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Effect due to Plastic Strain History*
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Yoshimaru YOSHIMURA

Summary. The present paper presents the theory of the fundamental problem how an-
isotropy and the Bauschinger effect, as well as work-hardening, of a metal are correlated
with the previous strain history of its plastic deformation. The concept of the strain
history tensor indispensable to introducing this theory is provided by the author’s preceding
paper [3].

The basic ideas and assumptions are all introduced in quite a reasonable way, and they
are as follows: '

(1) Isotropic state of a material is represented by the spherical unit tensor I of order 2.

(2) The yield function for the isotropic state is derived from I and the deviatoric stress
tensor 77, and is given, at least in approximation, by the Mises’ yield function.

(3) Anisotropic state brought about by the strain history E is represented by the tensor
I+ AE, A being a scalar coefficient dependent not only on the extent of cold-working, but
also on the strain history.

(4) The yield function for the anisotropic state resulting from the strain history E is
obtained from I+ AE and 77, by just the same rule as the Mises’ yield function for the iso-

tropic state has been derived from I and 7".

(5) The Bauschinger effect is introduced into the yield function as the term of the form
BE- - T', which contain the strain history E and are linear with respect to 7.

Based on this theory, experimental results on yielding and stress-strain relation as the
complex of the respective effects of work-hardening, anisotropy and the Bauschinger effect
can be analysed with legitimacy, and hence they are obtained individually. The theory
was compared with experiments on yielding of mild steel tubes under the stress state of
combined tension-torsion after they had been subjected to the strain histories of axial ex-
tension and twist, and it was found that the theory was capable of coordinating the yielding
phenomena after various strain histories.

1. INTRODUCTION

Most metals come to reveal more or less strain history phenomena as anisotropy

and the Bauschinger effect besides work-hardening as plastic deformation proceeds.
 Work-hardening has almost adequately been incorporated in the mathematical
frame work of the plasticity theory, but as for anisotropy and the Bauschinger
effect the circumstances are not so satisfactory. The theory of plastic anisotropy
proposed by R. Hill [ /] is that for a metal which is in a certain state of anisotropy
due to some causes, and not the theory which brings the state of anisotropy into
correlation with the previous history of deformation as cold working to which
the metal has been subjected. And also the theories by other investigators are
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222 Y. Yoshimura

the same in this respect. The only theory concerning the Bauschinger effect in
.relation to the strain seems to be that by F. Edelman and D.C. Drucker [2]. But
it cannot be said to be correct in view of the idea of strain used. Because the
strain used in the theory is that which is specified by the change in the geometrical
configuration of the body, and therefore is fitted for describing elastic deformation,
in spite of the fact that the Bauschinger effect should be of the nature of being
dependent on the strain history specified by the deformation path, but not on the
strain of the above meaning. :

The object of the present investigation is to build up a theory, which can
explain our experimental facts concerning the dependence of anisotropy and the
Bauschinger effect on the previous history of plastic deformation of the material,
that is, a theory by which the state of anisotropy and the Bauschinger effect can
be predicted from the deformation history. So long as mechanical theory is con-
cerned, anisotropy is regarded as distortion of the yield surface from its shape in
the isotropic state, and the Bauschinger effect as transposition and accompanying
shape change of the yield surface, due to deformation history. Accordingly, for
the purpose of solving our subject mentioned above, it is required that the defor-
mation history is represented by some mechanical quantity, which is possible to
be incorporated in the frame work of the plasticity theory. And indeed it is one
of the key points for the solution of the problem whether such quantity can be
introduced or not, now that the strain usually employed and specified by the
change in the geometrical configuration is sure not to serve as such. So we shall
now begin with the mechanism, by which anisotropy and the Bauschinger effect
are effected, and then basing on it, proceed to the problem of introducing the
mechanical quantity representing the history.

To the present day knowledge of general endorsement, anisotropy of metals is
considered to be attributable to one or the complex of several causes such as the
fibrous texture, the preferred orientation of crystal grains and others due to cold-
working. But I can not but doubt whether the preferred orientation is really
possible under a uniform deformation of metals in the macroscopic sense, in which
individual crystal grains are supposed to be subjected to the almost equal defor-
mation. I think that one of the main causes of anisotropy is the group pattern of
dislocations in crystals. Atany rate it is sure that anisotropy occurs as the result of
some micro-structural change of the material due to a sequence of successive infini-
tesimal slips necessary for the plastic deformation to take place. And the micro-
structure of the material in the deformed state, even if it is of the same geometrical
configuration, should not be the same according to the process of slip, i.e. the deformation
path, up to the state. Thus the mechanical state of a plastic body specified by its micro-
structure is considered to be dependent on the previous slip process, but not on its geo-
metrical configuration directly. The same thing can be said as for the Bauschinger
effect, whether its cause may be the internal stress or the back stress due to the
piling up of dislocations.

Considering the matter in this way, it can be seen that the mechanical quantity
representing the mechanical state of deformation is given by the integration of
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Anisotropy and the Bauschinger Effect due to Plastic Strain History 223

the strain increment corresponding to the successive infinitestimal deformations
due to slips. According to the plasticity theory, the slip system active in course
of the infinitesimal deformation is such as to satisfy the so-called minimum slip
principle. But no matter what the active slip system may be, the change in the
mechanical state brought about by it is considered to be represented by the strain
increment, corresponding to the infinitesimal deformation caused by the. slip
system. In this case, the strain increment from ¢ to ¢+dt, ¢ being the time or a
parameter representing the extent of deformation, is needed to be defined such
that the current deformed state ¢ is at the same time an undeformed state with
no strain. This is because not only the plastic deformation is essentially of such
nature, but also the strain as a result of integration of such strain increment is
shown to be the strain history tensor itself dependent on the integration path, i.e.
the deformation history. Such strain increment and strain history tensor have
already been introduced in my preceding paper [3] as DE and E in the form
quite legitimate from both the mathematical and physical view-points. Thus we
are naturally led to the belief that it is reasonable to use this strain history tensor E
as the mechanical quantity representing the mechanical state dependent on deformation
history.

