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Summary. This paper is intended to present a quantitative method of analysis of sampl-
ing measurement or conversion of time varying random signals. The analysis is developed
by deriving a formula which gives the average information amount per unit time obtained
through the sampling measurement of a Gaussian random signal. Considering the limit-
ing case of the formula when the repetition frequency of the sampling measurement is
increased extremely, the order of increase of the information amount vs. sampling frequency
is examined and interpreted from physical points of view. Comparison between sampling
and continuous measurement of the signals is also made in this paper. Using the formula
the numerical values of the information amount obtained through the sampling measure-
ment are calculated for several kinds of signal power spectra, and in connection with these
examples some interesting phenomena are described.

1. INTRODUCTION

The average information amount obtained through a measurement of a physical
quantity is able to be calculated quantitatively using Shannon’s theory of infor-
mation [ /] just like in the case of communication systems, i.e., the information
amount is given as the entropy difference of the probability distribution of the
measured quantity (a priori probability) and the probalility distribution of un-
certainty of that quantity remaining after the measurement (posterior probability),
which arises owing to the error of the measuring instrument. In the case of
sampling measurement of a time varying random signal at equal time intervals,
the average information amount obtained through a set of sampling measurement :
points is presented as the sum of information amount corresponding to each sampl- [
ing point, provided that these points are statistically independent of each other. In f
general, however, it is not the case, because there are mutual dependences among
these points as expressed as the auto-correlation function of the signal. In other
words, a prediction of the signal value is possible to some extent into the future
using the correlation function [27] [3] [4], which changes the a priori probability
of the signal value before measurement, and the uncertainty of the signal value at
a sampling point after the measurement is also changed by the observed values of
the neighboring sampling points.

In this paper, the average information amount per unit time obtained through
sampling measurement is presented as a function of the power spectrum of the !
signal to be measured, the sampling frequency and the root mean square value |

[1] |
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2 Y. Ishii

(standard deviation) of measurement errors, which is shown in Eq. (18), under the
assumptions that _

(1) the signal to be measured is Gaussian and random,

(2) the magnitudes of the measurement errors constitute a Gaussian distribution

statistically and are independent of time as well as signal values.

This formula is derived by calculating the entropy difference in the frequency
domain. Considering the limiting case of the formula, the order of increase of the
information amount vs. sampling frequency is examined and interpreted from
physical points of view. It is also shown that, in certain conditions, the sampling
measurement of repetition frequency f, is equivalent, in the sense of information
theory, to the continuous measurement by the instrument which has the cut-off
frequency f,=f,/2.

The information amount obtained through sampling measurement is numerically
calculated for several kinds of signal power spectra as examples, and some interest-
ing facts such that for the random signals which have some quasi-periodic charac-
teristics, the information amount obtained decreases with the increase of the sampl-
ing frequency f, over some ranges of f;, are described. Although the formula
derived in this paper is not applicable directly to the sampling measurement or
conversion of time varying random signals by Analog-to-Digital converters because
of the quantization of the signals, these situations are discussed briefly.

2. PROPERTIES OF GAUSSIAN RANDOM SIGNALS IN THE
FREQUENCY DOMAIN [ 5]

The Gaussian random signal, which is assumed to be measured in the present
study, is a stochastic time function, which is a typical member of an ergodic
ensemble and consequently has no frequency component having energy of com-
parable amount with that of the complete signal, i.e., there is no d-function in the
power spectrum of the signal. A reason for assuming Gaussian random signals as
the measured ones is the fact that, according to the central limit theorem, any
stationary random signal would aproach to a Gaussian random signal when it
passes through linear systems and many kinds of random signals encountered in
practice may be classified in this category.

Another reason for this assumption is the properties of Gaussian random signals
in the frequency domain convenient for calculation of signal entropies. Sampling
theorem of time varying signals states that the signal x(¢) which has a time dura-
tion of D and a maximum frequency of f, (maximum frequency of the signal
power spectrum) is completely determined by its values of the free pointsi taken
at intervals of 1/2f,, in the time domain or by the values of the free points which
are taken at frequency intervals of 1/D in its Fourier transform as illustrated in
Fig. 1. In Gaussian random signals, these free points in the time domain have the
properties as follows:

t Although the term ¢ sampling point ’’ is used usually for this meaning, the term ¢ free point »’
is used intentionally throughout this paper to prevent the confusion with ‘‘ sampling measurement
point”’.
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. FIGURE 1. A Gaussian random signal which has time duration D and
a maximum frequency f,,. The free points in the frequency do-
main are statistically independent of each other.

