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Summary. The general equations of motion are derived for spinning elastic rocket with
respect to axes attached to the rocket. The equations contain a force and moment system
that includes, in addition to the usual quasisteady forces and moments, those due to Magnus
effects. As a result, the stability criteria for spinning elastic rocket are approximately
derived, including as special cases, those such as for the case of rigid body and for the case
of nonspinning elastic rocket, which have been analyzed. Comparing these analytical
results with the digital computational results, the applicability of these stability criteria is
examined and from these results, empirical formulas for stability boundaries are also pre-
sented. Furthermore, clasifying the stability boundaries into seviral types according to the
characteristics of motion of rocket at the critical speed, and the physical meaning of each
stability boundary is also explained.

LIST OF SYMBOLS

m(x); mass per unit length of rocket, kg-sec?/m?

M; total mass of rocket, kg-sec?/m

I=1,+1,; total length of rocket, m

S; cross sectional area of rocket, m?

ll; C. G., Cpnose, m

l,; C.G., Cpyy m

dl; C.G., Cpypp m

EI(z); flexural rigidity, kg-m?

C.:; lift coefficient,

C,.; restoring moment coefficient,

%, v, w; linear velocity components along the z, ¥, and 2z axes, m/sec

a. @, @,; linear acceleration components along the x, ¥ and z axes, m/sec?
X, Y, Z; force components along the z, ¥, and z axes, kg

D, q, r; angular velocity components about the x, ¥, and 2z axes, rad/sec
L', M', N'; moments about the z, y and z axes, kg-m
I,,I,=I,I,=I,; moments of inertia about the x, ¥y and 2z axes, kg-m-sec?
o(z, t)=0,(t)f.(x); displacement of bending vibration in o—xy plane, m
(%, t)=14(t)f.(x); displacement of bending vibration in 0o—xz plane, m
Jo(x), f.(x); normal functions,

t; time, sec

fi={f(@)).-.

Si'={of(x)/ox}, .,
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86 B. Tomita

wy; natural frequency of bending vibration, 1/sec

p; air density, kg-sec’/m*

p=psl{2M; density ratio,

(dot); derivative with respect to ¢, 1/sec .
(prime); derivative with respect to /1,

g=v-+jw; complex value of the linear velocity,

n=q+jy; complex value of the angular velocity,

{=0¢+jr; complex value of the displacement of bending vibration,

P; constant angular velocity about the x axis, rad/sec

U; constant linear velocity along the x axis, m/sec

T=Ut/l; nondimensional time,

@y—=wyzl/U; reduced frequency,

P=Pl/U; reduced frequency, (’

Q= %pws; ke

®
R(x); radius of rocket body, m
S,= f zR3x/l; mean cross sectional area, m®
Y., Z,; Magnus forces along the y¥ and z axes, kg
M., Nii; Magnus moments about the ¥ and z axes, kg-m
Y., Z,; force components along the y and z axes due to spinning combined with
yawing motion, kg
M}, N}: moment components about the ¥ and 2z axes due to spinning combined
with yawing motion, kg-m
d,1=C. G., Cpz,m
4,1=C. G, Coryy
#=2/l; nondimensional linear velocity along the ¥ axis,
%'zw/l; nondimensional linear velocity along the 2z axis,
ézq; angular velocity about the ¥ axis,
?sr; angular velocity about the 2 axis, “
d=oc/l; nondimensional displacement,
7=z/l; nondimensional displacement,
?:5/1 ; complex value of the nondimensional linear velocity,
Z:ry; complex value of the angular velocity,
c=¢/l; complex value of the nondimensional displacement,
U,,; critical speed, m/sec
k= ]éf'lz ; nondimensional radius of gyration,
C. G,; center of gravity,
C,; center of pressure,
=11,
v ®
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On the Dynamic Stability of Rockets 87

1. INTRODUCTION

In the field of dynamic stability of rocket, many analytical results under ap-
propriate limitation of motion of rocket have been obtained such as for the case
of nonspinning elastic rocket* and for the case of rigid body**. In the former
case, the effects of flexural rigidity of rocket upon the dynamic stability are
mainly explained, and in the latter case, the effects of spinning rate upon the
dynamic stability are investigated. Since an actual rocket body is elastic and
accompahied by a spinning motion, it is necessary to analyze the case of spinning
elastic rocket.

In the case of elastic spinning rocket, the freedoms of motion are the trans.
lations along the three axes, the rotations about the three axes and the bending
vibrations in two planes perpendicular to each other, so the analysis is very
complicated.

To solve this complicated problem, simplification can be made without signifi-
cant effect introducing appropriate assumptions as follows :

(a) Configuration of rocket is symmetrical.

(b) Gravitational effects are neglected.

(c) Forward velocity of rocket is constant. By the usual assumption, we
have specified that the angle of yaw and the yawing velocities are
small disturbance values, and we write w= U cos @, where
cos 6—>1, and sin §—@; then = U— U sin 68 or w=Uand u=U

(d) The spinning rate is constant. The angular velocity of spin motion p
is actually the sum of the spinning rate P of the rocket about its own
axis and the component of angular velocity p’ about the z axis due to
the precessional motion.

However, it is considered that p’ is, in general, a small magnitude
compared with that of P. Then, we neglect p’ and replace p by P
without significant effect on the stability results.

However, under these assumptions for simplification, the complete analytical
expressions for stability boundaries of the spinning elastic rocket can be hardly
expected, so the following procedures are adapted for the analysis of this problem:
Ist procedure is the approximate analysis for some special cases under appropriate
limitation for the magnitude of P and U, 2nd procedure is the digital computa-
tional research for many actual examples, and 3rd procedure is that the set up
of empirical formulas of stability boundaries for the whole range of P and U by
combining the results obtained by above mentioned procedures, and that the
explanation of physical meaning of the various stability boundaries of spinning
elastic rocket. '

2. FORMULATION OF THE EQUATIONS OF MOTION

In this section, the general equations of motion of spinning rocket having the
finite flexural rigidity are derived. The rocket under consideration is assumed
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88 . B, Tomita

to be slender and to possess geometric, elastic and inertial characteristics having
nearly circular symmetricity with respect to all points on a longitudinal axis
through the body of rocket. The right-handed orthogonal o—xyz system of
coordinates is fixed in rocket body ; it coincides with the principal axes, and the
x-axis is positive in the forward direction.

The nomenclature and sign convention of the rigid body degrees of freedom
and of certain kinematical and dynamic quantities relating to them are defined
in Table 1. All velocities, forces and moments are positive in the direction of
positive displacements.

