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Deformation and Thermal Stress in a Rectangular
Plate Subjected to Aerodynamic Heating

(For the Case of Simply Supported Edges)

By
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Summary. The deformation and thermal stress for a rectangular plate, subjected to an
arbitrary symmetrical temperature distribution, are analyzed for the case where the edges
of the plate are simply supported, taking the finite deformation into account. The funda-
mental non-linear simultaneous partial differential equations for the thermoelastic problem
are derived from the variational principle and are solved, and it is shown that, if there exists
the temperature gradient through the thickness of the plate as seen in the aerodynamic
heating, the plate starts to deflect at the moment of heating and does not exhibit the buckl-
ing phenomenon according to the mode of temperature distribution and the boundary
conditions.

Some numerical examples are given i) for the case where the temperature distribution
through the thickness is specified as linear, and ii) for the case of instantaneous heating
where the temperature distribution through the thickness is given in a function of time, and
then some discussions on the analytical results are given. ‘

1. INTRODUCTION

The problems on deformations and thermal stresses in structural members sub-
jected to aerodynamic heating have become important from the viewpoint of the
strength and rigidity of structure and of the aeroelasticity ever since the advent
of supersonic airplanes and missiles. It is usual that the deformation problems
such as buckling are considered under uniform temperature distribution through
the thickness based on the assumption that the structural members are “thermally
thin”, and that the thermal stresses in considerably thick structural members are
simply given only by any temperature distribution through the thickness without
taking account of the deformation.

However, the supersonic airplanes and missiles have a tendency to having thick
plate structures, and they are rapidly heated aerodynamically, so the temperature
is not uniform through the thickness which has the considerable effects on the
stress and deformation. For example, if these thermal moments are taken into
account, it is supposed that the members do not present the phenomenon of “Euler
buckling” but start to deflect at the moment of heating depending on the distribu-
tion of temperature and the boundary conditions. But most of the previous in-
vestigations [/ ]~[4] have been discussed mainly on the critical buckling values,

[195]
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196 _ M. Sunakawa and M. Uemura

and the discussions on the deformation under transient heating conditions have
been limited to the one-dimensional case [5] [6] only.

However, we consider that it is necessary to take account of the deformation,
first of all, which takes place under the transient heating condition depending on
the temperature distribution and the boundary conditions, and that the thermal
stresses will be thereafter made clear of itself. The above-mentioned f undamental
purport of the problems was shown in the one-dimensional case of rectangular
beam or flat strip by one of the present authors [6].

In this paper, the two-dimensional flat plate subjected to aerodynamic heating

which is of practical importance will be given restricting our consideration to the
case of the simply supported boundary condition and the arbitrary, symmetrically
distributed temperature. In this analysis, the fundamental equations and the
boundary conditions are derived from the variational principle for the case of
finite deformation.

Nomenclatures and Symbols

a, b, d half length, half width and thickness of rectangular plate, respectively.
h heat transfer coefficient.

P aerodynamic pressure normal to the plate.

t time,

U, v, W displacement components in the median surface in the Z, ¥ and z direc-

tions, respectively, which are functions of 2 and y.
A,B,C integral constants.
flexural modulus of rigidity. D=FEd*/12(1 —1%)
modulus of elasticity.
free energy per unit volume.
-heat flow into unit volume.
entropy per unit volume.
temperature rise above the unstrained state.
adiabatic wall temperature.
internal energy per unit volume.
total potential energy.
strain energy per unit volume.
0, Cpy k  coefficient of thermal expansion, density, specific heat and thermal
conductivity of the plate material, respectively.

NQHNUO Y
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0 . maximum deflection at the midpoint of the plate.

€11y Ez0 extensional strains in the & and y directions, respectively.

&1z shearing strain in the xy-plane.

G115 a2 extensional stresses in the « and y directions, respectively.

Tis - shearing stress in the 2y-plane. _ -

Kys Ko curvatures of the median surface about the x and Y axes, respectively.
K3 twist of the median surface.

