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In the first part, neglecting the quantization effects, the pulse transfer function of an
Q ordinary sampled-data control system, which minimizes the mean square error, is presented
as a function of the spectral density of the reference input signal, under several con-
straints which come from the physical realizability of the system, time constants and dead
time of the controlled process, etc. Although quantizing operation is nonlinear, in
statistical treatments it can be linealized as a superposition of a white noise on the signal,
and the corrections to the optimum design due to quantization are discussed theoretically.
In the later part of this paper, a high speed electronic simulator of sampled-data
systems, which was designed and constructed for this study, is described. To examine
the theory, experiments of the statistical optimum design were performed using this
simulator for several kinds of random inputs. These results are compared with those

numerically calculated.

1. INTRODUCTION

In the recent field of automatic control, there have been more and more demands
for the high accuracy of control and the complex manipulation of information,
and to meet these demands the applications of some digital devices operating in
real time—such as analog-digital converters (A-D converters), digital data trans-
mission links, digital computers connected directly to control systems—to this field

have become important.

Summary. Sampling and quantization of signals are essential to the digital devices such
as digital computers and analog-digital converters. This paper develops statistical optimum
design methods of the control systems containing these digital devices under random

R e g

One of the distinctive features of the system containing these digital devices is
that at one or more points in the system, the signals consist of sequences of :
numbers which are discrete in the time domain, rather than are conveyed by »
continuous quantities. That is, sampling operations of the signals are involved -i

in the system and the information is transmitted intermittently. In an A-D
converter based on the time modulation principle the iterative counting of the 5
number of pulses necesitates the sampling of the signals to be converted.
digital computer, the inputs and outputs must be intermittent, because a computing .

T This paper was previously published in Japanese on the ‘“‘Automatic Control”’ Vol. 6, No.

5 (1959, Tokyo).
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216 Y. Ishii

operation needs finite time and is not able to be performed continuously.

Another important feature is quantization of signals, that is, in order to convert
the analogous signals which are represented by physical quantities such as voltage,
current, pressure, position, etc. to numbers or other equivalent cords, the amplitude
scale of the signals must be divided into a number of sections or quanta and any
signal value which falls somewhere within a section must be represented by a
number corresponding to some value within the section, ordinarily the center
value, because numbers are discrete in the signal amplitude domain as well as in
the time domain. For example, if a digital voltmeter whose quantum has the
magnitude of 1V delivers a digital representation of 37V as its output, the input
voltage would be somewhere within the range of 36.5V~37.5V. Thus, in the
control systems containing the digital devices, there are two kinds of discontinuities
of the signals, one is due to sampling in the time domain and the other is due to
quantization in the signal amplitude domain.

QUANTI ZER Q
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FIGURE 1. Block diagram of an A-D converter.

Although digital signals represented by numbers are substantially different from
analogous signals which are represented by physical quantities, in the theoretical
treatments of the control systems there is no need to make a distinction between
these two forms of signals. For instance, an A-D converter may be considered as
a combination of a sampler or switch which closes momentarily every T' seconds
and a quantizer having a staircase input-output relation as symbolically shown in
Fig. 1. The input to the A-D converter is in an analog form and the output is in
a digital form, but it is not necessary to make distinction between the forms of
the signals so far as the converter is considered as Fig. 1 and treated as an element
in the block diagram of the control system. However, it should be noted here
that the sampling is a linear operation, while the quantizer has nonlinear charac-
teristic.

In this paper the statistical optimum design methods of the control systems
containing the digital devices under random inputs are studied theoretically and
experimentally. In the first part, neglecting the quantization of signals, the system
is considered as an ordinary sampled-data control system and the pulse transfer
function which minimizes the mean square error is derived as a function of the
spectral density of the input signal, under several constraints owing to the physical
realizability of the system, the time constants and the dead time of the controlled
process, etc. Although the quantizing operation is nonlinear as already mentioned,
it can be linealized as a superposition of a kind of white noise or quantization
oy noise and the corrections due to this noise to the optimum design are discussed
: theoretically.
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In the later part of the paper, a high speed electronic simulator of sampled-data
systems, which was designed and constructed for this study is described. To
examine the theory, experiments of the statistical optimum design were performed
using this simulator for several kinds of random inputs, and the results are shown

with the numerically calculated ones.

