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Symmetrical Buckling of Cylindrical Shells
under External Pressure*
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Summary. The buckling phenomenon of cylindrical shells under external pressure was
analyzed on the basis of the theory of finite deformation. Restricting our consideration to
the case of boundary conditions ; clamped straight edges and simply supported circum-
ferential edges, the relations between the pressure and the deflection were obtained and the
critical buckling pressures were discussed.

The main conclusions were as follows :

1. The “Durchschlag’ phenomenon may take place more easily, if the values of 1/4,
#, and a/t are larger (A=(yo/l)% yo=ab.. See Fig. 2).

2. The buckling pressure are lower, if the values of 1/4, 1/, and a/t are larger.

3. The main characteristic for the case of cylindrical shell which differs from that of
spherical shell lies in the fact that the buckling pressure has no minimum value against «

(a=ab*/t).
The cases for other boundary conditions can be analyzed with the same process as
described in this paper.

1. INTRODUCTION

The buckling phenomenon of the partial cylindrical shell or the curved plate
under external pressure has had a great significance, for example, for the submarine
structure, and lately some attention has been paid also to the buckling of the roof
of hangar due to snow. To meet the need in such engineering problems, this
buckling problem is here analyzed on the basis of the finite deformation theory.

We can find the papers concerning this buckling problem based on the infini-
tesimal deformation theory (linear theory). However, the classical critical buckl-
ing values of thin shells based on the linear theory are usually far higher than the
experimental values, and this discrepancy between them has been explained from
the nonlinear load—deflection curve or from the standpoint of potential energy on
the basis of the finite deformation theory. Such an attempt was shown on the
buckling of spherical shells under external pressure by one of the present authors
[I]~[4]. This paper has thus a further aim to explain such a discrepancy be-
tween experiments and the theoretical values predicted by the linear theory. Since
there enter more parameters for the case of the cylindrical shell than for the case
of spherical shell, and the analytical results are too complicated to be expressed

* Read at the Special Meeting JSME, Oct. 29, 1959.
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in a concrete form with satisfactory accuracy, then our consideration is restricted
to the case of specific boundary conditions and particular symmetrical deformation
for an example. But, the more general cases can be analyzed by the same process
as described in this paper. ‘

Nomenclatures and Symbols

a,l,t

K15 Ko

5T
€115 €99

average radius of curvature, axial half length and thickness of the
undeformed cylindrical shell, respectively.

center angle of the partial cylindrical shell.

radial pressure acting on the unit surface area of the cylindrical
shell (positive when external pressure).

extensional forces per unit length of width after deformation in the
x and y directions, respectively.

shearing force in the median surface after deformation.

shearing forces normal to the median surface after deformation.
bending mements after deformation about the z and Y axes, respec-
tively.

curvatures of the median surface after deformation about the z and
Y axes, respectively.

twist of the median surface after deformation.

curvature changes of the median surface about the z and Y axes,
respectively.

change of twist of the median surface.

extensional strains in the median surface.

shearing strain in the median surface.

flexural modulus of rigidity. B=Et*/12(1—.?

modulus of elasticity.

Poisson’s ratio.

coordinates in the axial, circumferential and radial directions in
the median surface. (See Fig. 1)

displacement components on the median surface in the Z,y and z
directions, respectively, which are functions of 2 and Y. s

Suffixes “2” and “y” mean the differentiation with respect to # and y, respec-

2.

tively.

EQUILIBRIUM EQUATIONS AND COMPATIBILITY EQUATION

The coordinates and the variables on the cylindrical shell are shown in Fig. 1
and Fig. 2. The origin of coordinates is taken at the midpoint of the median
surface of the cylindrical shell. From the analysis based on the infinitesimal
strain and the finite deformation [5], the equilibrium equations of cylindrical
shell subjected to external pressure are given as follows :—

0T, + 0T ——T13L—T23]—aw—=0’ (1-1)

ox oy
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simply supported

(1-2)
(1-3)
(1-4)

(1-5)

(1-6)
(1-7)
(1-8)

Curvatures L, M/a and N/a? curvature changes «;, x,; and «,, and strain com-
ponents &, &, and &, can be expressed in terms of %, v and w and their deriva- '
tives, and their power functions on the basis of the finite deformation theory.
For example, the strain components in the median surface can be written rigor-

ously as follows :
=ty +-(ud-Hoitu),

Ee=U,+ V. +U,U, —l—vx<v,, —

802'—‘-"0
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Now, let § be the maximum deflection at the midpoint of the partial cylindrical
shell or the curved plate, and d/y, and J/l are assumed to be the infinitesimal
quantities of the first order, and % and v to be smaller than w. In such a case
where 8/t is not so large, the curvature changes and the curvatures of the median
surface are given as follows by considering the first order terms only.