2 aspect ratio of the rectangular plate. i=a/b.

tn=mm/22, m: odd integer. ‘

Y Poisson’s ratio.
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- a‘..’ a.’! 4 84 a4 84
V2= V == +2 = + .
0x® + oy?’ ox* ox’oy: oyt
Subscripts “z” and “y” mean the partial differentiation with respect to x and y,

respectively.
Bar over letter refers to the median surface.

2. DERIVATION OF FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

We consider a rectangular flat plate as shown in Fig. 1, and assume that the
plate is heated at the upper face and there exists the temperature gradient through
the thickness in the initial stage of heating.

yr : CA—
2b 1
~—|:] d
— | fe—
[
0 2a X T
FIGURE 1. Rectangular flat plate.
The two-dimensional stress-strain law can be given by
© Eeyy=0,,—voy+EaT,
Eepy=05—vo,,+FEaT, (1)
E
51222—(111)—)512:012-

The plate is assumed to be comparatively thin and the plane normal to the
median surface is assumed to remain plane after deformation, and the shearing
deformation normal to the plate is neglected. Then the strain components can
be given by A ' '

Introducing the strain components in the median surface and the curvatures which
can be expressed by Eqs. (3) and (4) taking account of the first order terms in the
finite deformation only,

- 1
€11=U, +?7’Ug:9 |
522=IUU +-—;—w;, (3)

€=U, +v,+w,w,.

R S —
A
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198 M. Sunakawa and M. Uemura

IC1='w_,,_r, x2=w,,,,, ’flztwa:y! (4)
we obtain the following expressions for the strain components of Egs. (2):
1

&= Uy +§'w:—zw.rx ’

szgzvy+%w§—zww, (5)

€12 =y + 0V, +W,w, — 22w, .

We will derive the equilibrium equation by the variational method with the
aid of the well-known theorem of the stationary potential energy. It has been
already pointed out by Hemp [7] that the “free energy” F' replaces the usual
strain energy for the case of iso-thermal thermoelasticity. The outline for the
case of this problem will be shown as below.

The macroscopic state at a point in a body will be defined by the strain com-
ponents and the temperature. If mechanical or thermal loading is not so abrupt
as to excite vibration in the body, a small change of state will be expressed by the
First Law of Thermodynamics (Law of Conservation of Energy).

oU=6Q+4I1,. (6)

Further, the reversibility of change of state being established in a perfect elastic
body, the Second Law of Thermodynamics requires that

0Q=(T+T,)5S. (7)
The “free energy” F' per unit volume is defined by
F=U—(T+Ty)S, (8)

and is regarded as a function of the strain components and the temperature. Egs.
(6), (7) and (8) yield \

OF=0U—(T+Ty)oS—S6T=3" 0,106,;—SoT, (9)
and the following relations can be obtained :
OF _,. 9F__o (10)

de, 9 AT

For the case of adiabatic change, we may take either Uor I7 ¢+» Which are the same
with each other.
The formula for F' can be obtained with the aid of Egs. (1) and (10).

F:-E(T?W[Ef1+2vellezz+8§2 +—;—(1 —v)sfg:l-——(%%;—(su+€22)+CT(T), (11)

where C,(T) is a function of T only and can be expressed by introducing the
specific heat.

Now, we consider a rectangular plate subjected to the aerodynamic heating and
to the aerodynamic pressure normal to the plate only as the external force, then
the total potential energy /7 can be expressed by

= f FdV— f i / “ o, y)w(a, y) dudy, (12)

et i o

°®
b ks I PRt 48, S s . s b e et e 8 P s i
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Deformationr and Thermal Stress in q Rectangular Plate 199

Substituting Eqs. (11), (2) and (4) into the first term of Eq. (12), we finally obtain
the following expression for /7 :

; Ed 2 rta( L )

H:-———z(l _yg) [[ [ {6%1"}‘22)811822‘{'852‘{'—;‘(1 —v)sfg} dxdy

-+

d’l 26 2a
5 f {Weat 20w, ,w,, + w2, +2(1 —v)w?,} da dy]
0 0

E 2 r2a . % poa _
—(lfy)[ff (611+€22)dedy—ff (’w“—{—wyy)dedy:I

26 2a 20 2a
+d f f Cr(T)dzdy — f f o(, y)w dady, (13)
0 Q 0 1]
where
— a/2 ~ d/2
T= T(x, y,2)dz, T= 2T (x, y, z)dz. (14)
J, J,

Substituting Egs. (3) into the terms of €11, & and &, of Eq. (13), and by the varia-
tional operation on %, v and w with the aid of the usual theorem of the stationary

potential energy, that is, from §/7=0, we can obtain the following equilibrium
equations in the three directions.