The other reason we must adopt as strain the strain history tensor E is that, without

having recourse to it, we cannot express the plastic work in the form

DW=T..DE=¢"(Dg),, (1.1)
inclusive also of the finite deformations, and therefore the plastic potential cannot, at
the same time, be the yield function, where T indicates the stress tensor defined in
the preceding paper [3], which corresponds to the so-called true stress in simple
tension, DE the strain increment tensor and ¢** and (Dg),, their components re-
spectively referred to an appropriate reference frame. Accordingly, if the yield
function f(T, E) involving the strain history tensor E were obtained in any way
for the material exhibiting anisotropy and the Bauschinger effect, the stree-strain
increment relation for the material is seen to be also obtained. In the present
paper, I shall attempt to deduce the yield function (T, E) by the aid of the con-
cept of the strain history tensor and some assumptions, which seem quite reason-
able. And as this yield function f(T, E) is of the nature of being derived, basing
on the yield function f(T') for the initial isotropic state, it is necessary for us to
know the latter first.

2. YIELD CRITERION OF METALS IN ISOTROPIC STATE

Our object in this section is to clarify the yield criterion (or flow criterion) of

metals in the initial isotropic state. But this is not necessarily possible, apart

from the notable yielding of such special metals as mild steel which obeys the so--

called Tresca’s criterion, because of the fact that all of the experiments ever per-
formed in the past, and perhaps in future too, concerning yield criterion of usual
metals are those for the state more or less cold-worked, on account of their having
no clear yield point in the annealed state, and consequently for the state not iso-
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tropic in general, owing to the strain history. If there exists any case where the
isotropy is maintained still after plastic deformation, that would be by chance.
For this reason, the yield criterion for the initial isotropic state must be obtained,
by the aid of some theory connecting work-hardening, anisotropy and the Bau-
schinger effect with strain history, from the experimental results for more or less
cold-worked state. And, in order to develop such a theory, it is necessary for us
to have conversely had a good knowledge about the yield criterion for the isotropic
state, as was stated previously. On account of the mutual interference between
these two requirements, we can find no means other than to develop the theory
on some assumption on the yield criterion for isotropic state, for its validity to be
examined in comparison with experiments. The existing experiments, and accord-
ingly the yield criterion derived from them for the isotropic state, should possibly
be reconsidered from this view-point.

Among a number of experiments concerning the yield criterion of metals, those
of W. Lode (1926) [4] and of G.I. Taylor and H. Quinney (1931) [5] are most
noted. And these also are no exceptions in respect that they are concerned with
the state already cold-worked.
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FIGURE 1.

The experiment of G.I. Taylor and H. Quinney is the one concerning the yield
criterion of thin circular tubes under combined tension-torsion after subjected to
axial elongation, and its result is shown in Fig. 1. In this experiment they paid
special attention as to whether anisotropy was produced or not by the initial
elongation. Namely they observed that the internal volume of the axially elon-
gated tubes varied during the deformation under the combined tension-torsion,
and accordingly showed that the extensional strains in the radial and circum-
ferential directions of the tubes were different in this case. By comparing the
principal direction of this strain thus obtained from experiment with that of the
applied stress of combined tension-torsion, they found that they showed fairly
good agreement, the maximum difference between them being 1.9° and the
average 0.64°. Judging from this result, they put forward that the tubes were
isotropic even after the initial elongation. But I think it is doubtful whether we
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Anisotropy and the Bauschinger Effect due to Plastic Strain History 225

can conclude from this that the tubes are really isotropic, because the difference
of this extent between the principal directions can also be seen between those of
the strains for the two cases when the radial and the circumferential elongations :
are regarded as equal and when they are regarded as different on account of the *
volume change.
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On the other hand, Fig. 2 shows the relation between the Lode’s parameters u
and v obtained by Taylor and Quinney from the measurements of the axial elon-
gation, twist and volume change of the tubes. If the material were isotropic, the
relation #=y would be equivalent to the statement that the yielding obeys the
so-called Mises’ criterion, and the deviation of the p~vy relation from p=v corre-
sponds to that of the actual yield criterion from the Mises’ one. For non-isotropic
state of materials, it is meaningless to consider the p~v relation.

~ From the observed pz~v relation for copper, G.I. Taylor (1947) [6] calculated
its yield locus according to the maximum work principle, assuming that it is iso-
tropic, i.e. that the principal axes of both strain and stress are coincident, and
obtained the result shown by the dotted line in Fig. 1, which shows good agreement ;
with the yield points obtained directly from the experiments. But, for alminium, .
the two loci, one from the g~y relation and the other from the direct method,
show small discrepancy, and for mild steel they have quite different tendencies.
This is considered to be no other than show that the condition of isotropy is not
fulfilled for the mild steel as against the copper. And if this is really true, ‘it
may perhaps be due to the fact that the pure metals, as copper, do not so work-
harden as to show a notable anisotropy, whereas the alloys, as mild steel, exhibit
anisotropy as well as work-hardening on account of foreign atoms operating as
obstacles to the motion of dislocations.

From the above reasoning it seems probable that metals, particularly of the
face-centered cubic crystals, have in their isotropic state the yield criterion repre-
sented by the locus of dotted line in Fig. 1, which lies inside of, but very close to,
the Mises’ criterion. This result seems to be also supported by the calculated
result on the yield surface obtained for polycrystalline face-centered metals by
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226 Y. Yoshimura

J.F.W. Bishop and R. Hill [7]. But since the calculation of this kind cannot be
expected to have enough accuracy, it is considered to have a qualitative meaning
alone. At any rate, the discrepancy of the yield criterion embodied by the dotted
line in Fig. 1 from the Mises’ criterion being very small, it may possibly be re-
placed by the Mises’ criterion itself as the first approximation.