2. OPTIMUM DESIGN THEORY FOR ORDINARY SAMPLED-DATA CONTROL SYSTEMS

Of the two features of digital devices mentioned in the preceding section, only
the sampling operation will be considered in this section, and optimum design
theory for linear sampled-data control systems such as shown in Fig. 2 [1] will
be developed. On the generalized form of sampled-data control systems shown in
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FIGURE 2. Typical sampled-data control system.
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FIGURE 3. A reduced form of the block diagram of Fig. 2. |

Fig. 3, the problem to be solved is described as to find the pulse transfer function
K*(z) of the whole control system that minimizes the control error e(f) under
stationary random input 7(f). The magnitude of the control error is represented
by the mean square value of that signal at sampling instants, that is,

{dnTH—JmlzN . Z]{( )y (1)
where n and N are integers and 7' is the sampling period. In Fig. 3,
e*(t)=1*(t)—c*(1) (2)
and
E*(z)={l—K*(2)}R*(2) (3)
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218 Y. Ishii

where E*(2) and R*(z) are z-transforms of e(t) and 7(t) respectively. Therefore,
denoting the pulse spectral density of the input as @*(z)*, the mean square value
of the control error is represented as [2][3]

{‘WT)}E# $ 1=K+ @)1 - K910, (2)dz (4)

where z=e’** and ¢ represents angular frequency. Thus, the problem is reduced
to determine K *(z) which minimizes the value of Eq. (4) under several constraints
imposed on K*(z).

The first of the constraints js

(1) the physical realizability of K*(z).
Since K *(2) is the pulse transfer function of a stable control system, the weighting
sequence k(nT') of the contro] system or inverse z-transform of K *(2) is given as

k(nT):—zflTj 9§ K*(2)z"1datt (5)

unit
circle

Assﬁming the integration contour of Eq. (5) as shown in Fig. 4 and taking into
account the condition that k(nT)=0 for n<0in a physical realizable system, we
get the statement that

Z-PLANE

FIGURE 4. The integration contour.

(6)

However, the physical realizability does not impose any significant constraint on
the system by itself, because the optimum physical realizable pulse transfer func-
tion of the whole control system is always 1 for any random input. Hence, as the
second constraint we take that
(2) the maximum order of ¢ in the descending power series expansion of K *(z)
is —m.

| K*(2) |< co when 2—> o0 and ‘ }
K*(z) should not have any poles outside the unit circle.

oo 1 N .
*( o) — * -k *(FY= 1i S H
t o, (z)—Z; :$_‘°°¢, (k)z~*%, ¢,%(k) Ilvl_!,i:o N ";N'r(nT)r{(n—kk)T}, k: an integer

1t In this paper, the pulse transfer function K *(2) is defined as the two-sided z-transform of the
weighting sequence of the system, that is

KX2)= S KnT)zn

The inverse z-transform of Eq. (5) can be derived from the inverse Fourier transform just in
the same manner for ordinary z-transforms (4]. The poles of K *(2) lying outside the unit
circle correspond to the portion of k(nT) for n<O0.

i
i
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Statistical Design of Control Systems Containing Digital Devices 219

- This statement means that the controlled system shown in Fig. 2 has a dead time
of the magnitude

(m—1)T46T (7)

(m: a positive integer, §: zero or positive fraction less than unity)

and the response of the controlled variable ¢(t) for a change of r(t) at a sampling
instant is delayed by m sampling periods. Even in the case where the controlled
system has no dead time, the time delay of one sample is enevitable because of
the energy reserving properties of the controlled system. In practice it is im-
possible to control the system with no time delay, since if it were so, the manipu-
lated variable would contain impulses and infinite power rate would be required.
Thus, the general form of K*(2) should be

k z"m__l_k z—(mirl)_'_..‘
K* —m m+1 8
(Z) 1+l1z-1+lzz_2+' < ' ( :

(k’s, I’s: constant coefficients) ,

This is the mathematical expression of the constraint (2).

Eq. (4) which gives the mean square value of the control error in the error-
sampled system as shown in Fig. 2 is also applicable to the other important types
of sampled-data control systems, such as tele-control systems including PCM (Pulse
Code Modulation) data transmission links [5] and regulating systems using A-D
converters as primary means. Moreover, replacing ®*(z) in Eq. (4) by DX (z), the
pulse spectral density of the stationary random disturbance u(t) in Fig. 2, the
equation gives the mean square value of the control error caused by the distur-
bance, because

E*@)=—{1—-K*@2)}U*(2) - (9)
Thus the disturbance may be considered as an equivalent to the reference input.
Hence, in the following parts of this paper the statistical optimum design method
based on Eq. (4) will be developed.

In order to determine the form of K*(z) which minimizes the vatue of Eq. (4)
under the constraints (1) and (2), we eliminate the constraint (2) at a first place
by setting

K*(z)=2""F*(z) (10)
where F'*(2) is the pule transfer function of any physical realizable system, and
the optimum form of which is now to be determined. Substituting Eq. (10) in Eq.
(4), we get

COT =5 § ("= F @M~ ) 0x ) (11)

To determine the optimum form of F*(2) the method of calculus of variation is
employed, that is, if the mean square value of the control error € is increased to
€*+4e® when F*(z) is replaced by F'*(2)+24F*(z), where 2 is a parameter and
4F*(2) is an arbitrary function of the form of F*(2), then
55+A?2=—L—ggf{z"‘—F*(z)}—MF*(z)] {z " —F*(z" )} —24F*(z )]z '®X(2)dz
2y T (12)
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Assuming an optimum F'*(z) that minimizes {e(nT)}, the first derivative of Je?
with respect to 2 should be zero when A=0, namely,

dde? =1 m_ TRV AF* (2~ g- 1
<ax >1___0_ 2ﬂJT§{z F (z)} (Z )z d),.(z)dz

+T';.1§,—9§'{z""—F*(z")}AF*(z)z“@;*(z)dzzo (13)