Ty g (i) 4 (o4 L)
+<1—»)%(uy+vx+wzw,,)]==—(-15_‘:—)i, (1)
i R (O 10 FM (O]
+(1 —-v)-éa;(u,,—i—v, +'wxwy):, = (1{7—6:) T, (16)

Tt Gl (et 3ot Jon) 2 2 (o L)
+ u(u, +-%—'w2>} wy] +(1 —-u)-a%[(u,,-}-'vx +w,,w,,)wy:l

+(1-—v)%[(u,,+vz+wzwy)wx])

—_ Ed®
12(1—?)

_ FEa 0 3 = ~ ~
“(T-_*@[_(wa)*‘gy‘('-"wv)ﬂ@ﬁTw)}—p(w,y)- (17)

[wxxxx + zwa:xyy + wyyyy]

0z

If the extensional stresses 011 and gy, and the shearing stress g,, in the median

surface corresponding to €11, &2 and &, are introduced with the following rela-
tions:
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|
_ 1 - T
€ 27(011 —V052) +%—,
| 1 T
+ szzzf'(ﬂ'zz—yau)"'——ad ) : (18)
! : 2(1—{—»)—9
12 E 12y
then Egs. (15) and (16) are reduced to
doy; | 00, -0
o oy
g v (19)
: - 003 | 955 _
ox oy
| This pair of equations can be satisfied by introducing the well-known Airy’s stress
function y(x, y), defined by the relations
ﬂ: v Ell = ny ] _522=in ] 512= _x.ry . (20)
: Then, the equilibrium equation of Eq. (17) in the 2 direction is expressed by
DW=y, 10 2y Way + Les0y) — & 2T p, (21)

(I-v)
Eliminating » and v from the three of Egs. (3) and using Eqs. (18) and (20), the
following compatibility equation can be obtained.
V=B, —w,w,,) -—%“_VZT. 22)
These equations of (21) and (22) coincide with the ones given by Mar [8].
All the possible boundary conditions obtained from the operation of oI =0 are

summarized in Egs. (23).
At =0 and 2aq,

- 2 Y P 1 z)]_ Ea 7. 23-
=0 or P _(znx+ 2wx)+v<’vy—|-2w,, e T=0 (23-1)
ov =0 or u,+v,+w,w,=0, (23-2)
ow =20 or Ed,, _{(ux—i-iwi)+u<vy+—1—w§>}wx+»(1—”2-(uy+vz+wxwy)wy
(1= L 2 2 2
d? Ea 7 7
- — - Tw,+T,)=0, (23-
i3 (et Qo) |~ B (T, + Ty =0, (23-3)
ow,=0 or D(w“+uww)+ﬁ§§_)f"=o, (23-4)
-y
at y=0 and 25,
ou = 0 or u,+v,+w,w,=0, (23-5)
# —_ Ed 1 2 1 2 E(X _—
w=0r TS [(””+—2‘w”>+”<“’+?w“)]_ iy =0 (23-6)
ow =0 or (lfofﬂ) [{(fvy+%w3>+u(ux+—;-w2>}wy+,(L;h”l(uy—l-vm-}—w_,wy)w,
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Deformation and Thermal Stress in a Rectangular Plate 201
d Ea 7 &
__l_szm-{—(2-—u)w”y}:,—--<1—_9§(Twy+ T)=0, (23-7)
dw, =0 or D(w,,+vw,,)+ (IE“ ; F=o, (23-8)
—y

at =0 and 2a; y=0 and 2b, _
ow =0 or w,,=0. (23-9)
The problem will then be attributed to the solution of the nonlinear simultane-
ous partial differential equations Egs. (21) and (22) under the reasonable boundary

conditions when the distributions of T and T are given.