3. THE MISeS’ YIELD CRITERION AND ITS RELATION TO
IsoTrOPIC PROPERTY OF MATERIALS

According to the result deduced in the preceding section, we can assume the
Mises’ criterion as that for the yielding (or plastic flow) of isotropic metals. The
yield criterion for non-isotropic state of metals due to strain history is possible
to be derived on the basis of this assumption. The validity of this assumption
and of the strain history theory thus introduced should be decided by the com- ?
parison of deduced results of the theory with experimental facts. g

For the purpose of introducing the strain history theory for the yield criterion, ’
it is first necessary to give the Mises’ criterion an appropriate mathematical ex-
pression. And further for this purpose, some coordinate system is required to be
introduced. And as such, of course, any one may serve. For the theoretical
treatment of the problem, however, is most fitted the Lagrangian coordinate system
which was already introduced in the preceding paper [3]. According to the
Lagrangian method, the Mises’ yield function is given by the second scalar in-
variant of the deviatoric stress tensor

T =c'*"ee,= o), €'€" (3.1)

ST AL S e T

i.e. by
g _— 1 4 ! l 12p )
f(o‘ )——Z‘T"T—“é—a O

P4

Farsie

where the dots “.-” mean the double scalar product of two dyadics, which may
otherwise be expressed as Spur of product of the two tensors and g,, the metric
fundamental tensor. Here, it must be noticed that the usual expression

1

f(o'“)z"z“‘fsﬂaﬁﬂ ‘

e 22

given in many text books, which makes no distinction between the contra- and
co-variant components of the stress tensor, is applicable only to the case of rect-
angular Cartesian coordinate system, and accordingly it does not serve as any clue
to our theory. Setting

ggpt:‘_—"%‘(glrgn—i_ghg/u) (3.3)
we can write (3.2) in the form

f(alp)zég;puaupo""' (3.4)
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Since g,, is symmetric with respect to 4, g, the relations

Gruee =J20x =9 10ee = Glurec = Gl ap (3.5)
are seen to hold. It is also found from (3.3) that
| Tonis0 =Goer Frpeed =1 (3.6)
hold.
Now we introduce the tensor of order 4
J =g},..e'e‘ee (3.7)

which has g4,. given by (3.3) as the components referred to the bacic tensors
e‘e*e'e’. Then it is easily found that J' is a tensor which transforms any tensor
of order 2 to itself, i.e. such that

JT=T (3.8)

for 7" for example. This is no other than show that the tensor J' is the spherical
unit tensor of order 4 just as

I=g,.e'¢e (3.9)

consisting of the metric fundamental tensor g,, is the spherical unit tensor of
order 2. Making use of such J', we can write (3.4) in the form

ﬂ&g:%rhduaﬁ (3.10)

That the Mises’ function is constructed from 7" by means of J’ which is of
spherical symmetry is considered to be the cause that it represents the yield
criterion for the isotropic state. Of course, some yield functions other .than the
Mises’ one are also possible for isotropic state, as was mentiond previously. And
if these were given mathematical expressions, they would also be composed only
of the stress tensor 7" and of the spherical tensor, though have more complicated
form than (3.10). At any rate, the property of spherical symmetry of J', which speci-
fies the isotropic features of (3.10), is attributable to that of tensor I, given by (3.9)
Sfrom which J' is derived according to the rule (3.3). That is, the isotropic state of
the material defined by the Mises’ function (3.10) is reducible to the spherical
tensor I itself: I is the very mathematical expression of the state of isotropy of .
the material. Thus we can see it to be clarified that the yield function (3.10) for
the isotropic state of the material is derived from the tensor I representing the very
state, according to the rule (3.3). And this conclusion will be seen, in the following
section, to serve as a guiding principle for introducing the theory, we aim at,
which describes the state of anisotropy and the Bauschinger effect in their depen-
dence on the strain history of the material.

Before proceeding to the main subject, we will now give the expression of the
Mises’ yield function in terms of the stress tensor

T=q"ee,, (3.11)

not of the deviatoric stress tensor 7", which will become necessary afterwards for

introducing the mechanical equation of state. The hydrostatic tension is defined
by

|
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E:%ﬁ“m“ (3.12)
and the deviatoric stress tensor by
ot =g —Gg* (3.13)
Substituting this into (3.4), we have
.ﬂa“r=%(mmm“o“—3ﬁx ' (3.14)
therefore, by using (3.12),
1
f(o-li‘)—_: '2—(g£m:—'§'gl,ugu>al#0”. (3.15)
Putti'ng
gl#lﬂzg;ﬂlt_-i_glpgtt ’ (3.16)
we can write (3.15) in the form
f(alp)2_3_.9%#“01,40:;. (3.17)
If we consider the tensor
J=9,..€'¢e‘ee* (3.18)
as in the case of J’, (3.17) can be written in the form
ﬂd%=%T~J~T (3.19)

irrelevant to the coordinate system. It is the same as for the case of 940 that
the relations

Dapen=Gpaee =G apee = Gpace =G es2n (3.20)
and
9:0:9 =0, Gr0.0"=0 (3.21)
hold as to g ..

Substituting (3.16) into (3.18), and then using (3.9), we can write J in the form

sz—%ll (3.22)

corresponding to (3.16). The tensor J is seen to be of spherical symmetry, though
not unit tensor, because of the fact that it concerns only the spherical unit tensor
Iof order 2. For this reason, the Mises’ yield function (3.19) expressed in terms
of the stress T is also shown to be that for the isotropic state of the material
represented by the tensor 7 of order 2.

4. YIELD FUNCTION FOR THE STATE OF ANISOTROPY AND
THE BAUSCHINGER EFFECT DUE TO STRAIN HISTORY

What has been obtained as a conclusion in the preceding section is that the
state of isotropy is represented by the unit tensor f of order 2, and the Mises’ yield
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function for the state is given by (3.10) or (3.19) by means of the spherical tensors
J or J of order 4, derived from I by (3.3) or (3.16). We will now enterprise in
the following to extend this result to the general case where the material exhibits
anisotropy and the Bauschinger effect due to strain history.

The first problem for solution is by what mechanical quantity a plastically
deformed state is expressed. It was already mentioned in Introduction that what
specifies the mechanical state as anisotropy etc. of materials after plastic defor-
mation is not the change in the geometrical configuration due to the deformation,
but the change in their micro-structure such as the group pattern of dislocations,
which depends on the path of deformation up to the state. Accordingly the me-
chanical quantity which represents such mechanical state ought to be the strain
history tensor E, introduced in my preceding paper [3], which depends on the
deformation path. Thus it may be quite natural to consider that the mechanical state
deviating by AE (A: scalar) from the isotropic state with no strain, due to the strain
history E, is expressed by the tensor