TABLE 1.
Coordinate Parallel to Coordnate Axes About Coordnate Axes
Axes Velocity Acceleration Forces  Displacement Velocity Acceleration Moment
x u=U ar X @ p=P a, L Q .
v a Y 0 ag M
Z w a,Z Z ¢ : ay N ' L

In addition to the degrees of freedom defined in Table 1, the rocket body is
considered to be elastic in the sense that it can execute beam bending vibrations.
A vibration in the zy plane leads to a displacement o(z, t), that in the xz plane
leads to a displacement z(x, t). Both vibrations are restricted to occur in the
fundamental mode only, and no other mode of elastic deformation is considered.
a(z, t) and z(x, t) are positive in the directions of positive ¥ and z respectively.

(1) The Equations of Motion along the z, ¥ and z Axes [/]

Derivation of linear accelerations presents no great difficulty. They are easily
shown to be, respectively,

a,=u+q(z+7)+2q(w-+7)—r(y+0)—2r(v+a) )
+r(pz—2ar+pr)+q(py + po —x9)
a,=v—p(z+7)—2p(w+7)fur+ar+o
(1)
+7r(gz+qr—yr—or)—p(yp—2q+ap) ‘ ‘7 ‘
a,=w—xq—uq+py+o)+2p(v+o)
+7—q(qz—yr+qr—or)— p(pz—2x7r-+ D) ]

Eqgs. (1) are obtainable from purely kinematical considerations. Then, the equa-
tions of motion along the three axes are obtained as follows:

S X= fm(x)a,dx

S Y= f m(x)a,dx (2)

S 7= f m(@)a,dz
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On the Dynamic Stability of Rockets 89

FIGURE 1.

(2) The Equations of Motion about the x, ¥ and z Axes [2]

The angular accelerations must be derived from dynamical relations. They
are obtained from Euler’s equations of inertia moments of a body rotating about
a fixed point coinciding with the center of gravity, and their simple form used
here requires that the coordinate axes coincide with the principal axes. The
angular momentums of a mass m(x) about the z, ¥ and z axes, respectively, are

Ao =m(@)(y+o)(w—xq+yp+op+1)—(2+7)(v—2p+2r—rp+4)}
L=m@)(+ ) (u+29—yr+cq—or)—a(w—xq+yp+op+7)) (3)
A,=m@){2(v—2p+ar—:p+0)—(y+0)(ut+29—yr+rq—or))

Then, the inertia moments due to mass m(x) about x, ¥ and 2 axes, respectively,
are

dL”  da \
=% _pp tqa,
dt dt AT
dM’_ da,
=% pa 4
P re +7 ) (4)
AN"  da
ON_ =4 2.+ pa,
T PRl ,

If the vibrational displacements o and ¢ are sufficiently small, higher terms of
the small quantities and products of inertia with regard to the vibrations can be
neglected, and then, the equations of motion about the three axes are obtained
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as follows:

zz/:f‘”' do=1p+(—L)gr )

dit

Z
M= [P dy= 1,44+~ Lypr
14

dt

SN = f AN Go=Li+(I,—I)pa
'3

dt

(5)

where, the following relations for the mode shapes of vibration are introduced :

f m(x) o (x, £)d =oyt) f m(@)f,(x)dz=0
fm(x)r(oc, t)ydx = r.,(t)fm(x)f,(x)dx:O
f m(@)eo(@, t)dz=0i) f m(@)af,(2)da=0

f m(x)xr(x, t)de=r1yt) f m(x)xf.(x)dx=0

(3) The Bending Vibrations

\

' (6)

The derivation of the equation of bending vibration in the xy plane will be
shown, and the equation in the xz plane will be derived by the same method.
The intensity of inertia force due to the bending vibration distributed along the

length of the rocket body is given by

AT =—m(x){o(x, t)—o(x, t)P?*} (7)
Assuming a virtual displacement,
6D =1 ,(x)da (1) (8)
it can be shown that the virtual work of inertia forces is given by
— {3 [mia) £:@)da—oup* [ m@) @) b0 (9)
! 2
The strain energy of bending of the rocket body at any instance is
2 2
V= f AVdg=L f EI(x){m—Q} do (10)
) 29 0x*
and for the virtual work of elasticity forces, we obtain as follows:
2 2
_ (94 Vﬁoodx:‘ — {00 fEI(w) {ﬂ_ﬂ_&@} dx}&o(,(t) (1)
00, / dx

e
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The virtual work of the external forces applying to the position of z=x, is

SV (0D} 0, =SV, @004(0) (12)
Summing up the expressions (9), (11) and (12), we obtain the following equation:

t) [ (@) £ 2@z —ait)p? [ mie) 2@ da+ o) [ B | LD Vg,

Now, to determine the absolute values of f,(x) and f. (), the following normal-
izing conditions are used:

f m(@)f.} (@) dz=M, [ m(@)f.2(x)dz=M (14)

And, introducing the assumption of axial symmetricity of rocket structure, we
obtain the following relations:

S (@)=F. (%) =f()
[E1@) {%} / f (@) @)da= [ EI(x){dzf ; } / [ m(@) @) dz=a} (13)

dx

Then, the equations of motiom of bending vibration in xy plane and zz plane
are written as follows:

Méy— Mp*oy+ Moo, — S Y,=0 ]

. (16)
M%O“MpzTo“*‘Mw%To“szi:O

(4) The Aerodynamic Forces

Generally, the forward velocity of rocket « is much greater than v and w, and
by the assumption for simplification we can write w=U. Then, the aerodynamic
forces due to the change of angle of attack along the ¥ and z axes are written as
follows :

R A Al

(17)

EZA:QOECLi{_%_I_To{i + Q?;l . Tz]fi} J

And, the aerodynamic restoring moments about the ¥ and z axes are written as
follows :

XY . @__To.fi’_qdil ofi
ZM“—QJZC’”{U A } (18)

ZN'A:QOZZCMZ,{_%_{_UQ{L' . 'rcll}l _ 0';_]]“1}

In addition to the forces and moments represented by Eqgs. (17) and (18) respec-

This document is provided by JAXA.




9) B. Tomita

tively, the aerodynamic forces and moments due to the Magnus effect [5] and
due to spinning combined with pitching motion must be taken into account. The
Magnus force is caused by the circulation of air around the rocket body due to
the spin. If the air next to the rocket adhered tightly, the circulation velocity
is equal to the surface velocity of rolling of rocket, but actually there is con-
siderable slip which depends upon the inertia of the air, the roughness of the
rocket surface, the magnitude of surface velocity, e.t.c. Then, introducing the
coefficient v, represent the magnitude of slip, the Magnus forces along the ¥ and
Z axes are written by

Y, ,=—2vpSlwP
(19)

Zy=2vpSlvP

where S, is the mean cross sectional area of rocket.
Then, the Magnus moments about ¥ and z axes are written by

My;=2vpS,l*d , vP
(20)

Ny =2vpSy*d ywP

where d,l is the distance between the center of gravity and the center of pres-
sure of the Magnus force.