'Clz:wz.m
K12 =Wgy, (2)
K =W,,+ w
= kit
vy az
L=w,,,
M
—'_:w.z:y,
a . (3)
N 1 w
’Zl_z'_""+ww+ 2 ’

In Egs. (1-1) and (1-2), which are the equilibrium equations in the x and ¥
directions, respectively, the 3rd and 4th terms are so small quantities compared
with the 1st and 2nd terms that they can be neglected for the first approximation.
Then this pair of equations can be satisfied by introducing the well-known Airy’s
stress function y(x, ¥), defined by the relations

T, =¢,= o*x

Et U oy’

Ty _y —_ &1

Bt 0T awoy (4)
Ty, —d — o*x

Et b= ox?

The strain components in the median surface can be also expressed as follows
taking into account the quantities of the first order. '

€n =¢1—y¢2:u3+%wx2a

e =2(1+ ), =%, + v, +w,w,, (5)
1/ w?

622=¢2_”¢1=vy'—%‘+"2“('Ez—+wy2> .

Eliminating % and v from the three of Egs. (5) and using x in Egs. (4), the
following compatibility equation can be obtained.

V‘X :wiy_w.z-mwyy— wxz '}' ‘alz‘(zux2+luwxx)' ( 6 )

a

The process of calculation is first to derive x by solving Eq. (6) after substitut-
ing w that satisfies the boundary conditions into the right hand side of Eq. (6),
and determining the integral constants so as to satisfy the boundary conditions on
u and v, and then to obtain the pressure—deflection curves from the equilibrium
equation in the z-direction of Eq. (1-3) to which the Galerkin’s method is applied
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after substituting Egs. (1-4)~(1-8).
According to this process, an example of analysis will be shown in the follow-
ing section.

3. APPROXIMATE SOLUTION OF EQUATIONS

As an example of analysis, a curved plate will be considered where the straight
edges are clamped and the circumferential edges are simply supported, and the
deflection mode is symmetrical with respect to the center point. In this case, the
boundary conditions are written as

2
w= o*w =0 on x=-+lI,

ox?

S (7)
wW=—-=0 on Y=z=1%Y,,

oy

and the plausible function for w which satisfies these boundary conditions can be
expressed as follows : '

w=35y(5— 62" +2")(1 —2y" +y"), (8)
where
0 r__ & ’ Y
0p=—, = y =—7. 9
0 5 I Y ” (9)

Substituting Eq. (8) into Eq. (6), the compatibility eqation is expressed as
17ty =4(1 —y"*){3(— 208 — 503+ 8,) + 30(681 + )y — 1 50"
1+ 3(4401+ 235 —8,)a" + 6 (308 — 235} a"y " + 69032y
4 3(— 2801 — 1562 4 6(— 2251+ 1 55%)x"*y " — 45832y

+ (128047822 + 14(28: — )"y + 103"y}, (10)
where
5= 5= (11)
Yo a

The stress function y is now assumed to be expressed in the following poly-

nomial function.
9
ZZXZ E Amnxlzmy/zn (12)
—“nzs

The fifty-five unknown coefficients A4,,,s in Eq. (12) can be determined exactly
by solving simultaneously the following equations.

i) Substituting Eq. (12) into Eq. (10) and equalizing the corresponding coef-
ficients of the terms &*™y"* in both sides of the equation, the thirty-six equations
on A,,s are obtained as shown in Fig. 3, where the straight lines that connect
three points mean the linear equations containing the three different A,,,s.

ii) The following equations can be derived from the first and the third of Egs.

(s).

U, = TuE‘ZTzz _%,wxz, .
(13)
TZ"——,‘)TII w 1 <w2 2)
P, = 2 I I .
v Et + a 2\a Wy

it s |
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Integrating Eqs. (13) with respect to  and ¥, respectwely, and using the boundary

conditions :

(u)x’=0, 11:03 (7’1)1/'=0, :1=0’ (14)
i then the eighteen equations on A,,,s can be obtained from the edge conditions as
shown in Fig. 4 after determining the integral constants by (%),..,=0 and (V) <0

I =0.

j | 1ii) Ay, =0. . (15)
E All the coefficients 4,,,s thus determined from the equations in i), ii) and iii)
can be presented in the following form.