The integrals in Eq. (13) must always be zero respectively, since 4F *(z) is assumed
as an arbitrary function. Hence, for the first integral in Eq. (13) we have the
following conditions to be satisfied;

| {2 — F*(2)}®(z) |->0 when z—>0 and } (14)
{z"—F*(2)} @} (2) has no poles inside the unit circle.
The second integral becomes zero automatically, when the above conditions for
the first integral is satisfied. Then, factoring the pulse spectral density of the

input into two components as

OF (2)=DX(2)- O(2) (15)
where
5,* (2) includes all poles and zeros in the unit circle } (16)
dg;“ (2) includes all poles and zeros outside the unit circle

and taking into account the physical realizability of F'*(z) as stated in Eq. 6),
the optimum form of F*(2) is determined as

1

F*@op=——{fot fiz  fz 2 - -} (17)
D ()
+
where f’s are the coefficients in the descending power series expansion of z"@* (2)
shown as
+
2O (2)=f 2" S o2V b fob FR i - (18)

The optimum pulse transfer function of the whole control system, which minimizes
the mean square valne of the control error, is obtained by multiplying F’ *(z)(,,,t by
2z~ ™, that is,

K*(2)ope=2""F*(2)op:

=2 (fotfefa ) (19)

PX(2)
Substitution of Eq. (19) in Eq. (4) gives the minimum value of the control error as
ET o= Loy -+ F2) (20)

Eq. (19) and Eq. (20) are the conclusions of this section.!

It is emphasized here that F*(2)op: is nothing other than the pulse transfer
function of a optimum predictor which is physically realizable and z™ in Eq. (11)
is that of the ideal predictor. These facts are interpreted as a consequences of

T Recently, a similar theory was presented by S. S. L. Chang [6] in different forms.
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the time delay of m samples in the response of controlled variable c(t) to the input
signal 7(t), that is, the best way which is able to be accomplished by the control
system under these situations is to predict the future value of the input signal at
the sampling instant of m samples later and to force the controlled variable to
have that predicted value at that sampling instant.

3. OpTIMUM DESIGN THEORY FOR THE SYSTEM HAVING FINITE
SETTLING TIME‘RESPONSE

In a system employing a sampled-data controller, it is possible to cause the
system to have a finite settling time so far as the values at sampling instants are
concerned [/]. Such a response is not seen in ordinary continuously controlled
systems and is one of the distinguishing marks of sampled-data control systems.
The pulse transfer function of the system having finite settling time response is
expressed as

K*(z).:kmz—m+km+lz—(m+1)+ .. +km+pz—(m+p) (21)
which shows the response of the controlled variable to the input signal is delayed
by m samples and settled in (p+1) sampling periods. If it is also assumed that

the system has no off-set for step input, the coefficients in Eq. (21) must take the
following relation;

kptkpmur+-o ek, ,=1 (22)

In general, the requirement that the system follows a test function of the form of
t* without steady state error places (¢4 1) equations to be satified by the coef-
ficients of K*(2), thus decreasing the degrees of freedom for statistical optimum
design of K*(2). In addition to the constraints (1) and (2) mentioned in the
preceding section, the two additional restrictions as shown by Eq. (21) and (22),
that is,

(3) the finite settling time response of the control system and

(4) the requirement for zero off-set for step input,
will be considered in this section and the statistical optimum design method under
these four constraints will be derived.

The integrand

{I-K*@H1—-K*(")}0r (2)=0!(2) (23)
in Eq. (4) which gives the mean square error of the basic sampled-data control
system of Fig. 3, is no more than the pulse spectral density of the control error

e(t). Therefore, taking the expansion forms of @}(2), @¥(z) by their pulse correla-
tion functions ¢}(k), ¢¥(k) [2][3] (k: an integer, cf. the footnote on p. 218)

O (2)=T{--- +9r Q2"+ 3} ()2 + 61 (0)+ X 1)z +6X(2)z*+-- -} (24)
Pr()=T{-- -+ 822"+ (1)z+ 05 (0)+8X(1)z ' +65(2)z 2+ -} (25)

and substituting Eq. (21), (24) and (25) into Eq. (23) to compare the 2° terms in
both sides of the equation; we get the relation
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{e(nT)F=¢2(0)
m+p "H-‘P I ki
=| 1+ 3K+ Heo (Ehba-k)] e
(¢, J: integers, k,, k,, ,;: coefficients in Eq. (21))
Thus, the mean square error {e(nT)J is represented by the coefficients k,, k...,

“*s ku.p If Eq. (26) is differentiated with respect to k’s and equated to zero,
we have a set of equations

06(0) _
—ﬁi__.o (27)
(t=m,m+1,---, m+p)
from which we can determine the values of k’s that minimize {e(nT)}* under the
constraints (1), (2) and (3). Similarly, if the values of &’s are determined using
Eq. (21) and (22) simultaneously, the optimum values of %’s under the constraints
(1), (2), (3) and (4) can be obtained.
For examples, a sampled-data control system which has the indicial response of

the form as shown in Fig. 5 will be considered. The pulse transfer function of
the system is

1
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FIGURE 5. Indicial response of the system given by Eq. (28).