I+ AE=(g,,+Ac,.)e'e" (4.1)
just as the isotropic state was expressed by I. What must be particularly remarked
here is that the expression (4.1) is impossible by the usual strain which finds legi-
timate application in the elasticity theory, and therefore is specified by the change
in the geometrical configuration. The scalar A is a coefficient representing the
rate of development of anisotropy with plastic deformation. It is fortunate if A
be a scalar function only of the extent of plastic deformation, i.e. the plastic work
W or the second scalar invariant of E, say. But A may or may not be so; it may
possibly be a scalar function of the strain history tensor E itself. If so, the extent
of anisotropy becomes dependent on the deformation path as well as the amount
of deformation. i

The next problem which confronts us is what is the yield function which corre-
sponds to the state of anisotropy represented by (4.1). This question can be
answered by the following assumption. That is, we postulate that the yield func-
tion for anisotropic state is derived from the anisotropic tensor I4- AE in just the same
procedure as in the case where Mises’ yield functt’on for isotropic state has been derived
Sfrom the isotropic tensor I. This assumption is really an assumption, but it seems
so reasonable from logic that it can not be said as such. On the belief of this
conception, the tensor C' of order 4 specifying the yield function for anisotropic state,
which corresponds to the tensor J' for isotropic state, is obtained from I+ AE ((4.1)) .
by the same rule as (3.3), in the form

C'=c,,.e'e‘ee",
1
C{z,u‘:?(gu‘*‘Aeu)(gp: +A6px) (4-2)
+(gxg +A€u)(gm +A€/u):| .
By virtue of this tensor, the yield function for the anisotropic state I+ AE is considered

to be given by

f(a_l/:', 51/,):—3—1" Y C,’ . T'=-§-c;,,,,0”'l0/”- (4.3)

:
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The tensor components ¢}, in (4.2) is seen to be composed of the terms, inde-
pendent of A and involving A and A? respectively, such that

C,Xpu =g;pl¢ +-AL{1;u: +A2M{p:: ’ (4-4)
where g/,.. is given by (3.3), and

ﬁyu=%"(gu€p; +g/1‘81:+glxsp: +gptslt)’ (4‘5)

AI;yt::—;—'(sltsp: +sl:syc . (4‘6)

If A=0 in particular, the yield function (4.3) is reduced to the Mises’ function
(3.10), being '

Chues =G e - (4.7)
The tensors L, and M],,. are seen to consist of the linear and the second order
terms with respect to the strain history ¢,,. Being given the strain history ¢,,, the
yield function (4.3) is seen to be determined, apart from the scalar coefficient A
representing the extent of anisotropy. It will be needless to mention that the
components L}, and M],,, are also referred to the basic tensors e’e“e‘e® as in the

case of ¢},.. Namely, putting

L'=L,.e‘ee‘e", (4.8)
M =M],.e‘eee’, (4.9)

we can write C’ in the form
C'=J+AL +A’M'. (4.10)

The tensor €’ is seen to satisfy the symmetry relations such that
Chuee = Cluzee = Chpee = Chaee =Cleay (4.11)
because of g,, and ¢;, being symmetric.

The foregoing considerations as for strain history effects have been restricted
to anisotropy alone. And now we are in the stage to introduce the Bauschinger
effect as other one of the strain history effects. The Bauschinger effect exhibits
itself not only in the case when the direction of loading is reversed, but also when
it is altered. While anisotropy is the change in the shape of the yield surface, the
Bauschinger effect is considered to be the change in both its center and size. Ac-
cordingly in the yield function f(c**,¢,,) it ought to be expressed by a scalar invariant
of first order with respect to the stress tensor ¢'*, i.e. by

BB/, o' (4.11)
with some tensor B, and scalar B. B may generally be a scalar function of the
strain history E. In order that (4.11) may be a scalar invariant and further B, be
a function of the strain history ¢,,, we cannot but put

Bu=¢u (4.12)
Thus the terms representing the Bauschinger effect in the yield function are seen to be
given by
) Be,. 0" (4.13)
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Anisotropy and the Bauschinger Effect due to Plastic Strain History 231

This expression apparently seems identical with that already introduced by F.
Edelman and D.C. Drucker [2] as representing the Bauschinger effect. But it
must be particularly noticed that our expression (4.13) is distinguished from theirs g
in the point that our &, is the strain history tensor dependent on deformation

path, while theirs is the usual strain independent of it. And what is important

is that the strain history effect such as the Bauchinger effect is possible to be de-

scribed only by the strain history tensor. By virtue of (4.13), the yield function

taking account of the Bauschinger effect as well as anisotropy is given by

fo* ) =2T"-C--T'~BE--T
(4.14)

_—_icﬁ,,,,a”"a""——Bel,‘o"“.

2
'The negative sign before B in (4.14) is to make B>0.

Since the yield function (4.3), or more generally (4.14), is expressed in an invari-
ant form, it holds for any coordinate system in the same form. For example, for
the local coordinate system introduced in the preceding paper [3], it assumes the

form
AT, E)=.;_c;,.,,,a"‘fa’“—Bs.-,o'if, (4.15)
where
céjklzgzjkl'{—AL;jkl—*_ AZM,;_;]‘I (4.16)
and
Gimt= '%‘(gilcgjl‘l" 9udsk)s (4.17)
= “‘li‘(giksjl + g€in+ Guin+ Gicir)s (4.18)
Mifikz = ',l)_(eikejl + sil‘sjk)- (4.19)

If the local coordinate system is rectangular Cartesian in particular, then g;;=d;;,
and the above components are considerably simplified. We have the similar ex-
pression of the yield function for the Eulerian coordinate system too, so long as it
is concerned with the same material element.

The above expressions of the yield function are all referred to the deviatoric i
stress tensor 7", and now it is needed to give its expression in terms of the stress
tensor T, for the purpose of obtaining the mechanical equation of state later on.
Substituting (3.13) and (3.12) into (4.14), and then setting

C=c,..c'¢e'ee’,
cl;us ZC{Z#:: —_l_c;;laﬂgaﬂgu *"l—ciﬂugaﬂgl#
3 3 (4.20)
l 4 af ,rd
+—9—caprdg g gl,ugu: ’
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we have, by virtue of ¢,,9**=0 the expression

AT, E)=é—T- .C--T—BE--T

=—é—cm,a“‘a"——Bel,,a"‘. (4.21)

Here the tensor C satisfies the same symmetry relations
cl,uu: :cplt: =clpu =cyln=cu1p (4‘22)

as in the case of C’. Substituting the ¢},,. of (4.4), into the right-hand side of (4.20),
and then putting the respective parts consisting of g4,.., L},.. and M],. bY g..s
L,,.. and M,,,., we obtain

cl/u::gllux +AL2/M: +A2Ml,uu: 9 (4‘23)
1

g.l/ux:gfllus_?glpgu: ’ (4'24)

LlpuzL:ms-%'(slﬂgn +€tsg1/1) » (4.25)

1 a : a
Mlyu:Mx,pu_?M{paﬁg Bgu—%Ma,ﬂng ﬁgl/t
4.26
1 M/ afB 78 ( )
+‘; aﬂr&‘g g glﬂgu .