A

il E = @t b )+ 0,000, (16)
0
: where a,,s, b,,,s and ¢,,,s are the functions of 1=%/I* and Poisson’s ratio v. If v
‘55 is put equal to a constant such as 1/3, then a,,,s, b,..s and ¢,,,s can be shown in the
polynomial form of 2 only as

mn Z amn 1, ’ IYUl 2 bl".ﬂ i ’ 7)“1 Z cmn 1, . (17)

Now that the stress function has been determined in the manner described above,

the Galerkin’s method is applied to Eq. (1-3), that is, corresponding to the

“minimum principle of the potential energy, the following operation can be used
to get the relation betwcen the pressure and the deflection.

fmf{ 13 + 23 +Tyw,,+2T, 27/ny+T22<; +ww+%—>+p}wdxdy=0,

~Yo —i
(18)
where, Ty, Ty, and T, are given by Egs. (4) and (12), and T13 and T,; are given
by Egs. (1-4)~(1-8) and (2).
As an example, the external pressure is assumed to be distributed as

p=p(1—y"). (19)

v rE iR et S s vy
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Integrating Eq. (18) under the pressure distribution as Eq. (19), the relation be-
tween the pressure and the maximum deflection is finally expressed as follows :

20— L@+l L)+ L r@ sl (L)
.02 )+ f+AaY ) (20)

where
a=ab/t. (21)

4, DISCUSSIONS OF ANALYTICAL RESULTS

The partial cylindrical shell or the curved plate has frequently a practical im-
portance as a segment in the reinforced structure where 2 is not so large, so the
numerical examples for the cases of A=1/1 and 1/3 will be given here. Taking
v equal to 1/3, f,(2), f2(2),- - -, f5(2) are shown in Table 1.

TABLE 1

<7 - ‘
an S1(2) Sa(2) S3(2) Sfu(2) S(4) Se(4) F{2) f+(2)

1/1 | 2.5431 | 0.4116 | —0.2892| —1.7357 | —0.1876 | 0.4394 | 3.4383 | 0.2508
1/3 | 4.7031 | 5.1493 | —2.4764 | —2.8586 | —2.4771| 0.4796 | 2.4358 | 0.2148

The relations between the pressure and the maximum deflection are shown in
Fig. 5 and Fig. 6 with the parameter of a according to Eq. (20). For the case of
2=1/1 (Fig. 5), if 8} is small the pressure—deflection curves show little difference

FIGURE 5. The pressure-deflection curves, 1=1/1,
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114 M. Sunakawa and M. Uemura

FIGURE 6. The pressure-deflection curves, 1=1/3.

among them. On the other hand, for the case of 2=1/3 (Fig. 6), the curves be-
come to vary a little with the value of 6, because the coefficients of 6; and 6; in
Eq. (20) [f2(2), f5(2) and f5(2)] take larger values as seen in Table . When the
value of @ is specified as shown in Fig. 6, each curve with the parameter of «
means the one for the specific value of a/t, since a is equal to afy/t.

For the case of small value of «, the pressure increases monotonously with an
increase of deflection ; however, as @ becomes larger, the pressure—deflection curves
become to present the maximum and minimum points, in other words, the Durch-
schlag” (snapping) phenomenon becomes to take place. The maximum pressure
(M,) and the minimum pressure (N;) in the equilibrium curve [Fig. 7(a)] are

1
s
E
:
;

%o
Et?
M
20t
tZ
£ N;
st N
0
(@)
1o}
4 0s}
0 '
| 3

FIGURE 7.
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obtained from the condition of d(a*p,/Et*)/d(5/t)=0 in Eq. (20) in a form as

(5), =20

1

From which, it can easily be seen that D >0 or

> HAD+HAQBALROHLDHLAR 23
T LD =D HED LD -1

is the condition for the “ Durchschlag ” phenomenon to take place, and for the
region of a®< aj the pressure increases monotonously with the deflection. For the
case of 1=1/1, if 6} is small in the order of #:<0.1 the “ Durchschlag” buckling
does not occur, but for the case of A=1/3 the unstable zones exist if a>4.9 (6;,<1)
and a>4.2 (6;=0.1) From the above analytical results, it is found that *“Durch-
schlag” buckling phenomenon may take place easily, if the axial length of cylin-
drical shell is longer (smaller 1), the center angle of the curved surface is larger
(larger 6;) and the shell is thinner with the larger radius of curvature (larger a/t).
Next, let us consider about the buckling pressures. If it is assumed that there
exists no external disturbance during the pressure loading and no imperfection in
the cylindrical shell, the deflection will increase with an increrse of the pressure
along ON,E;M; in Fig. 7(a), and the shell will be forced to buckle at the maximum
pressure M,. In this buckling process, the pressure will usually drop depending
on the elastic rigidity of loading machine, but if the pressure is applied by the
dead load the deflection increases suddenly from M, to M, under constant pressure.
So the pressure at the point M, is considered as * the upper buckling pressure ”.
The values of the upper buckling pressure (a’*p,/Et?), for the case of 2=1/3 and
6;<1 are plotted against « in Fig. 7(b), and they increase monotonously with a.
If there are some imperfections in the loading machine and the shell specimen,
the buckling pressure will be much lower. But, if not so, it should be considered
necessary to jump over the energy barrier to buckle under the pressure lower than
the upper buckling pressure. If the above imperfections are assumed to be equiva-
lent to the energy barrier, it seems reasonable to consider the pressure having
’ the equal value of total potential energies at the equilibrium positions before and
after buckling under a constant external pressure and to define it as the lower
possible buckling pressure as proposed by Tsien [6]. Such an analytical consider-
ation was described before in detail in the paper for the case of the spherical shell
[3], so it is shown briefly here. The non-dimensional total potential energy 7’ is
expressed as