The aerodynamic forces due to spinning combined with pitching motion [6]
along the ¥ and z axes are written by

YP:sCLi%ple

1 1)
Zp= —eCL,.—Z—pS@vP

where ¢ is the coefficient depends upon the shape of the fin, the magnitude of the
spinning rate, e.t.c.
Then, the moments about y and z axes due to Z, and Y, are respectively

M,ﬁ:sC“—;—,oSl“’dPPv

, (22)
N,i:eCLiEpSlzd,,Pw

where d,l is the distance between the center of gravity and the center of pressure

of Y, (or Z,).

Now, introducing the complex variables &, %, {, and nondimensional time 7, and

using the Egs. (2), (6), (16)~(22), the eqations of motion are obtained as follows:
d’e
aT?

Zi 4 _; )4
{5+ 5T (1 )} e 1412 Cn) L

+e2CL.f g'%—ﬂz CLifi’E= 0

)

v
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ko 20\ dt . S1C,..d,) d
<”"17 SR >dT+dT2 {3(1—“’ e }d;‘
Zcmzj'l dc jyzcmz llc O > (23)
B dT k*
(ﬂzcufi-l-j/f-kff PVE 50 D4 2T

d¢ wyl \? [ PL\? 7
27 B )L )— C,.f. 1=

Hemcusrr B Lo (Bl (PO e, p i)

3. STABILITY CRITERIA OF NONSPINNING ROCKET

In this section, the stability criteria of nonspinning rocket are analyzed. The
equations of motion for nonspinning rocket are easily derived from Egs. (23)
putting P=0, £=v, 7=7 and C=7 as follows:

d% di d7 o pdi . \
dT? +AUECLiﬁ +( +#Zcmi) (ﬁ+#2 CLifia*T‘ £>3CL fla=0

2C, dv | d¥ >2.C.d, dy 22C,. f do Zcmf'
P ar e TP g TSR T 2

. do
+p21CL. S, aT

o=0 >

dr
C
/12 szl +#ZC"LLde+dT2

+@p—p>] CL.f.f)a=0

(24

To obtain the stability criteria of rocket, whose motion is governed by Egs. (24),
as trial solutions we may choose

1=0e", 7=7", o=a,67 (25)

which lead, by expanding the determinantal equation, to a quartic frequency
equation with real coefficients.

P A+ AP+ A2+ Ay=0 (26)

where

(0t B0, ) |
A =Wwi—p <2 CLififil+E—kCZ'—7ﬂ>

=3 (50, + 208 ) e -5 CuBCut f!i—22 510,15

v

PR Cf L 510, B Ot/ - B, 24 520,521
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_ C J C.,. L)
A= _“’ZB#Z mi | p? {2 CLifi———"—ZC]:;f1 -] CLifift/Z—_k2 } ’
(27)
The conditions for stability are given by
AO) A19 AZ; A3>0
(28)
AAA—AP—AA>O
(a) Inspection of the condition A,>0;
From Egs. (27), the critical reduced velocity is easily derived as follows:
(%)
o Jr” [ (530,550 EC"‘:f AN
Zcﬂll
It will be considered.that the critical speed (U.,),, coresponding to the stability ﬂ .

condition A,>0 always exist, and in the speed region smaller than the value of
(U.,)4, the rocket is stable, but in the speed region greater than (U,,),, the rocket
is unstable. The frequency of motion at this speed is zero, then, this means that
the critical speed (U.,,),, physically can be defined as the divergence speed of
rocket in a narrow sense.

(b) Inspection of the conditions A,, A, and A,>0;

Generally, it can be considered that these stability conditions are always satisfied
in the statically stable rocket at any speed region. This means that any criticl
speed corresponding to these conditions does not exist.

(c) Inspection of the condition A’=A,4,4,— A, A}—A?>0;

This stability condition is reduced to the following inequality.

n e

opt+opuF +p Fy,>0
where

/ 30
FIZFI(AU, CLi, Cmi; fia i di, k) ( )

Fy=Fyy, Cy., C.., fi, i, di, k) v* “

Then, if the values of F', and F), satisfy the conditions of
F1<0 F12~4F2>0, (31)

the critical reduced velocities exist, and they are given by the following values:

Uyl 1 1,
{wgl}w—[z (—F,+ JF—4F, 4F|]/

‘ (32)

cre — 1 ! 2
Eal —r=F,- mz“:‘m}] /

v @

g
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The stability regions are given by the following boundaries :

U<{U,}a : stable region, ]
{Ui,Ja<U<{U,,;}»: unstable region, (33)
{U.,s}a<U : stable region. J

The condition of A’>0 is equivalent to the real parts of complex root of
frequency equation (26) must be negative, this means that the motions of rocket
at the critical speed given by Egs. (32) are oscillatory. Hence, the critical speeds
{U.,1,2)a can be defined physically as the flutter speeds of rocket in a narrow
sense.

These critical speeds exist only in the case where the conditions (31) are satis-
fied, but these conditions are not always satisfied even in the case of statically
stable rocket, so these critical speeds do not always exist. And according to the
results of many examples, it can be considered that the values of flutter speeds
much Jarger than the value of divergence speed given by Eq. (29), so we can
consider the value of divergence speed as the critical speed of nonspinning rocket.

Discussion of Stability of Nonspinning Rocket

From the Eq. (29), the following results may be stated as applied to a non-
spinning rocket.

(a) The critical speed is proportional to 1/Jp, then the value of U, at high
altitude larger than that of at low altitude.

(b) The natural frequency w, is used in Eq. (29) as the value representing the
rigidity of rocket body, and the flexural rigidity ET is proportional to Vw,, hence
it is considered that U, < JET. It is noticed that the critical speed U,, is
affected by not only ET but also by vibration mode i.e. S(x) and f’(x) which are
functions of structural characteristics, mass distribution and e.t.c. Then, for the
calculation of U,,, it is necessary to estimate both natural frequency and vibration
mode. A convenient way to determine these values is the vibration test of rocket
model, then the natural frequency w, is easily determined, and the vibration
mode can be obtained by normalizing the amplitude along the rocket axis at
resonant frequency.

(c) The critical speed is affected by the aerodynamic coefficients C,, and C,,
by the power of inverse square root.
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iy ’
Example 1.

As an example, the critical speed of the actual rocket, shown in Figure 2, will

be calculated using the results in this section. f; and f,’ are obtained by nor-
malizing the amplitude, which is measured by vibration test, and they are shown

in Figure 3.

| P E 31
er (a ) Ampliitude
(a) Model Al /
Wi (&o ©
sl Wo —
----- EI
R Elc -2-
: ‘e
35 1324,
3 [ r 8t .
236 Yo ®
2F ar
It 22 °
031 53—
O 0/ 0203 04 05 06 07 08 09 10 -8} (b Siope
(b)Weight and rigidity distribution ol
Wo: mean weight per unit length FIGURE 3. Vibration shape

EI,: rigidity of chamber
FIGURE 2.