- K*@)=kz '+kz? } (28)
ki+k,=1
From Eq. (26)
{e(nT)PP=(1 +k§+k§)¢o+2k1(k2"' 1), —2k.0, (29)

where ¢,=¢(i). Substituting k,=1—F, in Eq. (29) and setting dle(nT)}?/dk,=0,
we have the following expressions for the optimum values of the coefficients.

(koom:.;_(w%{%) )
(oo =1 —(k,)ony = _1_( 1 _2;¢_z) (30)
’ S Sy

Substituting Eq. (30) in Eq. (29) the mean square value of the control error, when
the coefficients are set optimum, is readily calculated as

T =5 5= 80+ =8 BG— )~ —4) (D)

For the sampled-data control system which has a indicial response of the form as
shown in Fig. 6,
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&

‘ 0 T 2T 3T 4T
FIGURE 6. Indicial response of the system given by Eq. (32).

K*(2)=kye-2+ k22
kytky=1 } ¢2)
we get the following results through the similar procedure.
=1 Ps—%s
k2 opt— ~~~ 14222
(=3 (1+5:25) )
= 1= ()= (1= P25
(ka)opt =1 (k2)opu 2 <1 ¢o"‘¢1>
{e<'nT)}2mln
: -1 . L S (G 80+ (G GIN3G— ) — (=G0l +2hi—4) (4

It is worth while to compare the optimum pulse transfer function given by Eq.
(19) in Sec. 2, which is designated here as K;*(2)o,., with that derived in this
section which is designated as K;*(2)ops. Ki*(2)ope is optimum for a random input
when the constraints (1) and (2) are imposed and K;*(z)o,, is the optimum pulse

- i Lo p gl 2 p—~
ir*(e,/wr) // (/(/()6 Jopt, a

(2) |
: / /-K;(&J“’T)o,,g/z :

£ —

W ;
0 /T i

FIGURE 7. Pulse spectral density of the input signal and
frequency characteristics of the systems. w

transfer function for the same input under the censtraints (1), (2), (3) and (4). In
the limiting case where the limitation on the settling time of the control system
is made to infinitely long, that is where the constraint (3) is removed, K;*(2)op:

converges to K;*(2),,, irrespective of the constraint (4). On the rewritten form
of Eq. (4)

T =L [*1— K0 (03 )da (35)

—z/T
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the curve of | 1—K3*(¢’) |5, which is shown in Fig. 7, approaches to the curve of
| L —K*(e’*) |* closer and closer when the settling time of the system is made
longer, and finally the curve (2) coinsides with curve (1) except the points where
0=0, =2x/T, x£4x/T,---(| 1—K}*(e’)|* should be zero at these points by Eq.
(22)). From the preceding discussions we can conclude that the condition (4) can
not be a constraint by itself, instead, it can be effective only when combined with
condition (3), that is, when the off-set of the control system vanishes within finite
settling time.

4. THE EFFECT OF QUANTIZATION ON THE STATISTICAL DESIGN

As already mentioned in Sec. 1, an A-D converter may be considered as a
combination of a sampler and a quantizer which has a staircase input-output
relation. The statistical properties of the quantization error or “round off” error,
which comes from the representation of signals by numbers, have been studied as

N

SAMPLER 2
T l
A\ JouanTizer _ s\t
INPUT Q ouTPUT T T + x’
z Z
X’

s

_H—

FIGURE 8. Linealization of a quantizer.

problems in PCM communication systems. According to W. R. Bennett [7] and
B. Widrow [8], if the width of the quanta is small comparing with the amplitude
of the signal to be quantized, the statistical effect of quantizing operation can be
approximated as a superposition of a quantization noise, which is statistically
independent of the signal to be converted, on that signal. The pulse correlation
function ¢ (k) and pulse spectral density @*(2) of this noise are given as

=0:k%0
#0{ 4o @
and
0¥(z)=TA (37)

B where A=¢%12 and q is the width of the quanta. This approximation is especially
SR good when the amplitude distribution of the input signal of the quantizer is ex-
pressed by a smooth curve as in Gaussian distribution, and well be applied to an
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extremely rough quantization such as for the case where ¢ equals to two standard
deviations of the amplitude distribution of the input signal. Thus, the effect of
quantization to the statistical design can be treated as addition of fictitious noise
to the system input.