(1) The signal values 2(n/2f,), corresponding to each free point in the time
domain, constitute statistically a Gaussian distribution which has the standard
deviation of 7., where 7 is an integer and ¢, is equal to the root mean square
value of the signal.

(2) In General, these free points in the time domain are correlated to each other.

In the frequency domain, denoting real and imaginary parts of Fourier transform
of the signal x(¢) as |

X()= [“altye " dt=Xo(£)+3X:F) s (1)

the free points in the frequency domain have the properties as follows: ;
(3) The values X,(n/D), X,(n/D) corresponding to each free point in the fre- ,
quency domain belong to Gaussian distributions and the standard deviations %

of these distributions are given as

T
20/ D) =01,(n/D) =y L TXGaD)P

(2)
=/ 20.m),

T The bar over a symbol represents ensemble average of that quantity.
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where @,(f) is the power spectrum of the signal, which is related to the -
auto-correlation function ¢,(z) as

p=lim s [ o0+, e
0.(f)= [ $.e s "dx, (4)

and -
s.0=c= [To.(nds. (5)

(4) These free points in the frequency domain are independent of each other.

The foregoing statements come from the definition of Gaussian random signals,
and the property (4) indicates that the calculation of the signal entropy in the
frequency domain is greatly advantageous over that in the time domain, since when
there are no correlations, the entropies of different distributions are additive. It is
further noted that, if the free points of a random signal in the time domain are
also independent of each other, the power spectrum of the signal would be flat or
“ white ”” within the frequency range —f,, ~f,, and the Gaussian random signal
which has a flat power spectrum is called as a pure random signal.

3. A FicTIiTioUs NOISE REPRESENTING MEASUREMENT ERRORS

The observed values obtained by the sampling measurement may be represented
by atrain of §-functions or impulses, each of which is equal in magnitude respec-
tively to the sum of values of the measured signal at a sampling instant and the
measurement error of that sampling point. As mentioned in Sec. 1, it is assumed
that the measurement errors are independent of time as well as signal values and
constitute statistically a Gaussian distribution. Then the operation of sampling
measurement may be considered as the impulse modulation of the signal y() which
is the superposition of the measured signal z(¢) and a fictitious noise n(%), that is

y () =x(t)+n(t) (6)
and
yrE)=2*)+n*@®), (7)
where the asterisks denote the impulse modulated signals (Fig. 2). The fictitious
noise n(t) should be a Gaussian random noise having a flat power spectrum in the
frequency range —f,/2~ f,/2 (f,: sampling frequency) as shown in Fig. 3, or it
should be pure random noise, since it must represent the measurement errors whose
values at sampling instants are statistically independent of each other.
The Fourier transform of Eq. (7)

Y*(f)=X*()+N*(f) (8)

is expressed by those of the continuous signals [6] [7] as
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FIGURE 3. The power spectrum of
the fictitious noise «(¢). The
noise should be a pure random
noise having a flat power spec-
trum. (f;: repetition frequency
of the sampling measurement,
o, the root mean square value

FIGURE 2. The operation of sampling measure-
ment is considered as the impulse modula-
tion of the signal y(¢) which is the superposi-
tion of the measured signal x(¢)and a fictitious
noise n(t).
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FIGURE 4. The Fourier transform of a impulse modulated signal is a
periodic function having a period f;.
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X*(f)=f, 3 X(f+nf),

M= =00

N*(f)*f S1 N(f+nf), (9)

7 =—00

Y*(f)=f, 3 Y(f+nf),

7 =00

where X (f), N(f), Y(f) are Fourier transforms of (), n(t), y(t) respectively and
n is an integer. It should be noted here that all of these are periodic functions
having a period f, as shown in Fig. 4, and within the frequency range —f,/2<f
< f/2, Eq. (9) may be reduced to

N*(f)=FN(f), }

vi(f)=r] 3} X(F+nf)+ N} (10)

4. INFORMATION AMOUNT OBTAINED THROUGH SAMPLING MEASUREMENT

According to the illustration in the preceding section, the observed values ob-
tained through the sampling measurement may be represented by y*(¢) and the
signal 2*(t) may be considered as the measured quantity. Applying Shannon’s
formula of information amount [ /] to this case, the ensemble average of the in-
formation amount obtained through a set of sampling measurement points is given
as