Equations (21) and (22) which take account of large deflection are the funda-
mental equations for a heated plate. If the term concerning the temperature are
omitted, they are reduced to the well-known equations by von Kdrmidn. When

the terms of 7' and p(z, ¥) in Eq. (21) and the first non-linear term of large deflec-
tion in Eq. (22) are absent, these linear simultaneous partial differential equations
become the ones which were used by many investigators to obtain the critical
buckling values under the uniform temperature distribution through the thickness.

The purpose of this paper is to make clear the behaviours of a heated plate
for the complicated case where all the terms in Eqgs. (21) and (22) are taken into

account. As seen in Eq. (21), the existence of the term of /2T is equivalent to
the action of the normal pressure, and so it is considered that a plate will start to
deflect from the beginning of heating without exhibiting the buckling behaviour
at the critical temperature. Furthermore, the existence of 7' on the boundary,
which is not clamped but simply supported, is equivalent to the actions of edge

.moment on the boundary, even if F2T does not exist over the plate, and so it is

expected that a plate will deflect from the beginning of heating.

Such a phenomenon was already shown in the one-dimensional beams or flat
strips by one of the present authors [6]. It is too difficult to obtain the exact
solution of the non-linear simultaneous partial differential equations of Egs.
(21) and (22), and so the successive approximation method called as “Poincaré’s
method” [9], which was found to be effective in the analyses of the vibration of
bar [/0] and of the buckling problem for rectangular plate under compression
[11], will be used here.

The thermal stresses in a point in a plate are defined by the following equations
after determining the displacements in the three directions. ’

E 1, 1 ., EaT
- —W —W, ) — xz T 24~
o (l_yz)[(ux+2w)+»(vy+2wy> 2(w +vww)} oy @D
_E 1, 1, .\ _ FEaT _
022""(1—;7)[(”"+7w”>+”<“”+7w“> <40, | -y &2
E
T sy L et~ 22w, ] (24-3)
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202 M. Sunakawa and M. Uemura

3. SULUTIONS OF PLATE SIMPLY SUPPORTED AT Four EDGESs
A rectangular plate which is simply supported at four edges and subjected only
to an arbitrary symmetrical temperature due to the heating at its upper face, that
is p(z, ¥)=0 in Eq. (21), is considered.
The temperature distribution over the plate is assumed to be symmetrical about
the midpoint of the plate (Fig. 1), and then T(z, y) and T(:v, ¥) can be expressed as

- T_ 5 x| JTy
T 2325 T cos = - o0s T (25)
T _# 5 . DA . qny
= —T‘+§:§ T,, sm——z—c-t—sm T (26)

The symmetrical deflection mode corresponding to the symmetrical temperature
distribution is assumed as follows in the first approximation:
w(z, y)=6sin =L sin 7L, 27
‘ =9 2a 2b 27)
where d is the maximum deflection at the midpoint of the plate. Substituting Egs.
q (25) and (27) into Eq. (22), we obtain the following expressions for the compati-
bility equation:
'l ‘E6? X ny (i \ s X
1 Pry=L <cos——— cos—) E { (-——) T, cos —==.
* 32a%*® a + b +ha tzm:z 2a ’ 2a

ELAK LS “[(ﬁf_)’ (£2)" ], cos iz |
+§z<2b> o 0083 T2 2 \3q) Tgp) [Twcos - cos 35 (29)

The solution of y obtained by integrating Eq. (28) is
‘ C,,., C ., E& [(a)’ nx <b>” ny]
=l gt 2 = (= — -
IER TSt (G) st G) s

= T e & T Jry
E’ { 0 07
e 2 20y e TR G287~ 2b

+2 ATy G > e % ) (29)
The integral constants C, and C; can be determined so as to satisfy the boundary
conditions of Eqs. (23-1) and (23-6), that is u=0 at =0 and 2a and v=0 at y=0
and 2b, as