2 Li=CLN+CLT: 10.
C,»=2.0: lift coefficient of nose
C,r=8.0: lift coefficient of tail
P Cmi: my+Crr=—1.9,
C.»=0.9: moment coefficient of nose
C,.r=—2.8: moment coefficient of tail L
Hence "M ‘

Ecmifi:_"o'6’ ZCLififi/:_19'4:

Ecmifilz37'8 s ZCLifi2=5'76 s

ZCLifi:7'2: ECmidizl'sg ’
1

C..f,=-—554, ki=——.
2 szt 10

Substituting these values into Eq. (29), divergence speed given by

{_U_} =283
Py

(I)Bl
and

F,=—31<0, F,—4F,= —46,590<0
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Hence, in this case, the flutter phenomenon does not occur at any speed.

4. STABILITY CRITERIA OF SPINNING ROCKET OF RIGID BobDYy

In this section, the stability criteria of spinning rocket of rigid body [7], [&],
x, % are analyzed as the special case where the flexural rigidty of rocket body is
extremely large.

The equations of motion are easily derived from Egs. (23) putting wz= o, f;=
f/ =0 as follows:

Ve S Cout 5P+ ik —-g<1+p2 Cad 2L ‘“ =

dT* (34
Zcmz> dE d’y 7 { 1— P lzcmidi da —

<k2 TS gr Taps T WP = }dT 0

To obtain the stability criteria of rocket, whose motion is governed by Egs. (34),
as trial solutions we may choose

E=£e7, 7=70e"" (35)
which lead, by expanding the determinantal equation, to a frequency equation.
A2 +(e,+7dy)A+co+5dy =0 )
where
d,=(2—1,)P ' (36)

CO=IUZZC Zlimtd #ZC Ecmz_ﬂzkcz’ml —(l_io)PZ

dy=pP (Bl (1 ig5C, + En)

The necessary and sufficient conditions [ 9] for stability are given by :

¢,>0 }

\ o (37)
cico+cd,dy—di>0

(a) Inspection of the condition ¢;>0;

For the statically stable rocket, the values of >)C,;, and > C,,.,d; are both posi-
tive, then ¢, is always positive. This means, any critical speed, at which the
rocket becomes unstable divergently, does not exist.

(b) Inspection of the condition ¢'=cic,+c¢,d,d;—di>0

This stability condition easily can be reduced to the following inequality.

() rig (Pt oS o) - e. 20

poten S1Cud, ‘
+pEm (0,4 2 %) <o 08)
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For the statically stable rocket >)C,, /k*<0 and (3 C,,+>.C,.d,/k*)>0, then if

condition
is satisfied, then the critical speed exists, whose reduced velocity is given by fol-
lowing formula:

N e
A e, )

(40)

At which speed, the rocket becomes unstable oscillatory, so this critical speed is
considered physically to be the flutter speed of rocket of rigid body in a narrow
sense.

From the inequality (38), under the condition (39) is satisfied, we can obtain
another critical speed, but that is of a negative value and then it is meaningless
physically.

Hence, in this case, there exist the only one critical speed, i.e. the flutter speed,
and the the stable region is given as follows:

0<UL{U.,,}s; unstable }

41
{U.,}.<U; stable (1)

P

1

7,
4

o
-

FIGURE 4. Stability Boundary of Rigid Body.

UNSTABLE

Disscusion of Stability of Spinning Rocket of Rigid Body.

From the above analysis, the following results may be stated as applied to a
spinning rocket of rigid body.
(a) The critical speed is proportional to 1/y p, then the value of U,, at high
altitude is larger than that at low altitude, i.e. the unstable'rigion at high altitude
is wider than that at low altitude.
(b) If the aerodynamic characteristics are constant at any speed of rocket, the
critical speed is proportional to the spinning rate P,

This document is provided by JAXA.
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(c) For the rocket of slender body, actually it may be considered that the
value of i, is much smaller the unity, then the critical speed is aproximately
given by

kn,
U, =
{_T)T} o {—ﬂzlgmi <E CLi—i—_Z’%’z"_"_(i"—)}l/z (42)

(d) The stability condition (39) depends upon not only the aerodynamic coeffi-
cients, structural characteristics but also upon the ratio of moment of inertia %,.
Eq. (39) can be transformed into the following formula.

km y Y km y Zcmidi
(a—im ) +iei ) >0 (43)
o, S)C,,, and S)C,,.d,/k® are positive values, hence the condition (39) may be
rewritten as follows:

. k . SC.d
%’;—> wS)C,, or 7"2‘—< — %——%’5’—1 (44)

5. STABILITY CRITERIA OF SPINNING ROCKET AT Low SPEED

In this section, the stability criteria of spinning rocket of elastic body at very
low speed are analyzed, and in an extreme case where the speed of rocket is
tending to zero this problem coincides with the whirling phenomenon of elastic
shaft.

First, in the special case where the speed of rocket is zero, the equations of
motion of rocket are easily obtained by putting U=0 in Eqgs. (23) as follows:

E4GP(1+ 1k )E=0 (a)
‘&+J’(1—io)P77+;t~%‘iP$=0 (b) (44)

.C."l_(sz_Pz)C‘l"jpkffiPE:O (C)

From the Egs. (44)-(a) and (b), it is easily found that & and » do not diverge at
any spinning rate, then only the Eq. (44)-(c) will be considered under this con-
dition.

As trial solutions we may choose

{=Ce”,  §=79=0, (45)

which lead to a quadratic frequency equation.
P4oy—P*=0 (46)
Hence, the critical spinning rate which is the whirling speed, is given as follows:
Py, =ws (47)

Next, for the special case where the speed of rocket is very low, the equations of
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motion are shown by Egs. (23):
As trial solutions we way choose

E=eT, =767, T=le” (48)
which lead, by expanding the resulting determinantal equation, to the quartic
frequency equation with complex coefficients as follows:

24+A323+A222+A12+A0:O \
where
A= o 50, + 2 C,uf2) + 4P

A=5y— 6P+ p( SO S + 2 Cm)
+J'#13<—%;—+ 27C,, f24-33 CLi+3_Z_%_n£ii> -
A =(@%— 3152)#(2 Crit —Z—%‘—i) +P2p<2%—2 Cy. ff> )
+ 2jP{ag— 2P ,u<2 Colt, fi’-}__z%i_)}

A= _(aza—Pz"‘#Z CLififi/)<'u Zk€"i+P2>

+iPu@s =P D Cnf F) D Cut g 2l

Eq. (49) can be rewritten approximately as follows:

|+ {20 Zme) +2jP] A= (Prp2ilne)

P Cput i B 12 (05 Oy 24 24P 1+ = P (53C, £
=F,(2): F(2)=0. (50)
Hence, instead of the inspection of Eq. (49), which determine the critical speed
of rocket, we can use the equations F',(2)=0 and Fy(1)=0.

(a) Stability criteria derived from F',(1)=0.