( w
+ +1+ SAMALED-DATE| | HOLD CONTROLLED| +
Pa— @*O CONTROLLER | ¢, &3 | SYSTEM| @4 | SYSTEM [+ )
D*(Z) Ga (§) 6(S)

FIGURE 9. The block diagram of a sampled-data control system; in which
the A-D converter is replaced by the superposion of the quanti-
zation noise.

In the control system of Fig. 2, if the sampled-data controller is a digitally
operating one, an A-D converter must precede the controller. Replacement of
the A-D converter by a source of quantization noise results the block diagram of
Fig. 9. Since the quantization noise n(t) is independent of the reference input
r(t) and the pulse transfer function from the noise n(t) to the control error e(t) is
K*(2), the mean square value of the control error is composed of two components,
one is due to the reference input and one to the quantization noise, as the follow-
ing equation.’

{e(nT)}
= —-————27:7,11 § [{1=K*@)Hl—K*@z1)}0x@2)+ K*(2)K *(2 )P¥3z)]z"'dz  (38)

The above equation indicates that the system of Fig. 9 can be further reduced to
Fig. 10.

REFERENGE INPUT 1
OR DISTURBANCE &

*|GONTROL t
— —

SYSTEM

[
[
|
1
l—— ——

KX Z)

FIGURE 10. A reduced form of the block diagram of Fig. 9.

t In references [7] and [8], the apploximation of a quantizer by a quantization noise source
is valid only for the statistical characteristics of the input and output signals of the quantizer.
Hence it is not a regorous manner to assume a pulse transfer function from the noise to the
‘control error and evaluate the mean square value of the control error. However, it is possible
to derive Eq. (38) using the statistical input-output relationships of the quantizer and the pulse
transfer functions of the linear portion of the system, if only one quantizer is included in the
control system and the remaining portion is linear.

SR T b
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The pulse transfer function K *(z) which minimizes {e(nT)}? in Eq. (38) under
the four constraints stated in the preceding section, can easily be obtained by
substiting Eq. (37) in Eq. (38) and following the procedure in Sec. 3, getting the
equation

T =| 1+ 25k [ + 4142 36 () S ke —) -4 (9

corresponding to Eq. (26) which is derived under the condition that the quanti-
zation of signals is neglected. Comparison of these two equations shows that they
both are in the same form except the constant term —A in Eq. (39). Hence the
optimum parameters in K *(z) when a quantizer is included in the system can be
obtained by substituting

di=0X(0)+A (40)
for ¢, in Eq. (30) or Eq. (33)." In practice, the width q of the quantization box
is very small comparing with the amplitude of the system input 7(t) and the cor-
rection is scarcely needed. However, the increment of the control error due to
quantization when no correction is made, that is

1 -1y,-1
T §K*(z)K*(z Ve LATdz (41)
in Eq. (38) or
m+p
Lm ki]A 42)

in Eq. (39) would not be neglected compared with the portion of the control error
due to the system input 7(t).

The foregoing discussion is an example of the quantization effect on a linear
sampled-data control system in which only one quantizer is included. For the
general case where n quantizers are included in the control system, it is not always
possible to analyse the effect of the quantization by assuming the » noise sources,
which are statistically independent of each other, in places of the quantizers. In
practice, however, many important types of sampled-data control systems can be
reduced to the form of Fig. 10 when the quantization effect is taken into consider-
ation, and therefore the method stated in this section may be applied.

5. CALCULATION OF THE OPTIMUM DESIGN AND ITS COMPARISON
WITH EXPERIMENTAL RESULTS

An example of the statistical design method stated in Secs. 2 and 3 will be illus-
trated in this section. The assumed auto-correlation function and spectral density
of the random input are as follows: '

¢.(t)=Pye " cosbr (43)
0= [ 4,()e " dz
_2P, 1+ (b/a)'+(w/a)? (44)

C ()

1 Tt For Eq. (19) in Sec. 2, we can also get the correction due to the quantization of the signals.
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Especially when b=0 in Eq. (43) and (44), they are reduced to

¢,(r)=Poe'"! (45)
()= 201: 0. lw : (46)
1+(2)

These are shown graphycally in Fig. 11. A reason for assuming the auto-correla-
tion functions as Eq. (43) or Eq. (45) is that such kinds of random signals may be
obtained by passing the random signal having a flat spectral density i.e. white
noise, through first or second order resistance-capacitance combination systems,
and many kinds of auto-correlation function of random signals encountered in
practice may well be approximated by Eq. (43) or Eq. (45).

rb/a=0

e
T

g 02 —/ )Q \\

-04
Y 0 0 2 4 6 8

0 1 2 3 4 5 w /
at /a

FIGURE 11. Pulse correlation function and spectral density of the input signal.
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The pulse correlation function corresponding to Eq. (43) is readily obtained as

o¥(k)=Pye*"* cos Bk 47)

where a=aT, 8=>bT, T is the sampling period and k is an integer. The pulse

spectral density @}(z) can be calculated by taking the two-sided z-transform of

Eq. (47) and multiplying it by 7. Hence, using the tables of ordinary z-trans-
forms [9], we get the following tranform for the positive half part of Eq. (47).