II' =1II (strain energy)- 17, (potential energy of external force)

3 3
T a’p, (5 ) a’p f‘_ 0
o g2\ -9P d(_). 24
]0‘ Et? t Et? A t ‘ 24)
Paying our attention to the fact that the pressure—deflection curve is presented by
a cubic algebraic equation and the curve is antisymmetrical with respect to the
mid point E, in M;N,, and the area @ which denotes the energy barrier to be

jumped over is equal to the area ® in Fig. 7(a), then it can be found from Eq. (24)
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that the total potential energies at both points of E, and E, are equal in the buckl-
ing process E,—~E,—~E, under the constant external pressure (a*p,/Et*);. In this
case, the possibilities of occurrence of buckling from E, to E; and of its reverse
course are equal and so the pressure at the point E can be designated as the actu-
ally probable buckling pressure or the so-called “the lower buckling load ”. The
values of (a?p,/Et?); for the case of 2=1/3 and §;<1 are shown against « in Fig.
7(b). The lower buckling pressures also increase as « is increased. It is worth
noting that there exists no minimum value for (a’*p,/Et*); against « as seen in this
curve which is different from the case for the spherical shell [3].

The non-dimensional values of (a®p,/Et? for these buckling pressures defined
above increase with « as seen in Fig. 7; however, if the ordinate is converted to
(po/E), the values of buckling pressure themselves decrease with an increase of a/t,
because if # is considered to be constant, the increase of a corresponds to the
increase of a/t. This situation can be seen in Fig. 8 for the case of §;=0.1. On the

FIGURE 8. The pressure-deflection curves, #2=0.1.

other hand, if a/t is considered to be constant, the critical buckling values increase
much more with & because of the increase of a =a#jft, although there is the nega-
tive fact that the buckling pressures decrease a little with an increase of §; result-
ing from the more rigorous analysis considering the terms concerning 6; and ¢; in
Eqg. (20) as seen in Fig. 6.

In estimating the order of magnitudes on the curvatures of the median surface,
the changes of curvature and the strains at the start of this analysis, we imposed
no restriction on the magnitude of #,. In consequence, this analysis can be applied
to the case of larger 64, in principle, but the larger 6, becomes, the larger the de-
flection 6 may become, which is not consistent with the assumptions that d/y, and
8/l are the infinitesimal quantities of the first order. For this reason, in the case
where 6, is larger, the analytical results in the region with larger deflection are
some doubtful about its accuracy and so the terms of higher order on the displace-
ment must be taken into account in the analysis as shown in the case for the

-
o T
e
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spherical shell [4].

The mode of pressure distribution over the surface enters only in the term of
Jfpw dx dy in Eq. (18), so the effect of pressure distribution on the buckling pres-
sure may be expressed by a constant correction factor under an assumed deflec-
tion, for example, if p is assumed to be constant over the surface, that is P=p,
instead of p=p,(1—y") as in Eq. (19), then the analytical results may be used
only with a slight correction of multiplying the left hand side of Eq. (20) by 1.167.
In other words, the diagrams of Figs. 5, 6 and 8 with ordinates multiplied by a
constant =0.857 can be used as they stand for the case of P=p, without an
appreciable error. ‘

Futhermore, the deflection w was assumed as a first approximation as usually
done in non-linear problems in elasticity and only a symmetrical shape was con-
sidered. However, the deflection mode has so great effect on the buckling pressure’
that we must be careful in choosing the assumed deflection. The further investi-
gation of the effect of the deflection mode on the buckling value has been carried
out which will be published later in detail.

In the case for the cylindrical shell, it was so difficult to present the analytical
expressions comprehensively with the satisfactory accuracy because of more para-
meters involved that only a case with a special boundary conditions was shown
as an example. But, the cases with other boundary conditions can be analyzed
with the same process as described in this paper by using any w which satisfies
the boundary conditions.

Department of Structures,
Aeronautical Research Institute,
University of Tokyo, T. okyo.
April 20, 1960.
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