F) =2+ { (zcmuz mi 1>+2jPJ,2

—(PraZCo )it 0, Hobp Fa) g (s

Comparing Eq. (51) with Eq. (36), which is the frcquency equation of rigid body,
we can easily obtain the critical reduced velocity as follows:

A ()
A S (o, B0

(52)

4
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(b) Stability criteria derived from F(2,)=0
Fy()=24(eX Cpi [+ 2iP)A+ a5 —PP— S Co f, f =0 (53)

In this equation, > C;, f? is always positive, then the critical spinning rate is
easily given by

Pt == Cof S/ ) =Pry ~ 12 Coufi £ () (s4)

Discussion of Stability of Spinning Rocket at Low Speed

From the above analysis, the following results may be stated as applied to a
spinning rocket at low speed.

In this case, there are two critical values. One of them, which is represented
by Eq. (52), coincides with the critical speed of rigid body, which is shown in pre-
vious section, and the other, represented by Eq. (54), shows the critical spinning
rate at low speed.

OONRRRNY
UNSTABLE SN

STABLE

— U
FIGURE 5. Stabilty Boundary of Elastic
Rocket at Low Speed.

6. STABILITY CRITERIA OF SPINNING ROCKET oF ELASTIC BODY

In the previous sections, the dynamic stability of rocket for some special cases
under appropriate assumptions for motion of rocket are investigated, but in this
section, the stability criteria for spinning rocket of elastic body are analyzed.
Hence, in this case the rocket has 6 degrees of freedom of motion, i.e. heaving or
bouncing motions along the ¥ and z axes, pitching or yawing motions about ¥ and
%z axes and bending vibrations in xz and xz planes. The velocity along the x axis
U and spinning rate about the x axis P are also both constant in this case. For
this case, the equations of motion are given by Eq. (23) and hence, the frequency
equation, from which the critical speeds are determined, is given by a quartic
equation with complex coefficients as follows:

FQR)=2+APPH AP+ A1+ AP =0 (55)

The stability criteria are obtained by the following procedure. That is, an itera-
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tive process [ /0] on the complex coefficients A, =Ay,+JAg; is given by the fol-
lowing definitions:

AP=AQ+jAY  AP=qPgP AP =AD+jAD
AP =gPgsd AP =qPlgP AP=AP=AP=0
Agz): q§2)/b81) AgO) — AS‘}?-HA%‘P
AP =q/q5” AP =q5"/qs> G0
AP=AR+FAR  AP=gP/g
AP =q/qs® AP =qPlg®
where
g =ADAP —jAD g =ARAP—FAD )
@0 = ARAP— AP gD = ARAD
@O =ARAP— AP g =ARAP
(= ADAD — AD o= ARAP 57)
q;”'—'AiEA;”——AgD P =0
(P =ARAP— AR ) )

Then, the necessary and sufficient stability conditions are shown by
AR>0, AR>0, AR>0, AR>0 (58)

Hence, if the actual rocket, i.e. the aerodynamic coefficients, structural charac-
teristics, flight conditions e.t.c. are given, we will be able to calculate the critical
speed of rocket at the expence of much time and effort. But it is not expected
to get the analytical representation for the critical speeds by the iteration method
mentioned above. Therefore an approximate analysis for the critical speeds will
be presented as follows:

The approximate analytical method consists of three procedures: Ist pro-
cedure is approximate analysis of the critical speed under the assuption of spinn-
ing rate P is much smaller than bending circular frequency wz, 2nd procedure is
the calculation of critical speed by digital computer for many examples and
comparing these results with the analytical results obtained by Ist procedure, the
applicable limits of the analytical results for the value of P/wy can be estimated.
The last procedure is the set up of empirical formulas for the critical speed in the
whole P~ U plane comparing the analytical results of this section with the results
by digital computer and the results of many special cases treated in previous
sections.

(1) Approximate Analysis of Critical Speed under the Assumption Plo;< 1.

Under the assumption that the spinning rate P is much smaller than bending
frequency wj, the critical speeds of rocket can be represented in an analytical
formula by simplifying the frequency equation appropriately. The applicable
limits of such the critical speed are not determined generally, but these will be
estimated later by the comparison with the results of digital computer.

N
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.
v
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In previous section, for nonspinning rocket of elastic body, it was found that
two critical speeds exist; one is the divergence speed and the other is the flutter
speed. From the standpoint of the value of frequency of motion at each critical
speed, the former is zero and the latter is the order of bending frequency. And
also, from the standpoint of the value of the critical speed, in generally, the
value of latter, which does not always exist, is much greater than the value of the
former. Hence, at first, we will consider the divergence speed as the critical
speed of dynamic stability of rocket. As far as considering the divergence pheno-
menon, even if the rocket is spinning, the frequency of motion at divergence
speed may be considered as the order of the spinning rate. In other words, the
imaginary part of 4, complex root of frequency equation, is the order of P and
much smaller than the value of bending frequency. In accordance with this as-
sumption, the neglections of higher order of 2, comparing with the lower order
of 2, may be allowed as follows:

A AR, AR (59)

Hence the frequency equation is simplified as following quadratic equation with
complex coeflicients.

(cot3d) 2+ (c,+ Jd )1+ oty =0 (60)
where

er=h— 6P — (D Cyofuf 4+ Cmt ) ‘
d=uP(250,f2 4+ Kr 43310, 43 200

o= (B Cot 2o )@y -39 — P2 4520, 1)

e {2 CL,-fif./(Z Cu+§%id_i) . Cuﬂf;(Z%ﬂ_ + Cufi’>

+3 cmfi}jc’;if ‘o2 Cl"“‘ ZCuff}

(61
d,=2P{@h— p( S Cyuf f+ 2o )~ 2P7) |
:<,,_Zgy_+pz)<a;_ﬁz—ﬂz c,,if,;f,-v—/fz—‘,’;;”—ff'z Couf,

o-——/JP{(w —P2)<Z C..+ € k;’” i )

~ DO S (SOt Bty N ) 2 Clisic, 7

+23C, fi ] Cmfi,’} /

Then, the necessary and sufficient stability conditions are given by
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DY ?
(a) C/: 0102+d1d2 >0 N\
c+ds
iz d.d,)%( e, +d d
b c=[0102+12}{02 02}
(b) ci+d2 ci+d (62)
+ { ¢,Co+dqd; } { d,c;—c,dy } { doc;—Codly } _ { doCs—Cod; }2> 0
c3+d; c3+d; c3+d; e+ ds /
(a) Inspection of condition ¢’>0;
The dominator of ¢’ may be considered as to be positive, unless the spinning
rate becomes too large, such as the order of bending frequency, hence in the limi-
tation of P/wy< 1, the dominator of ¢’ is positive. Then the stability criteria are
determined from the condition ¢,c,+d,d,>0. Neglecting the terms of higher
order of ¢ and P/wy, the critical speed is obtained approximately as follows:
o) el ) ‘ *
—er 14+ 2K,—3k,—N)/k o
L) = () ek sk, ‘. 9
where i '