*—dz cos B
for k>0:P,T—= 48
" 2*—2dz cos B+d? “48)
(d=e"")
Substituting 2! for z in Eq. (48), we get the transform for the negative half, thus
for k<0:P,T 2 *—dz"" cos B (49)

2 *—2dz"' cos B+d?

e s ]
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It must be taken into account that the value of ¢¥(k) for k=0 is doubly trans-
formed, so

for k=0:—-P,T (50)
Taking the sum of these three parts the complete transformation of Eq. (47) is

achieved,

z—r)e Yz t—r
0} (2)=P,Td(1—d?r, cos B 2dz cos,B+dl“’))(Z'(2——2dzi)‘ cos B d) (51)

where 7, and 7, are two roots of a quadratic equation and calculated from the
following set of equations.

rr.=1 1
di+1
= . 52
it d cos 8 J) (52)
|7 [ <72

Eq. (51) must be factored into two components according to Egs. (15) and (16),
then

+
*(2) =P Td(1— & o >
D} (2)=+P,Td( )2 c08 f 2> —2dz cos f+d? 2

Q;*(z)zJPon(l —d?)r, cos 3 2 e 1) (54)
i 2 2—2dz cos f+d?

The pulse spectral density for Eq. (45) is obtained similarly, thus

$X(k)=Poe " (55)

O 73 2zt

V=P T(=8) (56)

0*(2) =P, T(1—d% —*— (57)
z—d

0(2) =y PyT(T =% —2 (58)
z7'—d

For these random inputs, the optimum pulse transfer function of the control
system under the constraints (1) and (2) in Sec. 2 is now readily obtainable by
substituting the power spectral densities formulated above in Eq. (18) and (19).
For instance, when m=1, that is the response of the controlled variable to the
reference input is delayed by one sample, Eq. (18) becomes as

B (2) = P T — %y 008 f —— L%
i ° ? 22 —2dz cos B+d*

2d cos f—r,)2*—d*z
— P, Td(1 =%, cos {z ( : }
o e Pt 22—2dz cos B+d?
———
the part of zero and negative powers of z

(59)

Substitution of (59) in Eq. (19) results in a rational fractional function of z as the
optimum pulse transfer function, that is

+
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2d cos f—1,)z ' —d?*%?
K*@)ope = FniE
— (E)opiz ™ + (Fo)opiz*
1 +(l1)optz-l
Means square value of the control error for this case is calculated from Eq. (20)
m;m=1’od(1 —d?r, cos B (61)

In Fig. 12, numerically calculated values of the parameters in Eq. (60) and

corresponding values of Eq. (61) for the spectral density of b/a(=p/a)=2 are shown
as functions of «, where a=aT or

(60)

|
1.0 —
\K (f&l)opt
/
\\
0.5 | \
//////”{anrn%un ° T
X Po
o
0 0l © 03 04 05
//
Py —
(Li)opt | ——1—|
-05 =
;;§g§;;; (fe2 Jopt:
-1.0

FIGURE 12. Calculated and experimental values of the optimum
parameters in Eq. (60) and the minimum mean square
ertor (for the random input of a/b=2, solid lines:
calculated values).

_1_a ’
fs—?—“; (62)

(fs : sampling frequency)
that is, for constant @, a is decreased with the increase of f:. Experimentally
obtained values of the optimum parameters and minimum mean square value of
the control error are also shown in Fig. 12. These values were obtained by

setting the pulse transfer function of the simulator, which will be illustrated in
the later section, as

K*@)= k2 k22

1+17,27!
and seeking the optimum parameters that minimize the value of {e(nT)}* on a
vacuum tube voltmeter. Thc experiments were carried out for a=0.15, 0.30 and

(63)

P
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0.45, but the experimental values of I, were not shown, because the effect of para-
meter /; on the magnitude of the control error is insignificant except the vicinity
of +1 or —1 (if |/,|>1, the control system becomes unstable) and it is difficult

to determine the minimum point of {e(nT)J® by changing the value of l,. This
fact may be illustrated by expanding Eq. (63) as

-3 -2
K@= B et (e i)et (64
1

and expressing the sampling value of the controlled variable ¢(nT') as the weighted
sum of the values of reference input »(nT), thus

cnT)=ki-r(nT—T)+(ky—kl) - r(n T—2T)+- - - (65)
Eq. (65) shows that I, is not included in the weight of the latest value of the input
r(nT—T), which is most effective to the present value of the controlled variable
¢(nT). The parameter [, is contained in the second term as the form of k,l, where
k, takes the value less than unity, hence, [, is less effective on the control error
than the other parameters.

1.5
/
® X
(k1) opt /
0 pd
*\
0.5 lecurfmin
/ Po
A
0

0 0.1 02 03 04 0.5

FIGURE 13. Calculated and experimental values of the optimum
parameters in Eq. (30) and the minimum mean
square error (for the random input of b/a=2, solid
lines: calculated values).