The g,,.. of (4.24) is identical with that which has already been given by (3.16), and
represents the part of ¢,,.. corresponding to the Mises’ yield function. The expres-
sion (4.21) of the yield function by means of the stress tensor being independent
of the hydrostatic pressure, the relation

AT, E)= %cwowa"—Bez,,w

= ”;—cl,uu(o'“l —ng)(ou '—pg“) - BGM(GZ”-—pg“‘)

is shown to hold. It must be remarked that the relation of this form does not
hold for the expression (4.14) by the deviatoric stress tensor.

The expression (4.21) of the yield function being of invariant form, it holds for
any coordinate system in the same form. For the local coordinate system for
instance, it is expressed as

ST, E)= %cijklaijokl_ Be, 0", (4.27)
where
Ciimt=Gijea+ ALijr+ A’ M, (4.28)
1
Jikt=Gijrer— "3—gijgkl ) (4.29)
2
L= Liziu— ?(sijgkl +endy), (4.30)
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effect in particular, for all plastic deformation, we can put A=0, B=0 and all
the expressions (4.3), (4.14), (4.15), (4.21) and (4.27) are reduced to the Mises’ yield

function.

For the sake of convenience for the later application of our present theory to some
practical cases, the tensor components ¢%,.., L},.. and M/, which are necessary
for the calculation of ¢}, are shown in Tables 1, 2 and 3.

These components

TABLE 1. g’z,mz%(gugp; +gngpe)
g | o2 | ¢ P P gt
]
o't | (91) | (912)® | (931)° 912031 931911 gudiz
€)) @ @ B C)] “ (€)]
o' (922)° | (g2s)? g20023 J23012 12022
[¢9) £)) @ ) @ @
o (g33)? 23833 g33031 J31023
[€))] (€)) C))] (O}
o'® %fgezgss‘*" (9:3)] %(gzsgsr*’g 15033) %(g 12923+ gaags1)
(€] ® @®
o™ %[933911‘*‘ (931)*] %‘(931912 +9gsag11)
[€)] @
o"'? #9092+ (g12)]
i @
TABLE 2. Lipee =é‘(gl Eust Qus€ae +gl:€p:+g;u$1:)
pugt! e o Pz e Pt
o' | 2gpen | 2010612 | 2g316m gi2€s1tGa1810 gs1€n1+g 83 gueiet+gizen .
(€} @ w 4) @ (€)]
a* 293260 | 292062 |  Gasesa+Gasus g23812+ 912623 g128a2 1+ go2612
a 2 4 [€)] “
a’® 2g33ess 923833+ gasces 933831+ Gar€s3 931623+ G2s€s; :
$)) [C)] [65) [C))
o' %(922533 + gsseas %(923631 + 931923 ‘}(0126234'9:35 12
+2g2163) + 92633+ g33812) + g22631+ g31622)
[€)] 8 [€))
3 %(933611 + 911613 %‘(guexz'}'gmeal
+2g31831) +goser1+g1i€as )
- ) ®
o2 #{(g11620+ geeent
+2g5612
(€)]
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TA.BLE 3 M’z,,.:———&(euey:+sz:s,u)

gt | g2 | g ) ] '3 gzt
o | (en)? | (e19)? | (esr)? €12€631 €31€11 E11€12
¢V} @ @ (C))] (€)] W
o'? (e22)® | (e2s)? €22€23 €312 €12€22
(3] @ w (¢)] )
g’ (Esa)z €23€33 €33€3 €31€23
@ ) ) &)
o'® #[eaoeas+ (e20)*] #(eosear -+ e12633) $(e1a€08+ €20€31)
o @ ® ®
o' #[essen+(e31)?] B(esie12+ €2se11)
@ ®)
Pt #lenen+(e12)?]
[€))]

representing the coefficients of ¢'*#¢"* being symmetric with respect to the diagonal
of the tables, only those on one side of the diagonal are shown in the tables. The
figures in the parentheses under each coefficient indicate the number of terms
identical with the term with the coeflicient. For example, the terms identical
with that which gives the product ¢'**¢’% are those of ¢'%¢"3, ¢'3%¢'%, ¢'32'3 besides
that, and further those in which the order of product is reversed, those in all
numbering eight. Thus ¢"**¢"*! may be multiplied by the coefficient in this posi-
tion, and then increased by eight times, in order to obtain the corresponding terms
in the yield function. This multiple is shown in the parenthesis. In these tables
are given the coefficients by the Lagrangian coordinate system, and those by the

local coordinate system, gjs Lz, Mz are, of course, given quite similarly, only

i
91, €1, being replaced by g;;, €;; Since the local coordinate system can be main-
tained orthogonal irrespective of deformation, the coefficients are simplified, many

terms in them vanishing.

5. YIELD FUNCTION FOR THE STATE OF ANISOTROPY AND THE BAUSCHINGER
EFFECT DUE TO STRAIN HISTORY—Continued.

In the preceding section, we derived the yield function for non-isotropic state
due to strain history, basing on an irresistible logic, on the assumption of the
Mises’ yield function for isotropic state which is also regarded as justifiable within
errors, if exist, of very small amount. This result is of general validity, and
yielding of most metals seems to be well explained by the yield criterion specified
by this function. But according to the kind of metals and of strain histories it
seems that there exists some case where the complete form of the function does
not hold, but it is needed to put the first order term of A equal to zero [8]. One
may be contented with the explanation that this is such a special case of the yield
function obtained in the preceding section. But why does the first order term of
A alone vanish? Now this question will be answered in a rather reasonable
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manner, by considering another possibility of anisotropy and the Bauschinger
effect being produced by strain history.