(S0t 2]

b=t {80 f 8/ (SOt Zh) 30, £ (B0 510, 1/)

(63)
+31C i kmif L 2"}1‘2 C..5)
K= {280, 0+ B 43510, 3 2 0n)
{ZCLLJ” +2Z’;} |

In the statically stable rocket k, is always positive, and {1+ (P/wz)*(2K,— 3k,
— N)/k } is positive, unless the spinning rate becomes extremely large. Then, if
k. is positive, the critical speed exists, and if it is negative, the critical speed does
not exist. According to the numerical calculation about many examples of v > «3‘
actual rocket, k; may be considered to be negative, hence no critical speed deter-
mined from this condition exists practically.
(b) Inspection of condition ¢'>0;

In order to simplify the expression for calculation of ¢”, the following symboles
are preliminarily introduced.

c;=w}i—6P'—Q—FE \
dzszz
¢,=k,(@,—3P)—NP*—f,
d,=2P(@%—2P*—Q—E)
to=—(E+P?)@4—P'—Q)—k,
do=P(1 +a)(<3§,—~—1§2-——Q) +PK,
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where

RQ=r>C.. .1, E= Ekgm‘ (64)
__.F,ZECmLf ZCsz

k"?-
K
2.Cnd;
ZCLL+ k2

Ky=p [ ZC I 516, £ B 0D 0L

a=

In the statically stable rocket, ¢, is always considered to be positive, so the condi-
tion ¢’ >0, can be rewritten as follows:

Co+ c2 29._d_1__ Co ;2 Cclz >0
Cs Cl+ G4 ¢ Cl+ s
C: C2 C; C; €3 €
where ’
ko
&:_E{1+4P2+ E} p2
Cq Cy Cy
K
R (65)
ﬁ:kl(wa)P{l-{—SP + 1(1+“)}
Cy Cs Cy
3N qiE-
Gy __ k{l—{— k1p2+ kl}
C, C; Cs
2
a4 2P{1+£}
Cy [
dzzl'j K2
Cs Cy

Neglecting the terms of higher order of (P/w;), Eq. (65) is written as follows:

piks

e B
C2

2F* {E+a<—ﬁ2+Q—5&———EK2)} >0 (66)
Cy k1 kl k1

From Eq. (66), the following inequality, 4th power of @, is derived:
@5(1—6p)pa’+ @4 {E—B(6E—2K)}—EQ+k,<0

()=

@p

where
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K, _EK, > J

_ ks o
K"E+“< k1+Q k,  k,

Then, the stability criteria are given by

oy, < TUE=BOE—2K))  k—EQ ()
fa(1—6) E—p(6E—2K) |

ko— EQ ( (68)
> B peE—2K) (&)

where @3 _, is the smaller one of the two roots of Eq. (67)=0, and @3 ,, is the
larger one.

Next, the detailed discussion about the stability criteria, shown by Eq. (68), will
be made.

(i) Stability criteria @ <@}, :
Introducing the critical reduced frequency in the case of rigid body
(U,,/Pl),=cr Eq. (68)-(b) is written as follows:

el > i) L2l )

(i) =) () e

where (69)

253C,. 1.5 (ZCu +2‘2:fdi)-——(§3 if 10,/

SiCon $1C..d,
(S

or

G=

/

This means physically that (U,,/Pl) is one of the critical reduced velocities, at
which the motion of rocket, which is principally rigid body motion, becomes
unstable, and that how the flexural rigitity affect the reduced velocity of rigid
body.
(ii) Stability criteria @3>o% _,:

Introducing the critical reduced frequency in the case of nonspinning elastic
rocket {U.,,/wpl}s., Eq. (68)-(a) is written as follows:

o) <Caidn 125 -5

or (70)

()< (), (LY e

This means physically that U/w,l is one of the critical reduced velocities, at

@
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which the motion of rocket, which is principally the bending vibration, becomes
unstable, and that how the spinning rate affect the nonspinning reduced frequency.

Next, the frequency at the critical speed will be discussed. In the analysis of
stability criteria of spinning rocket of elastic body mentioned above, for the sim-
plification of analysis, an assumption for frequency at critical speed is introduced,
i.e., it will be an order of spinning rate. Then, now the propriety of this assump-
tion will be discussed. Two roots of quadratic equation with complex coeflicients
are given by

ﬁ+{m+ﬂd)x+(%+ﬂd

2R(A}=—cix = L (e = a4 = 2 (o —dt— e} |
2I{2}= —d{ij:—{x/(c d?“406)2+4(C{d{—2d6)2_(012—d{2—406)}“2

At the critical speed, R(2)=0, i.e., c{ 2¢! +¢jd|d}—d,?=0, hence under this condition
Eq. (71) is rewritten as follows:

2I{A} = —d}+VdF+c; (72)
Only the positive sign is used corresponding to the condition R(1)=0. Compar-
ing Eq. (71) with Eq. (60),

d/ = dic:—cyds :_‘é_

a+di ¢ (73)
o= CoCotdyds . Co
° ci+d; c
Hence
d 10d,\*, ¢
IHi=—% <__1_> Co 74
@ 202+\/ 2¢, +c2 (74)

Substituting Eq. (64) into Eq. {74), and introducing the condition at critical speed,
it is easily found that

I{3)=—P (75)

This means that the frequency at critical speed is the order of spinning rate.
Substituting this result into the quartic frequency equation, and the propriety of
assumption, Eq. (59), will be discussed. At critical speed,

R{2}=0, I{2}==P
Hence
i — P+ —_p
AE PahtiPf,  @yt+iP,
. a3 P? . f,P?

B T
A2 — 4P4+.7.f1P3 4P2‘|‘.7f1
AR Pzafa‘*'jpzfz wB+Jf2
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_ATPLLSP @ ARE 76)
TN T

where

flz.u(Z CLi+_Z_%£L_}_ZCLifi2>

f=nlaiCu i Eassic, 432004
k, k?
As @, f,, f, and P then both the real and imajinary parts of Eq. (76) are much
smaller than unity. Hence the neglection of terms of higer order of A i.e., 2 and
A,2%, will be allowed in the approximate analysis as mentioned above.
The appilacable limit of the results by this approximate analysis will be esti-
mated later comparing with the numerical results by digital computer.

Discussion of Stability of Spinning Rocket of Elastic Body

From the above analysis, the following results may be stated as applied to a
spinning rocket at low speed:

1) In this case, there are two critical reduced velocities, i.e., U.,/ogl and U,,/Pl,
and the former shows how the spinning rate affects the critical reduced velocity
of nonspinning rocket and the latter shows how the flexural rigidity affects the
critical reduced velocity of spinning rocket of rigid body. Physically, this means,
that the main motion of rocket at critical speed is bending vibration in the former
and is rigid body motion in the latter.