EaT Ll I v 1
C = 90 <—+‘_"“) ’
1=y RI—AH V& | B
EaT 2 E* ( 1 ) )
C,=— 00 —_— ).
- + 32(1—v%) \ a? ' b°
Then, the displacement components u(x, y) and v(x, ) in a point on the median
; surface in the z and ¥ directions, respectively, are given by the following expres-
=1 sions:

1 i 252 R s

(30)
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Deformation and Thermal Stress in a Rectangular Plate 203

T gl & (iz/2a) T, . inx  Jny
+“(1+”)[ 2 Gn2a) 2 TR [Gr/2a) + G/ 20 o 2p ]

(31)
a ,
& 7/2b) T mr . Jxy
+al ) =2 (7 r/Zb) 2b ;;E[(’W/Za)z-i-(,?nﬂb)z] 2a 2b
(32)
where, v and u are not zero at =0, 2a and y=0, 25\ respectively; however, the
condition of u,+v,+w,w,=0 is satisfied at all edges and so the condition of
olT=0 (the minimum potential energy) is exactly satisfied [(Egs. (23-2) and (23-5)].
Substituting the stress function y just obtained as in Eq. (29) and the deflection
mode w of the first approximation in Eq. (27) into Eq. (21), we obtain the follow-
ing expression for the equilibrium equation:
Ed?
—=% pw
12(1—1%)

TeL(e) +(55) ] singsin 2

{[C2<2a) +Cl(2b>:|5+ 16 2a + 2b _}sm 2a sin—y- 2b
EBal:(__n-_ foo TX . 3my <__ZT_> 3nx __752:|
BT 2a> e W T\gp) g SR

4 +—Ei5-{2(-—>21_' [—sm o sin M—}-sm sin (,7+l)n-y]

j=2 2b 2a 2b

+3 (——>ZTW[ —sin O D@ g 7Y ”y +sm (it Dz ”y:l}
1=3 2a 2a 2b

+E“5< 47:;1;)2i 2 L {( —9) [Sm < _i;)w sin (j_zlb)w

+ sin (’L'*_z;)w sin ('7 _;Il))”y :‘—(i-!-j)z [sin (z;;)"x sin{J _Z;)"y
4 sin (4 Drz oo (G—Dry }
2a 2b
Bt Bl (55 e 2 )

+ (=5 g}% g + 2% o SR sin 479 " (33)
The solution of w obtained by integrating Eq. (33) is given as follows:

Ed?
12(1—;,2)”’

=—{aG)+e(5) ]

+ lf? [( 2a )‘+< % >‘]} [(n/Za)z—Il—(n/Zb)z]z sin 26 055

+E{ (z/2a)* sin =% g 37ty+ (m/2b)* . 3mw . ﬂy}

[(x/2a)*+ (B3/26) ] 20 T AT G ER TS
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Fad (& 5 —(=/2a)? (7—Dry
ekt T ALY A
P [[<n/2a>2+<u—11n/2b>212 sin 2
_ (z/2a)* (J+Dry
+E(n/2a)2+([a+1]n/2b)2]=s”’ s ]
S\ —(n/2b)? (i—Drx . ny
2T [[([z—l]n/Za)2+(7r/2b)2]2sm 2 "2
(7/2b)® . (+Drx . ny
+ [(Ci+ 1r2a) + 20 24 Sm“z?]}
T \:& & TL
B 35 Cay + GO
. 1 (i—
x {(“ 2 [ {([1.— 1]7r/2a)2+([,7—1 T2 T 2
sin G+ Drax sin (J+ l)n'y:'
2a 2b

sin

{([’o+IJrr/2a)2+([J+1]7r/Zb)2}2
{([i—lilfr/Za)z—:([jJr1]#/2b,)2}2 sin S5 s =
G un/za)z—:(u—ljn/zb)z}z R e
(fgff) 2.2 [(pn/za)zﬁfq(qn/zb)q sin ’3’;” sin q;zfl

m: odd

—a+ﬂ[

+

+[B1m cosh —_—_m”(”““) +B,, m"(“"‘“) sinh MT@—a) :’sin m"y} . (34)
2b 2b
where A,,,, A,,, B,, and B,, are the integral constants and are to be deter-
mined from the boundary conditions on w. That i 1s, from the condition of w=0
at x=0 and 2a, B,,, can be expressed as follows:

Blm= '"-BZm#hn tanh Homs (35"’1)
where
___mra 5
Hom % ‘(%1)
Similarly, from the condition of w=0 at y=0 and 2b,
| A,=—A;.p,, tanh gy, (35-2)
where
_ mnb
f‘tlm— 2a . (36 2)

Furthermore, with the aid of Egs. (23-4) and (23-8), A;,, and B,, can be deter-
mined as follows:

2 2 2 fl
Zd B m(l"’f.) cosh n 'n mry —_—— dEa Tcz—id__'El& N _1, . mry
B (2 T (1—) () om0
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3 3 d*Ea 4d EaT 1 mrx
: A,, (1"’—75) cosh p,,, sin % — =t0 el s 1 )
2d m%:aa } Fim 81 2a (1—v) (1—v)x mz(k:iﬂ'm sin 2a
80*dEaT
B mn— £ ’ 37"'1
= T 1=0)(ma)® cosh f, G7-1)
. ~
A27n= - 8“ dEaTG . (37“2)

(1—v)(mnr)? cosh g,

Substituting Egs. (30), (35) and (37) into Eq. (34), we finally obtain the deflection
mode of w(zx, y):

mimts) ()

- {(1‘4rf Zoﬁz (1 fzz) <§“>

_[ L (422429, 1 (1429 ]( ><5>3}sm~sm_y_

8(1—v%)  (14-2%)? 16 (1+ 22 7/ %a 2%
ST R
S 7 —22 —
i ( (=T [{1+(J—21)212}2 sin-J - sin (3 zlb)”y
{ 1+(af— T - sin (Hz;,)"y}
BT ey ’Z‘Z
i {(i+12):+12}2 sin S50 sin 28 |
+§§m[( —3)2[{(i_1)2+‘(4j_1)212}2 sin (=002 sin (=00
TR e s |
ERIE e T
ey e ()
+ (183?;‘1)’3758 m 't ond frrle3 {COS;zplm Lr_é“tm tanh g,,, cosh m"(ya b)
_may—b) G mrly—b) ] sin X
2a 2a 2a
m[#zm tanh g1, cosh _"’_““f_(_;”b;?_)_
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_ mn(z—a) sinh mn(x—a)Jsin mrzy} ’ (38)
2b 2b 2b
where
=2 39-1
; (39-1)

Putting w=¢ at x=a and y=b in Eq. (38) we finally obtain the following ex-
pression:

Eﬁ%}}(% 2@_) " {8( 1 1—vz) - 4(—1212;)—1-224) +'1'16—[ (1 +1912)"' e j—tz“’)2
o)) (6) ()
o 3, (e ]

A% 1) L }
T i
+ g% [p*+a%*] ™ e

4T, A 2
T <(1—)(1+22)+2 = ) [{1+(J'—1)222}2+{1+(j+1)222}2]

i 2t At
+f§(—l) T {(i_1)2+22}2+{(i+1)2+22}2 ]}

N TP ¥ 2
R T ’)[{(ifuzm—l)zxﬂ}z+{<7:+1>2+<j+1>212}2]

.Hiﬂy[ {(i— 1)2+2(“; + )22 + G+ 1)2+2(‘ I— )& ]})(%) » (40)

where
mx
= s 39-2
Pn=— (39-2)
and
_ 20 2 A
Tw= [ [ Ldedy, (41-1) ®
0 0
- 20 a .
T,= ! f f : Icos L dxdy, (1=2,4,--- even), (41-2)
2abo A d 2a
_ 1 26 2aT J.ny -
T:-——ff — cos —Zdzxdy, =2,4, --- even), 41-3
°’2ab00d082b Y, (J ) (41-3)

_ 20 2 . .
T. -=L. f T cos % cos ITY dxdy, - (¢,5=2,4, - - - even), (41-4)
A d 2a 2b _

~h

20.[ ’ ("—T)Sm 5 S0 q”y dzdy, (p,q=1,3,"-- odd). (41-5)
a

This Eq. (40) gives the relation in question between the maximum deflection of
d at the midpoint of the plate and the given temperature distribution of 7.
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Deformation and Thermal Stress in a Rectangular Plate 207
4. NUMERICAL EXAMPLES

4.1.  The case where the temperature distribution through the thickness is specified as
linear.

The temperature distribution in a body should be given by analyzing the equa-
tion of heat conduction, but will be here assumed to be given in order to present
the fundamental purport of the above analysis under transient heating conditions.