* We consider, as against the yield function f= -%—T’- -J'-- T’ for isotropic case,
that the tensor C* of order 4 characterizing the yield function
f=—;—T’-'C*--T’ (5.1)

for anisotropic state, will show a deviation A* from J’, and accordingly can be
put
Cr=J'+A* (5.2)
And further we suppose that the deviatoric tensor A* is derived from the strain
history tensor E in just the same way as J’ has been derived from 1, i.e. that
A¥=A*M], . e‘e"e‘e",

5.3
Mlll‘“:'—;_(shepg +81,8#, . ( )

This result is seen to be identical with that obtained by droping the linear term
of A in the general yield function derived in the preceding section, only the scalar
coefficient A* being different from A% Thus the case where the linear term of
A can be neglected, i.e. where it can be put that L},,,=0, is seen to be justifiable
from the view-point presented in this section.

6. YIELD CRITERION AND LAwW OF WORK-HARDENING

In Section 2, we have made the statement that it is impossible to know the yield
criterion and the rate of work-hardening in the hypothetical case when metarials
were isotropic, and hence also to know the state of anisotropy and the Bauschinger
effect which they really reveal, without some theory relating anisotropy and the
Bauschinger effect as well as work-hardening to strain history. This is because
most metals show behaviors as the combination of all these strain history effects.
For instance, the stress-strain curve in extension of a rod specimen is a result of
not only work-hardening, but also anisotropy due to the strain history of the ex-
tension itself. The same thing can be said as for the stress-strain curve in the .
case of twist of a thin circular tube. On the other hand, in order to investigate
yield condition of a metal, it is needed to consider about its state more or less
cold-worked, because it generally does not have clear yield point in the annealed
state. The yield locus for the stress state of combined tension-torsion of a tube
after an axial elongation, for instance, is not the locus for isotropic state, but that
for the state revealing anisotropy and the Bauschinger effect on account of the
previous elongation. As for the yield locus of a tube after twisting, the matter
is quite the same. Thus we can see that the stress-strain relation and the yield
condition as a result of experiments is none other than a complex of such various
effects as work-hardening, anisotropy and the Bauschinger effect. It must be said
unfortunate that the investigations ever performed in this domain all have taken
no account of these facts. Our present theory, which we are now going to in-
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duce, is that which is possible to resolve the complex of effects into its individual
tro ents, and accordingly to explain the experimental results from a unified view-
ele.mt Such yield criterion and the law of work-hardening as to serve for this
lrr;(;se is derivable basing on the yield function so far introduced.
uIn the preceding paper [3] we made the assertion that it is unreasonable to regard
work-hardening as a function of plastic work W=¢**(De),, which cannot be a
the variable, but it ought to be a function of the internal energy U stored in the
Stiieals by plastic deformation. Admitting this, we can put
- F(o*, e,)=H(U) 6.1)
f(a*, €,) 18 the yield function derived in the preceding section. In case,
ticular, when U varies in the same proportion to W for all the deformation
(6.1) can be replaced by
(o™, e1)=F(W). (6.2)
the yield criterion for a certain state work-hardened is represented by
f(a*", &,,)=const. (6.3)

where
in par
paths,

of course,

7. MECHANICAL EQUATION OF STATE

In the preceding paper [3], we obtained the result that the virtual work princi-

ple in the form

¢
DW= [ #(De),, 71)
0
. st the same as for the small deformation, is possible to hold also for the finite
Juﬁfonnation, only when the strain history tensor and the stress defined by (11.2)
d;« ihe preceding paper [3] are used as strain and stress. In consequence of this
° jaximum work principle, the yield function playing the role of plastic

the m . .
and & 1 as well, we have the mechanical equation of state in the form
potentid a ’

i
(DS)I,F@f—("—;MDz (7.2)
do**
¢ any magnitude of plastic deformation. Where, denoting by DQ the heat
fiantity which flow out during d¢, D2 is given by
Dy=Df(o" &)+ H(U)DQ

H(Uyo )

; (1.3)

dot*
when (6.1) holds, or by
Df(a*, €1)
DZZ I3 ,
F(W)e 20 &) (7.4)
dg*"
hen (6.2) holds.
Y Applying (7.2) to (4.21), we have
(D2)ss= (eupr™— B, )DR, 79

This document is provided by JAXA.



Anisotropy and the Bauschinger Effect due to Plastic Strain Hitory 237

or

DSUI(CU);.‘OJ:I"‘BEU)DX (7.6)
for the local coordinate system. Expressed in a form independent of coordinate
system, it becomes

DE=(C--T—BE)D.. (7.7)

‘Representing o' of (7.5) by the deviatoric stress components by means of (3.13)
and taking account of :

Caueed" =0,
we obtain
(De)1u=(Ca,c0”* — Be,,) DA,
Dey=(cijrao"™ — Be;;) D, (7.8)
DE=(C--T'—BE)Da.
Introducing (4.23), (4.24), (4.25) and (4.26) into (7.8), and using
9'1,,0"“‘—_—

we can write
(DS))#={[QS#,,+A( ;pu—%’glﬂeu) |
+A2<M1,pu —%'M:pugapglp):l 0',“ _ley}Dl’

Deij = { [g:‘.ikl +A4 (ijkz"‘ _i‘gijslcl>
7.9
+A2 Ml ___1 / rs " Tkl B ( ( )
ijkl ~3— rsktd " Jiy _0‘ — Be;; ¢ D2,

DE ={[J’+A(L’—%IE>

+A2<M’——;’-I 2 M)] -T'—BE}Dz.

If there exist no anisotropy and no Bauschinger effect in particular, then being
A=0, B=Q, (7.5), (7.7) and (7.9) are reduced to

R B

. (D€):y=03,e0'*D2,
g alie (7.10) ,
: DE=J..TDa, ’
and
(DS — / o /uDl,
)2 et } (7.11)
DE=J".-.-T'Da

respectively. For the rectangular Cartesian local coordinate system, the second
equation (7.11) is seen to be read as the so-called Lévy-Mises equations
De,=qa.D2,- - -, }

7.12 '
Dryzzfyz-Dl,"' . ( )

|
i
|
i
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8. YIeLD Locus FOR CIRCULAR TUBES UNDER COMBINED TENSION-TORSION

AFTER THE STRAIN HISTORY OF AXIAL ELONGATION

The strain history theory of anisotropy and the Bauschinger effect introduced
in the above is regarded so legitimate as to be irresistible in respect of its assump-
tion and the logic of deduction. But so long as it is a postulate, it must be ex-
amined by experimental facts. Now, for this purpose, we will apply our theory
to the special case of yielding of circular tubes under combined tension-torsion,

after they have been subjected to a pre-strain of axial elongation.

