practical cases on a swept-back box-
beam under tip concentrated torsional or bending load for a typical case.
3.1. Basic assumptions
To simplify the problems we introduce the following assumptions.
(1) Wing is a monocoque structure having two spars and has a rectangular cross-
section, which is composed of four concentrated flanges and four webs con-
! necting the formers. Taper is not taken into consideration.

(2) Attachments of wing to the fuselage are perfectly rigid.

(3) Bulkheads have infinitely large stiffness in their own planes. Each section,
therefore, keeps the shape of the initial rectangular cross-section after load-
ing, but is perfectly flexible for the deflection normal to its plane.

(4) Webs and ribs have the rigidity only against the shear force in their own
planes, and have no stiffness for the rotation and bending of their planes.

(5) Young’s modulus E of flanges and modulus of shear rigidity G of webs are
constant and independent of values of stresses.

(6) All components do not buckle.

(7) Wing is composed of five ribs. Flexibilities of ribs are not considered except
for the root one. (Fig. 1) '

3.2. Analysis of the case under a tip concentrated torsional load

In the webs of box-beam under torsional load, shear flows are not constant as
given by the formula of Bredt or Batho, but secondary stresses are set up by the
‘ resulting interference effect, if axial constraints exist.

Now, in the swept-back box-beam with five ribs under torsional load (Fig. 5),
we take the principal system as shown in Fig. 6 and the self-equilibrating systems
as shown in Fig. 3, respectively. Shear flows in the root delta webs are assumed

FIGURE 5. Box-beam under a tip concentrated torque.
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IFIGURE 6. Principal system (Torsional load).

to be uniform also and all ribs except the rib r are perfectly rigid. In the principal
system, we put the shear flow g, as Qo = T/20ab.

The elasticity equations are obtained putting %=4 in Egs. (2.2-1) and ds of
Eqgs. (2.2-2) are calculated as follows:
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3.3. Analysis of the case under a bending moment due to tip load

When a vertical load @ is applied to the tip of front spar of the two-spar wing
construction, for example, the front spar deflection is constrained by its own
bending rigidity and by the torsional rigidity of the wing as a whole. In conse-
quence, a part of loads transfers to the rear spar through shear flows at every rib
station.
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exible rib

rlgld rib

qOF: a

FIGURE 7. Box-beam under a tip concentrated FIGURE 8. Principal system (Bending load).
bending load.

Now, in the swept-back box-beam with five ribs under bending load (Fig. 7),
we take the principal system under a tip load on the front or rear spar separately
as shown in Fig. 8, and the self-equilibrating systems are the same as shown in
Fig. 3-a, b,c. Shear flows in all panels are uniform, and all ribs except the rib r
are perfectly rigid. In the principal system, shear flow Q/a exists in a spar web.

(a) The case when a tip load is applied only on the front spar
The elasticity equations are obtained putting n=4 in Eqgs. (2.2-1), where

ey »a,,_,( lgr 4o _W’)}Q,_,

12G ¢, E a
o 1 o | 1 ) . 1Qp
e r224= {,—2(;(*2; e do+ St a o} S

Other Js are the same as those described in section 3.2.

(b) The case when a tip load is applied only on the rear spar
The elasticity equations are obtained putting =4 in Egs. (2.2-1), where

5[)7:0’
_[1 a fﬁa(lﬂl }QR
’ o IZG f“ -+ E + ) 0

Other ds are the same as those in the case of (a) except that Q, and af, must be
replaced by @, and a.,.

3.4. Numerical examples

3.4.1. Dimensions of the model used for a numerical example
[=1000mm, a=150mm, b=300mm, d,=d,=d;=d,=250mm,
d.=btan 1=300tan A, (A4=0°,15°, 30°, 45°, 60°),
t,=ty,;=1.5mm, ¢,,=t,=1.0mm, &,=1.2mm,
A=A, =A,;=A,,=500mm?*, E=7000kg/mm?* G=2750kg/mm?®,
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TaBLE 1. X;s in a torsional load

4] | i

e 0° 15° 30° 450 I
X/ | — | 0.88 ‘ 0.92 0.8 | 0.75
X,\/(T/b) 0.8l 0.70 | 0.58 0.44 | 0.30
X./(T/b) 0.29 0.24 | 019 015 | 0.10
X4/ (T/b) 0.10 0.08 \ 0.07 ~ 0.05 | 0.04
X./(T/b) 0.03 0.03 1 0.02 0.02 | 0.0l

3.4.2. Numerical results and remarks

Numerical results are summarized in Fig. 9~Fig. 14, inclusive.