I=H(y*)— Avx*Hz*(y*), (11)

where H(y*), Avx*Hx*(y*) are entropy of y*(t), conditional entropy of y*(¢)

when z*(¢) are known, respectively. The conditional probability distribution of

y*(t), when z*(t) are known, is the probability distribution of the measurement

errors n*(t), which are independent of the signal values as assumed, so Eq. (11)

may be rewritten as

| I=H(@y*)—H(®n"), (12)

where H(n*) is entropy of the fictitious noise n*(t). Moreover, Eq. (12) may be
represented in the frequency domain as

I=H(Y*)—H(N¥*). (13)

The entropies in Eq. (13), calculated in the frequency domain, are different from

those calculated in the time domain by a constant, but the information amount is
given as the difference of the two entropies and the constant is canceled out, so

Eq. (13) is valid. Although the terms in Eq. (13) must be calculated by considering

the entropies at each free point in the Fourier transforms of the impulse modulated
signals, the free points included in the frequency range 0~ f,/2 are sufficient so
far as the calculation of the entropies is concerned, because Y *(f) and N*(f) are
periodic functions having a period f, and Y *(—f) and N*(— f) are complex con-
jugates of Y *(f) and N*(f) respectively.

The signal y(t)=x(t)+n(t) is the sum of two mutually independent Gaussian
random signals, so y(t) is also a Gaussian random signal and the values of the free
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points in the frequency domain Y (m/D), where m is an integer, are independent
of each other according to the properties of Gaussian random signals mentioned
in Sec. 2. Consequently, the values of free points Y *(m/D), as well as N*(m/D),
are also independent of each other, provided that the sampling frequency f; is
integral multiples of 1/D (this restriction will be removed later by making D — o).
The real and imaginary parts of these values constitute Gaussian distributions since
they are the sum of independent variables which belong to Gaussian distributions.
The vaules of Y*(f) and N*(f) other than these free points are completely de-
termined by Y *(m/D) and N*(m/D). Accordingly, using the notations H, (Y *)
and H,(N*) for the entropies concerning the variables Y *(m/D) and N *(m/D),
Eq. (13) may be transformed to

I=3S{H(Y*)—Ha (N5} (14)

where m takes all integers in the range 0 <m< f,D/2.

The variance (square of standard deviation) of the Gaussian distribution of the
sum of indepent variables, each of which constitutes a Gaussian distribution, is
equal to the sum of variances of each distribution, and the entropy of a Gaussian
distribution which has standard deviation ¢ is % log, 2rec? bits. Consequently, from
Eq. (2) and Eq. (10), the entropy H, (Y *) is given by considering the real and im-
aginary parts of Y *(m/D) as

G
2 D

Hm(Y*)ZZX’%logz 2753.7‘;2{ i —I'\X(%‘l‘nfs) 2-{—

=togszeDf?| 33 0.2 +nf)+—;—} (15)
Similarly '
H,(N*)=log, nefo( ;) . (16)
Hence
I:%logz{ = S\ o, ( +nf)+1} (17)

n

Denoting the average information amount obtained per unit time as I, the formula
to be derived becomes

I,=lim LI

Dyeo

_llm-— Elong {; éw@”<%+"f*>+l}

D-)oo

f /2

logz{ E O.(f+nf,)+ 1}df bits per unit time,  (18)
where f, is the repetition frequency of the sampling measurement; o,, the root
mean square value of the measurement errors; @,(f), the power spectrum of the
signal #(t); and  is an integer. It should not be overlooked here that >1@,(f +nf,)
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in (18) is nothing other than the pulse spectral density which appears in the statis- .
tical treatment of sampled-date control systems [4] [8].

5. ORDER OF INCREASE OF INFORMATION AMOUNT VS. SAMPLING FREQUENCY

Considering the limiting cases when f,— 0 and f,—co in Eq. (18), the order of
increase of I, vs. f, will be investigated in this section. If the range of power
spectrum of the signal to be measured is limited within —f,, ~f,, as shown in
Fig. 1, then for the range of f,<f, 1

5,3 0.(F+nf)= [T0.)df

=¢? (=mean square value of the signal 2(t)).  (19)

1/2
Iy= f 1082(
0

Eq. (20) indicates that I, increases in proportion to f. This phenomenon is also de-
duced by the fact that when f, is very small compared with the maximum frequency
S, the entropies at the sampling points are additive because these points are far
separated each other and the correlations among them are decreased substantially
to zero.