In Fig. 13 a numerical example of the results of Sec. 3, that is, the optimum
setting when the conditions of finite settling time response of the control system
and zero off-set for a step input are taken into accounts, is shown. The spectral
density of the reference input and other constraints of the control system are
assumed to be same as in the foregoing example. That is, the pulse spectral
density

o¥(1)=¢,=Pe =" cos i (66)

(Bla=2)
is substituted in Eq. (30) and Eq. (31), then (kopts (k2)ope and {e(mT)f,,, are
calculated as functions of «. The experimental results is also shown in the figure.
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Comparison of Fig. 13 and Fig. 12 shows that the value of {e(nT)}nsn in Fig, 13
is always larger than that of F ig. 12, that is a consequence of additional constraints

in the latter case. Furthermore, the value of {e(nT)}n;, in Fig. 13 exceeds unity
while, in Fig. 12, the curve of {e(nT)}’nin never exceeds unity, because even in

the worst condition {e(nT)J? is unity, if the controlled variable is held at the |

mean value of the reference input, or no control action is made. :
To examine the theory, the numerical calculation and experiments of the

optimum design were executed for several cases other than the example stated in

this section, and satisfactory accord of the experimental and calculated results

was achieved.

6. THE HIGH SPEED SIMULATOR OF SAMPLE-DATA SYSTEMS

. The experiments of statistical design mentioned previously were carried out

electrically according to the block diagram shown in Fig. 14. The random signal
which has the spectral density of the form shown in Fig. 11 is achieved by passing
the noise having flat spectral density or “white noise” from the noise generator
through a filter which consists of C-R-L passive elements. This random signal is

/
RANDOM ™ Toors ] [vacws
SIGNAL FILTER —— 1 O lcircur TUBE
GENERATOR SIMULATOR] J €7|CIRCY VOLTMETER
r<l k*2) {e(nT )?

FIGURE 14. Block diagram of the experiments.

the input to the high speed electronic simulator which simulates the behaviour of
a sampled-data control system as a whole and the output of the simulator is
subtracted from the input giving the control error. A zero-order hold circuijt
clamps the values of the error signal at sampling instants for the intervals between
samples. The waveform of the output of the hold circuit is a train of rectangles,
which changes stepwise its value at each sampling instant. The mean square
value of the control error at sampling instants {e(nT)}® is obtained by measuring
the effective voltage of this signal by a vacuum tube voltmeter. The optimum
condition of the control system is searched for by changing the parameters of the
simulator step by step to get the minimum reading of the voltmeter. It-is a
matter of course that if there is a constraint such as Eq. (22) the parameters of the
simulator must be changed while holding always these relations. The simulator
is able to simulate the part of sampled-data controller shown in Fig. 2 not the
whole control sysiem as in this experiment, and is also able to be used to investi-
gate the indicial response of a sampled-data system on a cathode-ray oscilloscope.

The principle of the simulator is that suggested by A.R. Bergen and J.R.
Ragazzini [ /] which uses sampled-data delay lines and a summing amplifier with
various weights. The simulator constructed for this experiment is an all-electronic
high speed type in which sampled-data delay lines by analog method are adopted.
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FIGURE 15. Block diagram of the simulator.

In Fig. 15, the block diagram of the simulator is shown, where A, A,,- -+ By, B,,
... are amplifiers with gain of —1 (including each cathode follower) and 0, 1,2,- - -
represent electronic switches. When the electronic switches are switched on for
a short time in order of 4, 3, - -0, the past values of the input and output signals
of the simulator at each sampling instants, which have been stored in the con-
denser in voltage forms, are shifted respectively to the next stages toward right
and new samples are taken in by the simulator. The sampling instant of the
simulator is the moment when the switch 0 is made on, hence the sampling opera-
tion takes a finite time duration equal to the width of the switching pulse and five
switching pulses which are generated in order 4, 3,---0 are needed to accomplish
the complete cycle of a sampling period.

The signal values stored in the delay lines are summed up by the amplifiers
SA, and SA, with the weight of @y, @, - -b,, b,- - - respectively, getting the linear
pulse transfer function of the form

D)= Gt Ao b Hdg D (67)
14+bz 1 4+bz 24 +b2?
In Eq. (67), @, @y,- - -y, by, - - - are parameters and when they take the values larger

than unity, the amplifiers A, and B, are switched to have gain of X5. If a para-
meter takes negative value, the connection of that stage to the summing amplifiers
must be changed to the side of negative sign. In this instance, however, it must
be taken into account that the polarity of the signal values in the delay lines are
changed from stage to stage because the gain of A’s and B’s are —1. The output
of the simulator is taken from the cathode follower of the B, stage. Therefore,
the waveform of output is a train of steps, not samplesdiscrete in time, and hence,
the similator is regarded as including the hold circuit in the block diagram of
Fig. 14.
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FIGURE 16. Circuit diagram of a stage of the delay lines in the simulator.