3.4.2.1. Results of the case under a tip concentrated torsional load (Figs. 9, 10 and
11)

The calculated values of X,s are shown in Table 1. The distributions of axial
forces in flanges for various angles of sweep-back are plotted in Fig. 9 and the
variations of flange force and shear flow at the root with the angle of sweep-back
are shown in Fig. 10 and Fig. 11, respectively. We can see that the flange forces
at the root decrease considerably with the increase of the angles of sweep-back.
For example, the axial flange force at the root in the case of /==45° reduces to

T
3 l'b(E) 1
8 ’
% R 0°
c - 150
T [ 0
§11.0(L) w50
b -0
I\ :\\ 8 T 4)
N \\:\\
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| | | I
. o -~
: 1 + 4 + + ERRESESS 2250 e 4
rib r rib 1 rib 2 rih 7 rib 4
(root of R.S.)
A: 60° 45° 30° 159 ©°

(root of F.S.)
FIGURE 9. Axial forces in flanges due to a tip concentrated torsional load.

about 5094 of that of 4/==0°. On the other hand, when //=0° the shear flow in the
spar web at the root increases about 309 compared with those given by the
formula of Bredt or Batho. And, the influence of sweep-angle on shear flows is
not so remarkable.

We added the curve of flange force in Fig. 9, which was obtained by one of the
authors [4] for a box-beam with closely spaced ribs when /=0". A satisfactory
agreement with the results can be seen in this paper.
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—_—
\
1.0 vobe i T
4 Bredt or Batho
(P10 (i.e. no root constraint)
0.5 0.5
\
o ; , . o
0 o 0 0 60° . P 0
0 15 30 45 0° 159 300 45 60
Angle of sweepback Angle of sweepback A
FIGURE 10. Axial force in flange at root FIGURE 11. Shear flow in spar web at
due to a torsional load. root due to a torsional load.

3.4.2.2. Results of the case under tip bending loads on two spars (Figs. 12, 13 and
14)

The calculated values of X.s are shown in Table 2. The case, where two bend-
ing loads are equal (Qr=Qz=Q), is considered. In this case, the flange forces and
the shear flows vary very much with sweep angles. For example, the flange force
and the spar web shear flow at the rear spar root in the case of /=45° increases
about 359 and about 459, respectively, compared with those in the case of
A==0°, and the variation of shear flows with angles of sweep-back is larger than
that of flange forces. The corresponding decreases occur in the front spar.

TABLE 2., X;sina bending load

00 15 3pe

| 450 | g0

* Xe/@ - 3.8 ’ ~5.00 6.6l -9.08
. X, 2/Q J — 2.50 J 1.90 1.17 ‘] 0.30
Xp/Q | -2.93 | 346 | -3.90 426 | 4.6

X/Q | 2.93 { 2.51 ] 2.20 1.97 ( 1.82

Xer/Q | 236 2.5 ]J 2.67 ~2.79 | 289

Xer/@ | 236 | 2.2 214 206 | 2.01

Xr/Q@ | -1.62 ! ~1.66 f 1L L7 I/ 1.80

Xar/Q 1.62 1.55 1.5 1.51 .49

Xw/@ | 082 0m | 085 | 0.6 | 088

Xi/Q ] 0.82 ' 0.79 | 0.79 0.7 | 0.78
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FIGURE 12. Axial forces in flanges due to a tip concentrated bending load.
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- Rear spar /
L.5 Rear spar 1.5
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0.5 Front spar

o° 15° 30° 45° 60° 0°® 15° 30°
Angle of sweepback 1

45° 60°

Angle of sweepback A

FIGURE 13. Axial force in flange at root
due to a bending load.

FIGURE 14. Shear flow in spar web at
root due to a bending load.

4. (CONCLUSIONS

We presented an approximate method for calculating the stress distributions in
a swept-back box-beam. It seems that this method has a good accuracy in spite
of using some assumptions and simplifications in the examples of application.

In the examples of application, we neglected the flexibilities of all ribs except
the root one. But, since even the effect of flexibility of the root rib is not so large
in our calculation and so the effect of the other ribs may be very smaller, this
neglect seems practical and contributes greatly to the simplification of calculation.
Some practical wings have more ribs than five, but in the analysis, we suggest to
replace their ribs by five ribs; the root one as it is and four ribs having infinite

shear stiffness.
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Moreover, we assumed that the buckling of components does not occur, but ip
the condition of tension field, for example, the use of equivalent modulus of shear
rigidity G, seems to widen the field of application of this method.

Department of Structures,

Aeronautical Research Institute, 2
University of Tokyo, Tokyo. ‘
February 11, 1958.
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