In the range of f,>2f,, Eq. (18) is reduced to

1= ["1og, {—f— 2.() +1}ds. (21)

Hence

Z?; +1)df= ts 10g2< Ia + 1) . (20)

2 ar

When f, is further increased, the term ~2-@.(f) in Eq. (21) becomes very large
o

compared with 1 in the frequency range 0£f<f,n—s (>0 and ¢ 0 when f;— o0)
and

L [ tosf L 0.(r) far

Sm—¢€ Im—¢
= [0 2B ar+ [ log. f.asf
0 O 0

=Const.+ f,, log, £ . (22)

That is, I, increases with respect to f, by the order of logf, as shown in Fig. 5.
This indicates that when f, is very large, the sampling points are aggregated densely
and by increasing the sampling frequency the signal values are measured more
accurately. This phenomenon bears some resemblance to the case of taking the
average of the observed values of a physical quantity, in which the accuracy of
the averaged value is increased with the increase of the number of times of the
independent measurements.

1 More accurately, for the range of f, € W, where W is the bandwidth of the signal as shown in
Fig. 9.
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FIGURE 5. The order of increase of information amount
obtained per unit time (I,) vs. the repetition fre-
quency of the sampling measurement (f;) when the
range of power spectrum of the signal to be measur-
ed is limited within — f, ~ fn, as shown in Fig. 1.

6. COMPARISON OF SAMPLING AND CONTINUOUS MEASUREMENT

The continuous measurement of a random signal by a recording instrument
such as a pen-writing oscillograph, may be considered fundamentally as Fig. 6,

IDEAL OBSERVED
SIGNAL, IDEAL OUTPUI VALUE
— 30—
X&) INSTRUMENT| z® + y(t)
NOISE
n)

FIiGURE 6. Observed value of continuous measurement can
be considered as the superposition of ideal error-free
output and a fictitious noise representing the errors.

)

provided that the measurement errors are independent of the signal values as well
as time and the distribution of the magnitudes of the errors is Gaussian. In the
figure, the signal x(¢) is measured by an ideal error-free instrument and the output
2(t) of this instrument is added to a fictitious noise which represents the measure-
ment errors of the actual instrument. Then the following equation which gives the
average information amount obtained per unit time through continuous measure-
ment is derived by calculating the entropy difference in the frequency domain just
like the manner for the sampling measurement.

I— f mlogz{lG(f ) [*D(f) +1}df bits per unit time, (23)

P.(f)

where G(f) is the frequency response of the measuring instrument; @,(f), power
spectrum of the signal x(¢); @,(f), power spectrum of the fictitious noise. It should
be recognized that |G (f)[*®,(f) in Eq. (23) is no more than the power spectrum
of the signal 2(%), the output of the ideal instrument. Accordingly, Eq. (23) can be

regarded as a special case of Shannon’s formula for the capacity of a communi-
cation channel [ /]
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C=Wlog-P;N, 2

(C: channel capacity, W: bandwidth of the channel,
P: signal power, N: noise power)

in which the power spectrum of the signal and noise are assigned as well as their
| power.

‘ When it is assumed that the frequency response of the instrument is flat shaped
within the frequency range —f, ~ f, and.the power spectrum of the noise which
represents the measurement errors is also flat within this range as shown in Fig. 7.

Then Eq. (23) is reduced to
fe
L= [“los 2e0.(5) +1}as, ©s)
0 On
. G
/I
- f
‘ ~fe 0 e

%

FIGURE 7. Assumed characteristics of the measuring
instrument and the power spectrum of the fic-
titious noise.

E where o, is the root mean square value of the errors. If it is also assumed that
iR the power spectrum of the signal to be measured is limited within —f,, ~ f, as
: shown in Fig. 1 and f,> f,., then

I,= f ’"‘mgg{ 2;: =0, (f) +1}df. ’ (26)

n

Comparing Eq. (26) with Eq. (21) of the case of sampling measurement, the
both are identically equal if f,=2f,. In other words, the sampling measurement
| of the repetition frequency f, is equivalent to the continuous measurement by the
instrument which has the cut-off frequency of f,=f,/2, provided that the fore-
going assumptions are valid and the root mean square value of the errors are
equal in both cases.
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7. NUMERICAL CALCULATION OF THE INFORMATION AMOUNT OBTAINED
BY SAMPLING MEASUREMENT

In the case of the sampling measurement of the Gaussian random signal which
has the flat power spectrum between the frequencies —f,, and f,, as shown in Fig.
8, i.e., in the case of a pure random signal, the average information amount per