It is assumed that the temperature distribution on the zy-plane of the plate
takes a parabolic form and the temperature distribution through the thickness is

16t T={Tn -5+ 8 L
_ /
1.4 1 ———I=0 /10

1.2 1
= Ot
S
N
] 08 ~~jos
N
1 06
04
0.2
(0] + + § + o +
0 02 04 06 0.8 10 1.2
' &4
FIGURE 2. Relations between the temperature rise and the deflection, i=1.
= x=af)(j- (L= 2z
et T={Grn(- (2290 (L2} (1+ 82 L
1ot s to
= ——TF=0 *REF 2 s
S 08+ —T=0 xREF. 3
S
= 0.6 1
X 105
< 041 |
o= 2
02z = == == 3
e ~5
% 02 04 06 08 10 o

&/d

FIGURE 3. Relations between the temperature rise and the deflection, 1=3.
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linear and the temperature on the lower face is one-half of that on the upper face,
that is, the temperature distribution is expressed as follows:

—a\’ —b\? 22
r={ren[i-( T -5 M) @
o1 2 , 5 + 3d (42)
The relations between (1 —v%)(b/d)’aT; and 6/d can be obtained from Eq. (40)
and are shown in Fig. 2 (1=1) and Fig. 3 (A=3) with the parameter of T\/T,. It
can be seen from these figures that for the case where the temperature gradient
through the thickness is taken into account the plate starts to deflect from the

beginning of heating without exhibiting Euler buckling phenomenon at the critical
temperature.

To put T equal to zero in Eq. (21) means the absence of the temperature gradient
through the thickness and the results for this case can be obtained easily by putting

T=0 in Eq. (40). They are shown in Figs. 2 and 3 with dashed lines which show
the deflections after buckling. The critical buckling temperatures which were
obtained with the energy method [27][ 3] correspond to the values of the ordinate at
6/d=0 in the dashed curves and the agreement between them is found to be good.

The variation of these critical values of temperature with the aspect ratio of 2 is
shown in Fig. 4.

0.6+
_ 2 -
osf  T-ornl- (52 (5]
= 04
i
® 034 ]
N | 0
N 0.2¥
\L- \ 05
O'Ii\ 12
T 553
9, 2 3 4 5

A

FIGURE 4. Variation of thermal buckling coefficient with aspect ratio.

4.2. The case of the instantaneous heating.

For this case of the instantaneous aerodynamic heating due to supersonic flight, it

is necessary to take account of the variation of 7, T and T with time. It is assumed
that the upper face of the plate is instantaneously exposed to the constant uniform
adiabatic wall temperature of T,. Neglecting the heat conduction along the plate
plane, we consider the one-dimensional heat flow through the thickness of the
plate only for the sake of simplicity. Then the temperature distribution through
the thickness under the instantaneous heating condition can be given by [/2]

i
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T(2) —1—2 i sin P, exp (— Pakt/pc,d?) cos [P.(2+d/2)/d] 43)
T o P,+sin P, cos P, ’
where, d, k, k, p and ¢, are the thickness of the plate, heat transfer coefficient,
heat conductivity, density and specific heat, respectively, and assumed to be
constant. P, is the n-th root of the following equation

P, tan Pnzﬂ , (44)
k
and are given as shown in Tab. 1 [/3] with the parameter of Biot Number hd/k.
TABLE 1
hd/k P, Py P, P,

1 0.8603 3.4256 6.4373 9.5293

5 1.3138 4.0336 6.9096 9.8928

10 1.4289 4.3058 7.2281 10.2003

The variation of the temperature distribution through the thickness with the time
parameter of kt/pc,d® is shown in Fig. 5 for the case of hd/k=1 as an example.