3

N
N

~

\/|<>

Fig. 3.

As shown in Fig. 3, we choose the #', x2, x® axes of a rectangular Cartesian
local coordinate system coincident with the radial, circumferential and axial
directions of the circular tube. Since the deformation under consideration is
uniform, we may take ' instead of da’ which alone has a meaning generally in
local coordinate system. By taking such coordinate system, the pre-strain of axial

elongation of the tube by n, times is represented by
— 1 _
€11=E22= ——2‘30’ E33=2¢&, the other ab.zo,

where
g,=log n,

and the combined stress state of axial tension ¢ and torsion = by

¢'23=r, the other ¢'V=0.

From (8.1) and Tables 2 and 3, we obtain

(8.1) °

(8.2)

(8.3)
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T ¥ I
Lij11=Lbssa=—¢)p  Ljzaa=2¢,,
1

! T T T
L3323 =Lb3aa=L3223=Lj232= ‘Ieo s

’ 1

Tl T T
3131—-L3113—L1331—L1313—'Z‘eos

1

’ — — T/ — T/ —_
L1212"'L122l—L2112—L2121—7605

the other Lj;,=0, /

and

r a1 r
Muu-lwzzzz——z'ﬁo, M3333=¢6,,
b —wrt w1
Mzaza =Mj332=M3205= Mszsz =——E,

Y _ R
M3434 '—M3113—ﬂl{331 "‘M{SIS"' —2‘63,

I T/ T O T A I
M1212—M1221-—M2112—M2121——8—50s

the other M;,=0.
The tensor components g, defined by (4.17) are given, in this case, by
91111 =0%222=9%33s= 1 ,
9;323=gg131=g,1212='2—s
the other g{;=0.
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(8.4)

(8.5)

(8.6)

In consequence, the yield function for the combined stress state (8.3) after the

pre-straining of (8.1) is obtained in the form
3
4
If the stress, when the tube was first elongated by ¢, is

=—§—-[02(1—I—A60+

0=0, t=0,

the function (8.7) must also be satisfied by (8.8), i.e. the relation

f=%[az(1+A50+%Azeg)+3z2<1+%Aso— 1 Azs?,)J—Beoa

2

=%03 ( 14 Ae, +-43—A2s3> — Beya,

A253> +3¢4(1 +-;—Aso———;—Aze§>} — Bego.

(8.7)

(8.8)

(8.9)

holds. This is the yield criterion for the yielding by the combined stress (o, z) for

the tube subjected to the strain history of extension &,.

It is seen that the yield locus represented by (8.9) shows some deviation from

the ellipse representing the Mises’ yield locus. If we put
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14+L ag,—L Az
g 2 2
Ta= ’

14 As,+ %Aze?)

(8 10)

(8.9) is written

(0—p) AN 5.11
(ao—ﬁ)2+< P Y (8.11)
V3(14«a)

On the other hand, the Mises’ yield locus is represented by
2 2

o T
7;_%’._+( @_)2—1 (8.12)

W 3
which is identical with the result obtained by putting =0 and f=0 in (8.11).
The comparison between (8.11) and (8.12) makes their difference clear. Asshown
in Fig. 4 the center of the Mises’ ellipse is (0, 0) in the o, = plane, and the major

and minor radii are g, and o,/¥ 3, while those for the yield locus effected by the
strain history are (8, 0), 2(¢,—B) and 2(ag,— B)/v3(1 +a), respectively.

FIGURE 4.

9. YiIeLD Locus ForR CIRCULAR TUBES UNDER COMBINED
TENSION-TORSION AFTER THE STRAIN HISTORY OF TWIST

As another example, we will now consider the yielding under combined tension-
torsion of a thin circular tube which has been subjected to the strain history of
twist. We take also in this case the rectangular Cartesian local coordinate system
shown in Fig. 3, with respect to the tube. If the tube is supposed to be so twisted

as the tangent of the twist angle becomes 7,, then the components of this strain
history tensor are given by
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323—_:—12_70, the other ¢&;=0. o.n*
| " The stress state of combined tension-torsion is expressed by (8.3). The tensor
components Lju, and M for the strain history (9.1) are obtained, from Tables
2 and 3, as
' 1
Li2a3=Li232= Lisse=Lj2z2= ~'2-7’0 >
Lis =L;332=L;333=L§233=%To,
Lh112=L121=Lls12=Lis21 (9.2)
=L’1231=L’1213=L5131=L’2113=?T0,
the other L{;,=0,
Mi2ss=M3322= —4"73 ’
. 1 . (9.3)
Mjg03=M3332= M3225= M3232= "8—7’6 ’
the other M;,=0.
The relations (8.6) hold also in this case. In consequence, the yield function for
the combined stress state (8.3) is given by
f= —;—[02<1 ——;—AZ)%) +31'2<l +—‘11—A2r§)+az'Aro:l—— By,r. (9.4)
If the stress necessary for the strain history (9.1) to be produced, is
=0, =1, (9.5)
" the function (9.4) is also satisfied by this stress (9.5), i.e. the relation
f=%[02<1—-—}5—A2r3)+3r2<1+%A2rﬁ)+arAro:| —Bree
9.6
=1'3<1+-3—A27’3>—B7’070 ©©
holds. This is the yield criterion of the tube for the combined stress state (8.3),
after it has been subjected to the strain history (9.1) of twist. ,
If we put
)
a=1 _%Azﬁ, -
' 1 42,0
b=3<1 +Lla n),
4
h=—Ar, (9.7)

* See (8.23) of the preceding paper [3].