Br(F) Px(T)yp?
052, ' in;
m — 2 SIN2TFmT
NN
NN
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C B 7 (¢) 55/ 2

FIGURE 8. The power spectrum of a pure random signal (a), the auto-
correlation function (b), and the average information amount
obtained through the sampling measurement of this signal (c).

unit time is calculated numerically using Eq. (18). The result is

e gl el

2f, 2LL2f, 2fnon
—(a—1)Ts [afioe | ; ;
+{1 (=1 fm}logztzfmai—{-l}:l bits @7) ,
for the section
1 _ f 1
Ty e 28
a  2f, a—1 28)

where « is any positive integer, and it is shown graphically in Fig. 8, in which
I;/2f, is shown as the function of f,/2f,, non-dimensional sampling frequency,
with the parameter ¢3/0}, signal-to-noise energy ratio. The auto-correlation func- 1
tion ¢,(z) of the signal is also shown in the figure.

Although the curves in Fig. 8 are slightly concave in each section defined by Eq.
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(28), they are almost linear within the range f,/2f,.<1. When f,/2f,=1, i.e., at-
the critical sampling frequency appointed by the sampling theorem, the curves
show sharp break off. In the range beyond this critical sampling frequency, Eq.
(27) is reduced to

IO ( fda; 1
=Ly 1 bit « 29
2 2 2 ) b &

by putting a=1, and I, increases approximately by the order of log f, with respect
to f, as mentioned in Sec. 5.

The second example is the case when the frequency band of the signal power
spectrum does not start at zero as shown in Fig. 9. The auto-correlation of the
signal,