2) Various characteristics affect {U,,/w,l},_, and { U.,/Pl}, .- are discussed in
the previous sections, hence the correction terms of critical speeds are discussed.
{l —(Plwz)*(2+a@G)} is the correction term for {U.,/ogl}s., by the existence of
spinning motion, and can be separated into two part, i.e. the one is {1 —2(Plwy)?},
representing the effect of centrifugal force due to spinning and the other is
{1—(P/w;)*aG}, representing the effect of Magnus effect combined with the bend-
ing motin of rocket body. The ratio of these effects is given by aG/2, whose value
will be considered to be the order of 0~0.1 from the results of numerical cal-
culation about many actual rocket. Hence it can be said that the main part of
correction term is one due to the centrifugal force.

3) {14 (Plwg)*(1+a@)} is the correction term for {U.,/Pl}, -, and if the
Magnus effect is neglected, this value is unity. (Neglecting the Magnus eflect,
{U.,/Pl}, o does not exist)

The ratio of the above two correcting values is given by aG and can be con-
sidered to be the order of less than 0.1, Hence, U,,/Pl is roughly approximated by
{U../Pl}, ;- in the limitation P<w,, and {U,,/wsl} is roughly approximated by
{U.,/wpl}p-o{l —=2(P/w,)?} introducing only the effect of centrifugal force in the
limitation P< wj.

Next, the effect of spinning rate on the flutter speed will be discussed.
As shown in the previous section, the frequency of motion at flutter speed is the

A
'\‘ ’
2
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FIGURE 6. Stability Boundary of Elastic Rocket
at Low Spinning Rate.
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order of bending frequency and it is much greater than that of motion at diver-
gence speed. Hence, as far as the high frequency phonomena are taken into con-
sideration, we can rewrite the quartic frequency equation as follows:

A+ A2+ A+ A+ Ay =22+ B+ By)(*+ D2+ D))+ E,A+ E, )
=F(2)- D)+ E,2+E,=0
where
Bl———(Ar—‘i‘—— A0A§>
A2 AIAZ
Bim o (4, A Aoy} Ak
AZ AZ AIAZ A2 AIAZ
_ A A
=4, a4,
Dy="4
A,
A Ay (A, | AAZ\  AA? A, AAI\[ A, , AA\
E—=-—-“94 2 0< 1 os)_voa <A—-——l— 03>< 1 03)
! A, ot A, A2+A1A2 A, A A, AA, A2+A,A2
A A A, AAI\/ A, , AA
E =% “(A— 1 _ 03>< 1-__0‘~3>
° A2+A2 A, AA /A, T AA, )
(77)

F(2) is the frequency equation for the motion of high frequency (equivalent to
the short period motion of airplane), and D(2) is the frequency equation for the
motion of low frequency (equivalent to the phugoid motion of airplane), and so
the stability criteria for flutter phenomena will be derived from F()=o0.

The stability condition for F'(2)=0 is given by

BlzR 0R+B1RBIIBOI——B()21>O

BIR>O
where

Bl,f=R{Bl}=R{A3——A—'——A°A§}

4, A4, (78)
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A, AA ¥
B,,—I(B :I{A -*_1—__9_3.}
17 { 1} 3 A2 A1A2
B,,=R{B,}=R{A,}
Bw: I{Bo} ':-I{Az}

Eq. (78)-(a) is equivalent to the condition A4,>0 in the case of nonspinning elastic
rocket {Eq. (27)}, then this condition will be satisfied in the range of small spinn-
ing rate. Hence the stability criteria for flutter phonomena will be derived from
the condition B,;>0.

Bir

=wy+pF o5+ F,
S0 S (SOt 2 n)

rapilay— (510 ZO [ se. s (s o 2k )

=J(@%)+P?H(@%)=0 / [}
(79)
where F, and F, are given by Eq. (30).
By the same method in the case of nonspinning elastic rocket, flutter speed can
be calculated from Eq. (79).

Example 2.

As an example, the flutter speed of the actual rocket, shown in Fig. 2, will be
calculated using the results obtained in this section.
C.x=2, C,r=8, p=1x10"?°
1/k*=10,
[ fi; shown in Fig. 3,
C.G.; midpoint of rocket,
dy=04; C.G.,Cpyu >
dp=—0.45~—0.20; C.G., Cpp »

Calculation results are shown in Figs. 7 and 8. ¢

—— Stability Boundary
of Flutter,
© —---; Stablity Boundary
of Divergence,

////; Unstable Region

. . (Divergence).
-02 -03 -04 -05
— dr

FIGURE 7. Stability Boundary of Nonspinning Elastic Rocket.
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05  10_U
{Un}dy=-0s5 (b) {Ublty=-045

a_f?’O dr=-0.36
05} é
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o
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(c) {Upkdy=-04s {d) —.{D;}(;r='0.45
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Wwe ,
1/.0
/ dr=-030
o
A
0.5+ {
R /
\S
L A\&l\% \N\
0 1.0 20 30,
(e) ) " {Uolr=-o4s
1.0
! dr=-025
05f A\
A
I\\
Ja &\ .
L )L(\Qt\\\\\\}\? Nt I
0 10 20 30 40
T
{Untdr=-04s FIGURE 8. Stability Boundary of
Spinning Rocket.
1.0}
----; Stability Boundary of Flutter,
dr=-020 —— Stability Boundary of Divergence,
05f A \\\\'; Unstable Region (Flutter),
,ﬁ& ////; Unstable Region (Divergence).
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7.
(1) Stability Analysi

The dynamic stability of nonspinning rocket of elastic body is analyzed exactly,
but taking into account the spinning motion, only the approximate analysis can ;
be carried out under the limitation of Plw,< 1.

stability of this case is carried out only by digital computational method.

B. Tomita

DYNAMIC STABILITY OF ROCKET

s by Digital Computation.

The exact analysis of dynamic

The frequency equation, corresponding to the equation of motion, is given by
the following polynomial with real coefficients.

Bop A AT+ A2+ A5+ A+ AP+ A4 A a4 A, =0

(80)

The coefficients A;~ A, are functions of structural characteristics, mass distri-
bution, aerodynamic coeflicients, and flight condition e.z.c.

A~A,=g(p, k, > CL‘L" > Cmi’f‘i’fi,' ce,Wp, P)

(81)

If the actual rocket is given, then p,k, >1C;;, > C,.,, f., f./, oy are determined
calculatively or experimentally. Therefore, A~ A, are functions of these known
factors and another unknown factor U. Giving the spinning rate P as parameter,
and searching for a minimum value of 2 at which the real part of root of Eq. (80)
becomes to zero, then the stability boundaries, ie., P,,/P,,, v.s. U.,/U, p, CULVES

are obtained.

As an example, the computational results about a rocket shown in Fig. 2, whose

characteristics are given as follows, are shown in Fig. 9.