:

{
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3
f= '——2"B70,

c=— [3(1 + _}Azr3>rg—33rofo]
- =—(br5+2f7),
the yield criterion (9.6) is written
ao®+2hor+b*+2fc+c=0. (9.8)

This equation (9.8) represents an ellipse in the ¢,  plane, whose center is situated
at :

3
= Ay,B
__hf __a
ab—h’ 3—iA473 ’
8
9.9
i(l—iflzr%)l?ro (5:9)
.= —af 2 6
[ _ 2
ab—h 3—_1—A“73
8 /
and the major axis is inclined by the angle 6 such that
tan 260= 2h__ _ Ar, (9.10)

a—b - 11 )
2 _____Az 2
+ 13 To

The major and minor axes of the ellipse have the length

2/_0_' d 2/_£f: 9.11
e an 4 ©.11)

respectively, where a’, b’ are the solutions of the equation
t*—(a+b)t+(ab—h*)=0,

i.e.
a’}z_l.{4 T 4 z+/4 14 gosy 121 4, 4} 9.12
Y > +12 ToX -+ 3 To+144 Te ( )
and
o St
'=fr,te= —_ 9.
c=fr.+¢ T . (9.13)

3 A}

In Fig. 5 are shown the ellipses represented by (9.6), or (9.8), in the chain and
broken lines, as against the Mises’ ellipse (full line). It was already mentioned
that these ellipses were distinguished from that of Mises in respect of the position
of center and the lengths and inclinations of the axes. The two ellipses have the
opposite inclinations according to the sign of A. For the yield function, in parti-
cular, which has no term of the first order with respect to A4, we can put ~=0 in
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FIGURE 5.

(9.7), and therefore the axes of the ellipse (9.8) are found to show no inclination
with the coordinate axes.

10. COMPARISON OF THE PRESENT THEORY WITH EXPERIMENTS

There are scarcely any experiments inquiring the yielding of a thin circular
tube under the stress state of combined tension-torsion, after it has been subjected
to the strain history of either axial extension or twist. The only one of the ex-
periments of this kind is that of Taylor and Quinney (1931) [5] for the case of
strain history of axial extension. The result of their experiment has already been
shown in Fig. 1. It was stated there that the yield locus of aluminium tubes showed
good agreement with the Mises’ ellipse, and the locus of copper lay somewhat

 inside of it, while that of mild steel showed notable discrepancy outside the Mises’

' ,elhpse, and further that the difference between these metals as to the yielding
“properties was attributable to that of the extent of their alloying. That is, the
notable deviation of the yield point of mild steel tubes from the Mises’ locus is
supposed to be due to anisotropy caused by the strain history of the initial elon-
gation. From this view-point, we investigated by experiments the yield locus for
mild steel tubes under the stress state of combined tension-torsion after they have
been subjected to the strain histories of axial elongation and twist respectively,
and obtained the results, as shown in Fig. 6a and 6b, which have a tendency quite
converse to each other with regard to the Mises’ yield locus. In the figure ;s and
Tiso Tepresent the yield stress in tension and tortion respectively, when it is assumed
that the material are isotropic in spite of its prestraining. The results of these
experiments and their interpretation have already been published in a Japan
journal [8], in advance of the present paper. According to the results of the
above investigation, it is clearly shown that the yield loci for the both strain
histories, shown in Fig. 6a and 6b, can be well explained from the unifying view-
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point based on our present theory for the case where the first order term of A
vanishes. Even from the qualitative comparison alone of the yield loci in Fig. 4
and Fig. 5 with the experimental results in Fig. 6a and 6b, we can see how our
theory is reasonable in view of the experimental facts.

02 04 08 08 lL0<& ‘"'
0730 o

FIGURE 6a. ®

FIGURE 6b.

From the above considerations, we may certainly infer that the deviation from
the Mises’ criterion, of the experimental results of Taylor-Quinney [5] for the
yield point of mild steel tubes is also due to the strain history of the initial elon-
gation. But here it deserves special attention that some change in the internal
volume of the tubes was found in their experiments during the deformation under
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combinéd stress, although there exists nothing in our experiments. If this :
‘iné”'chan'ge is true, not being due to some error in the measurements, it is
mgéidéd as showing that the yield criterion for the mild steel tubes for isotropic
ate has somewhat inward deviation from the Mises’ criterion, as was mentioned
: j)feviously. The fact that the yield point of the tubes in their experiments never-
‘theless showed notable deviation towards the outside of the Mises’ criterion, as
shown in Fig. 1, is considered to be due to the anisotropy resulting from the
strain history of axial extension. And this deviation and hence the extent of
" anisotropy, is regarged so much greater than in the case where the Mises’ criterion
~ is assumed to be that for isotropic state. But now, for the sake of applicability
of our present theory, we assume that the Mises’ criterion holds for isotropic state
also in the experiments of Taylor-Quinney for mild steel tubes. T hus applying
(8.11), we obtain the curve represented by broken line in Fig. 1, which agrees
closely with the experimental results, by assuming

Ag;=0.199 or —0.526. (10.1)

Here we put
B=0 (10.2)

in (8.11), since there exists no evidence concerning the Bauschinger effect in the
Taylor-Quinney’s experiments. Substituting the value of the extensional pre-

strain
| £=0.037 (10.3)
in their experiments into (10.1), we have
A=5.37 or —14.2. (10.4)

The problem which of the two values of A, one the positive and the other the
negative, should be chosen as valid must be determined taking account of other
experimental facts. For example, if the yield locus after the strain history of
twist is represented by an ellipse of negative 6, or if the tube is as well extended
in the axial direction as twisted by pure torsion, then A is positive, and vice versa.
Of these matters we will give full account in succeeding papers.

11. CONCLUSION

The theory introduced in this paper is that which correlates plastic anisotropy A
and the Bauschinger effect with the previous strain history from which these }
result. The basic assumptions and logics which underlie this theory are regarded '
as irresistible from various view-points, and are as follows:

(1) Isotropic state of metals is represented by the spherical unit tensor I of
order 2.

(2) For isotropic state, yielding occurs according to the Mises’ criterion.

(3) Metals subjected to the strain history E are in the anisotropic state of 1
+AE, A being a scalar coefficient.

(4) The yield criterion for the anisotropic state I+ AE is derived in just the
same way as the Mises’ criterion has been derived from the isotropic state I.
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For these theses to be made possible to be stated, we necessitate the new and
fundamental concept of strain history tensor E, which was already introduced in
the preceding paper [3].

The theory of plasticity based on this yield function which takes into account
anisotropy and the Bauschinger effect as well as work-hardening was compared
with various experiments and was found to show good agreement. And it is still
more interesting that some results, which are deduced from our theory and even
impossible to be expected by our common sense, are also given experimental
proofs.
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