The circuit diagram of a stage of the delay lines is shown in Fig. 16. The tube
V, is an electronic switch which is driven to conducting state by the switching
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PHOTO. Arrangement of the device.

@ simulator. (2 switching pulse generator. (3) source.
@ random signal generator and filters.
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pulse, thus charging the capacitor to a new voltage. Vi, is operated with the 8095
heater voltage of the rating in order to decrease the leakage current between the
hearter and cathode. The capacitor C is the memory element in the delay lines
and a polystyrene condenser is used to avoid the error due to the absorption of
change or “soak in” effect. The drift of DC level in the amplifier which is
consisted of V, and V,, is not so serious, because the simulator is AC-coupled by
capacitors to the other devices.

The sampling frequency of this simulator is variable between 250 to 1000 c/s
and the maximum voltage range of the input and output signal is +30V (when
the gain of A4, and B, is X 1). The main source of the error of the simulator is
that the sampling of signals is not operated instantaneously, instead it needs the
time about 7T/10, where T is the sampling period. However, the simulator has
sufficient accuracy for this experiment.

It should be noted here that the amplifiers A4, A,,---A, or B,, B,,---B, are
never operated simultaneously, but they are operated one after another, so it is
sufficient to switch over one amplifier from stage to stage. In the case where a
device of this sort is used as a sampled-data controller operating in real time and
therefore, the sampling period is sufficiently long, it is advantaneous to adopt the
method of construction that mechanical relays switch over an operational amplifier
such as those using chopper-stabilized circuits.

T FERRRENEY
N
THYRATRONL—JAMPLIFIER |- —{ Y] HOLD H—L' 7 H-l,__;.f %
CIRGUIT ||'|'1l::|:
—— QUTPUT! m=t P 111 0 1
NAL /6

MULTI-

visraToR| 1111 ] 1]

FIGURE 17. Block diagram of the low-frequency random signal generator.

Fig. 17 is the block diagram of the low-frequency random signal generator
constructed for the experiment, in which a thyratron used as the noise source.
The thyratron noise, after amplified, is sampled at every 1ms by an electronic
switch and is clamped by the hold circuit similar to those of the simulator,
giving the output voltage which changes its value irregularly at every sampling
instant as shown in the figure. The flicker effect and ham in the amplifier of the
generator are cut out by R-C coupling between tue stages of the amplifier and the
stable low-frequency random signal is obtainable as the output. This output
voltage is filtered to have a specified spectral density as already shown in Fig. 14.
For the random signals used in the experiment stated in Sec. 5, the parameter a
which specifies the form of spectral density shown in Fig. 11 is set equal to 125
rad/sec or about 20c¢/s. A low-frequency random signal generator based on these
principles was reported preuiously by D. F. Winter [ 107, for which a mechanical
commutator was used as a sampling device. However, the generator illustrated
here was consisted of electronic tubes, including sampling and holding circuits.
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The vacuum tube voltmeter to read the mean square value of the random signal
is one of the types which detect the input voltages by the square-law characteristics
of triodes and it was reconstructed so as to be able to measure the frequency
component down to 5c/s with sufficient averaging time constant.

7. CONCLUSIVE REMARKS

The two essential features of digital devices, that is sampling and quantization
of signals, were dealt with in this paper and the statistical design methods of
control systems containing these devices were developed. In Secs. 2 and 3, only
sampling operation was taken into consideration and the optimum pulse transfer
functions of the control systems subjected to random inputs were derived under
the constraints such as time delay in the response of the controlled variables,
finite settling time of the systems, etc. The effects of the quantization of signals
on optimum design are usually trivial as discussed in Sec. 4. To examine the
theory of optimum design, the experiments were carried out using a simulator of
sampled-data systems and satisfactory accord of the experimental and theoretical
results was achieved. In the last part, the simulator constructed for this experi-
ment was illustrated and a method to construct a sampled-data controller oper-
ating in real time was suggested.

Throughout this study, the values of the control error only at sampling instants
were considered. In practice, however, it is the averaged magnitude of the control
error as a continuous signal that must be kept to be minimum. According to the
sampling theorem [//], the representation of the control error e(t) by its values
at sampling instants e(nT') is based on the assumption that the frequency com-
ponents of e(t) higher than one half of the sampling frequency is not so excessive.
Therefore, if the system exhibit very oscillatory response between sampling
instants, the method stated in this paper should not be applied carelessly. The
similar situation will occur when the optimum pulse transfer function of the
control system is decided and the parameters of sampled-data controller such as
shown in Fig. 2 are set to cause the system to have the specified pulse transfer
function. In such a case, hidden instability—a sampled-data control system is
unstable concerning the values of the controlled variables between sampling
instants although stable at the sampling time [ /2]—may occur according to the
characteristics of the controlled system, such as the ratio of the dead time of the
controlled system to the sampling period. To sum up the foregoing comments, it
may be said that the statistical design methods developed in this paper should
always be used in connection with other design methods and the results of the
statistical design must be examined from other points of view such as the indicial
response of the system.
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