o 2w f'
79
(@ /2w ' ' |
k N Aa0 v
o 0 I - i N )
w w ; \
B (T N
| "-~f- Sinfg 27X fnl /\ o "‘09("%5”)
~~~~~ ¢(T)= 0‘2—I—‘%‘”'cos—27cfm - Vo w
\\\\\ |02 f T I : 5
S~ b 5/ 2fn
J f ! Il /\ _“—‘Z- : ) —

o

2 N 6 A AT R Y ) ( Vat-1
[ LW I w
ai07) (=28

“[p--¥-mT (b

FiGure 10. The information amount

FIGURE 9. The power spectrum (a), and the auto- obtained through the sampling
correlation function (b) of a Gaussena random measurement of the signal of
signal, the frequency band of which does not Fig. 9. The curves exhibit several
start at zero. minimum points.

$o(0) =t SBEWE cos or fie, (30)
Wt
where
w
Jo=1, mT *‘2—“ (3 1)

or the center frequency of the band, is also shown in the figure. These kinds of
Gaussian random signals reveal some quasi-periodic characteristics in the wave-
forms in the time domain. The application of Eq. (18) to this case is so complicated
that it is examined only for the range f,>2W and the results are shown graphically
in Fig. 10. It should be noted here that, differing from Fig. 8, the curves of I, ex-

hibit minimum points when
fo 1 (1— W) (32)

2fm a—1 2fm

or sz_szl (33)

where «a is any positive integer. Comparing Eq. (33) with Eq. (30), it would be
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recognized that when Eq. (33) holds, the sampling interval T,=1/f, isequal to an
integral multiple of the half period of the auto-correlation function of the signal.
Consequently, it would be proper to say that under such circumstances the un-
certainty of prediction for the future value of the signal decreases and, in turn,
the entropy of the a priori probability is also decreased. In Fig. 11 a numerical
example of this case is shown where the ratio f, /W is assumed to be 5.

10
T
I 02 =100000

BIT
n ] |
10000

i \Vv/\vvf /r,,,_\\/\/—-——- -

SV \V/
i
| @t
0 0.2 04 06 08 10 1.2 14 16
' 5/ 2bm
FIGURE 11. A numerical example of Fig. 10 where the ratio Jm/ W is assumed

to be S.
Another example is shown in Fig. 12, in which the signal power spectrum is
assumed to be a bell-jar type. Such a kind of Gaussian random signal would be
obtained by passing a pure random signal through a first order resistance-capaci-
tance combination system. The summation >} ®,(f+nf,) of this spectrum is easily

obtained as a two-sided z-transform of the auto-correlation function by using the

tables [7][9]. Then

a
ﬁ?@z(f) ©
80
@ BIT
S
60 <
0z 6160 <
40 A
/ /66{
// ¥
(b 20 o —
// L —T100
L1
T 10
% 2 4 § 8 i0

-4

FIGURE 12. A signal power spectrum of bell-jar type (a), and its auto-correlation function
(b). The relation of the information amount obtained through the sampling measure-

ment of this signal vs. the sampling frequency is shown in (©).

e
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' _ . 1=a
fs§3¢.r(f+nfs)“az (z—d)(z“l—d)

. 1—d
1+d*—2d cos 2z f T, ’

(34)

where z=¢*%7s and d=e~""+=¢~*/s, Substituting Eq. (34) into Eq. (18) and per-
forming the integration, the information amount would be calculated. But it is
difficult to perform this integration analytically, so a graphical method, in which
a planimeter is used to measure the area under the curves for several combinations
of f,/a and ¢;/o}, is adopted. Comparison of Fig. 12 with Fig. 8 and Fig. 11 indi-
cates that the curves in Fig. 12 bend more slowly when £, is increased than those
of the preceding examples. Further analysis reveals that the order of increase of
I, with respect to f, for this case is v f, provided that S is very large, in contrast
with the order of log f, in Fig. 8 and Fig. 11. This phenomenon may be considered
as a consequence of the existence of the high frequency conponents in the signal
power spectrum, that is, the waveform of the signal contains fine variations and
by increasing f, these fine structures of the signal are disclosed accordingly.

8. SAMPLING MEASUREMENT OR CONVERSION OF TIME VARYING RanNDpoMm
SIGNALS BY ANALOG-DIGITAL CONVERTERS

An important case of the sampling measurement of time varying signals is the
measurement or coversion of the signals by analog-to-digital converters in which
the quantization or “round-off” of the signal values takes place simultaneously
with the sampling operation. If the quantization error is very large compared
with other statistical errors, the signal value z(t) lying somewhere within a quanti-
zation “box” of width ¢ will yield a digital output y(t) of the converter corre-
sponding to the center of the box. Accordingly the probablility distribution of this
output or the observed values p(y) is discrete one. Each probability constituting
the distribution is located at the center of each quantization box and it has a
magnitude equal to the area under the probability distribution p(x) of the signal
values within the bounds of the corresponding box as shown in Fig. 13. As have

P py
/

l ah / X . FD-TH
| LT - \»\\\\-«--\\\\\ QUANTIZATION
4 QUANTIZATION RSN BOX

/ BOX i
: -

r I\ %

L vy T S—-xy FIGURE 14. The time ¢, the instant of
transition of a time varying random
FIGURE 13. Quantization of a time varing signal from a quantization box to the
random signal. The probability distri- next, can be measured precisely when
bution of the magnitude of the quantiz- the sampling frequency of the A-D

ed signal p(y) is a discrete one. converter is increased.
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, _
[ | v already been mentioned Eq. (18) is not applicable to this case, because the measure-
; ment errors do not constitute a Gaussian distribution and they are not independent
: 4 of the signal values, instead, the errors are completely determined when the signal
values are assigned provided that the quantization is done perfectly.

The formula giving the information amount for this case will be derived from
Eq. (11). The second term of Eq. (11), the conditional entropy Avxz*Hzx*(y*), be-
comes zero according to the foregoing statement, so the average information amount
I is equal to the entropy of the discrete probability distribution of the observed

values, that is

IZH(’!/*):_Zi p, log ; (2 p;=1), (35)

where 1 is an integer which specifies the quantization box and p, is the probability

getting the observed value corresponding to i-th quantization box. When a set of

n observed value are obtained through the sampling measurement of a time vary-

ing random signal by an A-D converter, Eq. (35) must be considered in the signal

Y » space of n dimensions, and the calculation of I is so tedeous that it is almost im-
! possible without the aid of electronic digital computers.

Although it will not be investigated further into this situation, the followmg
comments would be added. If the signal to be measured is constant, the measure-
ment of this signal by an A-D converter is trivial because after knowing the
quantization box in which the signal is lying, the following measurements are no
more than the repetition of the preceding measurements and no diminution of the
uncertainty is achieved. But in the case where a time varying random signal is
measured, the instant of transition of the signal from a quantization box to the
next, which is shown in Fig. 14, can be measured more and more precisely with
the increase of the sampling frequency and, in turn, the signal can be decided
precisely as a whole. Hence, the average information amount per unit time ob-
tained through an A-D converter would increase boundlessly when the sampling
frequency is increased infinitely.
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