" pcpa?
7
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\f?
2

0871

1.0

T(z) \{\—{
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\03

ol +003
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92 O 95
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FIGURE 5. Variation of temperature distribution
through the thickness with the time
under aerodynamic heating, hd/k=1.

The variation of the mean temperature 7 and the temperature gradient 7' with
the time under instantaneous aerodynamic heating can be obtained by substituting
Eq. (43) into Eqgs. (14) as follows:

T [ w sin? P | ( Pikt )}
L =T, 1-2 - T oedi/) 4
d E E o(P,+sin P, cos P,) P pc,d’ )
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~

T_ _ sin P,[ P, sin P,42 (cos P,—1)] exp <__ Pkt ) (46)
d? =0 PXP,+sin P, cos P,) pc,d? ’

and are shown in Fig. 6 with the parameter of hd/k. From Fig. 6, we can see
that the mean temperature T reaches the adiabatic wall temperature with the

lapse of time, while the temperature gradient T has a maximum and then decreases

FIGURE 6. Variations of mean temperature and temperature gradient
through the thickness with the time.
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FIGURE 7. Relations between the temperature rise and the deflection
with the parameter of time, 2=1, hd/k=1.
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Relations between the temperature rise and the deflection
with the parameter of time, 2=1, hd/k=10.

FIGURE 8.

kt/PCpd®
FIGURE 9. Variation of deflection at the midpoint of the plate with
the time, i=1.

with the variation of temperature distribution

through the thickness as seen in
Fig. 5.

The relations between the temperature rise and the deflection under such a
transient heating condition are shown in F

Numbers equal to 1 and 10, respectively,
the plate is assumed to be uniform.,
relations between (I1—22)(b/d)>

igs. 7 and 8 corresponding to Biot
where the temperature distribution over
It can be seen from these figures that the
aT, and ¢/d change with the increase of non-
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dimensional time kt/pc,d?* and finally become consistent with the curves for the for @

case of T7=0. Next, the relations between kt/pc,d* and 6/d under the specified
adiabatic wall temperature are shown in Fig. 9. The maximum deflection d/d at
the midpoint of the plate increases with the lapse of time kt/pc,d* approaching
to a constant value when the adiabatic wall temperature of T is higher than the
critical temperature of Euler buckling which is (1—y%)(b/d)*a(Tz)...=0.274 for
the case in this figure. On the other hand, when T is lower than (Tg)er., the
plate deflects at the initial stage of heating, but then gradually comes back to the
initial flat state. This latter phenomenon is interesting and is considered to be
worthy of note.

PosTscrIPT

The deformation and the thermal stress of a rectangular flat plate simply sup-
ported at four edges and subjected to an arbitrary symmetrical temperature were ;
analyzed considering the effect of the temperature gradient through the thickness (‘.
under transient heating condition. It was shown that the plate does not present S
the phenomenon of Euler buckling but starts to deflect from the beginning of
heating according to the temperature distribution and the boundary conditions.
In the supersonic airplanes and missiles, the deformation has much effect on the
aerodynamic and aeroelastic problems, so such an analysis on the deformation
and thermal stress under transient heating condition as treated in this paper will
be as much important as the analysis of the critical buckling done previously.

However, it should be noticed that when the adiabatic wall temperature in
aerodynamic heating is lower than the temperature of Euler buckling, the plate
comes back to the initial flat state with the lapse of time even though it deflects
at the beginning of heating.

Moreover, we must take account of the negative pressure over the surface which
will make the deflection larger, although it has been neglected in the present
paper.

The phenomenon which was indicated in this paper is more remarkable for the
case where the Boit Number is larger; however, even though the Boit Number is .
small, the small initial deflection induced by the transient heating will have large
effect on the total deflection of plate, especially when the external edge forces are
applied in the plate plane.

The case for the clamped boundary condition has been also analyzed and will
be published later.

We would like to express our sincere appreciations to Professors K. Ikeda and
Y. Yoshimura of the Aeronautical Research Institute, University of Tokyo, for
their valuable discussions on our analysis.

Department of Structures,
Aeronautical Research Institute, {
University of Tokyo, Tokyo. |
October 19, 1960.
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