B
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FiGure 9. Stability Boundary of Spinning

Elastic Rocket.
——; Digital Computer,
;  Approximate Analysis.
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p=1x10"? S3CL.f2=576
2:C,,=100 SCLf/=—554
>1C,=—1.90 >1C,i fi=—0.60 (82)
210, =139 S C,if =378
>Cfi=120 SCLffi=—194
k2=0.10 )

(2) Empirical Formula for the Critical Speed of Spinning Rocket

As the special cases of dynamic stability of rocket, the critical values of non-
spinning rocket {U,,}5.o, rigid body {U,,}.,-- and spinning rocket at low speed
{P..}vs., and {U,,}y,.., Were obatined in tne previous sections. In this section, the
critical value of spinning rocket under the limitation of P/w;< 1 is approximately
calculated and for some examples of rocket digital computational results are
obtained under no limitation. Combining with these results, the empirical for-
mulas representing the critical values of rocket in the form of U,, v.s. P,,, can be
obtained. Two stability boundries exist, as shown above, i.e. at the critical speed,
one is that the main motion of rocket is bending vibration, which is designated
as the stability boundry of A type, and the other is that the main motion of
rocket is rigid body motion, which is designated as the stability boundary of B
type.

(a) Emprical formula for the stability boundary of A type

In this type, the main motion of rocket at the critical speed is bending vibra-
tion. In the extreme case where P tends to zero, the critical value is shown by
Eq. (29), and where U tends to zero, the critical value is shown by Eq. (47) and
in the case of Ux0, Px:0 the critical values are given by Egs. (69) and (70).
The existence of spinning rate P mainly affectes the critical value by the form
of centrifugal forces, and the other effect, for example the Magnus effect, is much
smaller than that of centrifugal forces. Hence, in the empirical formula for the
stability boundary roughly approximated, the Magnus effect can be neglected.
And now, as trial formula we may choose

Po ' [ Ve ).
et + o = ®

From the analytical and digital computation results, fairly good approximation

can be obtained by putting »=3/2 as shown in Fig. 10, then using the equation,

‘PL}” {__’_fg_r__}m:l 84
{ Pcruo + Ucrpo ( )

we can easily calculate the critical value of A type approximately.

(b) Empirical formula for the stability boundary of B type
In this type, the motion of rocket at the critical speed is a rigid body motion.
In the extreme case where w,= oo, the critical value is shown by Eq. (40). For
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1 1 1 1

0 02 04 06 08 1.0
Ucr

UC’Po

—_—

Ficure 10.

————— ; Digital Computer (Not Incude Magnus Effect),
—; Digital Computer (Include Magnus Effects),
++++; Empiricrl Formula.

this case, if we choose the following formula

U iy (2Y
o= (85)

and the estimation of K is order of 0.1~0.2, fairly good approximation can be
obtained.

Further Discussion of the Stability of Spt’nm’ng‘ Rocket of Elastic Body

From the approximate analytical results and the digital computational results,
it has been found that two sorts of critical speed will exist in spinning rocket of
elastic body. However, the frequency equation, which is led from the general
equations of motion (23), is a quartic polynamial with complex coefficients, then
four pairs of complex roots will generally exist, and this means that corresponding
to these values four sorts of motion of rocket will exist. It is necessary to in-
vestigate two other types of motion, but it is hardly expected to solve the quartic
equation with complex coefficients. Hence, in the following discussion, the chrac-
teristis of four motions of rocket will be qualitatively explained.

Generally, four stability boundaries corresponding to four pairs of roots can
exist, and these will be classified into two sorts; i.e.

Stability boundaries (S.B.) of Ist kind ; at these boundaries,

the main motion of rocket is rigid body motion.
Stability boundaries (S.B.) of 2nd kind ; at these boundaries,

the main motion of rocket is bending vibration,

Furthermore, these will be devided into four classes as follows,
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. . . {Stability boundary of A type
Stability boundaries of 1st kind .
Stability boundary of C type
. . ) Stability boundary of B type (86)
Stability boundaries of 2nd kind .
{Stabihty boundary of D type
S.B. of 1st kind are S.B. as the rigid body motion affected by the elastic charac-
teristics of rocket. In the extreme case where the flexural rigidity tends to the
infinite, S.B. coincide with the results shown by Eq. (40). Generally, there are
two S.B. in the case of rigid body, one is oscillatory motion the other is unoscil-
latory motion, and as far as considering the statically stable rocket, S.B. corres-
ponding to unoscillatory motion cannot exist.

Then, in the case of finite flexural rigidity of rocket, it cannot be considered
that the S.B. of C type, which is unoscillatory motion at the critical value, exists.
Hence, in the S.B. of Ist kind, only the S.B. of A type, which is oscillatory motion
at the critical value, shown by Eq. (69), exist.

Next, we will consider the physical meaning of S.B. of 2nd kind. In the
extreme case where the spinning rate tends to zero, the S.B. of B type and D type
coincide with the S.B. of divergence and flutter in a narrow sense shown by Eqgs.
(29) and (32). However, as far as taking into account the spinning rate, unoscil-
latory motion at critical value, i.e., divergence, cannot exist, then the designations
of divergence and flutter are not adequate in this case. But, for the clear distinc-
tion of physical meaning of B type and D type, these designations will be often
used in the following discussion corresponding to B type and D type respectively.

For the S.B. of B type, as an example shown in Fig. 9, P,.~U,, curve are ob-
tained in the whole range of the spinning rate, but the S.B. of D type are not
cleared analytically except the case of P=0, whose value is given by {Uz)p.o.

In the case of very low speed, the frequency equation given by Eq. (53) is the
quadratic equation with real coefficients, and this means that there is no distinc-
tion between flutter and divergence.

From the above considerations, for the 4 types of S.B., physical explanation can
be briefly made as follows:

A type: The main motion of rocket at critical value, which

SB. of Ist kind is secondary modified by elastic Property, is rigid
body motion and the motion is oscillatory.

C type: In the statically stable rocket, no S.B. of this type

exist.
( B type: The main motion of rocket at critical value is elastic
bending vibration.
In the extreme cases of P and U tend to zero, the

critical values are U,,={Uj}s.,, divergence speed,

and P,,=w,, whirling speed, respectively.
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S.B. of this type always exist.

D type: The main motion of rocket at critical value is elastic
bending vibration.

In the éxtreme case of P tend to zero, the critical

values are U,,={U}.,, flutter speed.

S.B. of this type do not always exist, and even if it

exists, it will be considered that the critical value of

this type is much large than that of B type.

R
STABLE
.

1O

Ficure 11.

-——; S.B.of A Type,
——3 S.B. of B Type,
—----; S.B. of D Type.

-
-

These relations are schematically shown in Fig. 11. In this figure, the actual
stable region is that enclosed by the abscissa and the boundaries of A and B types.
If the S.B. of A type and D type do not exist owing to the characteristics of
rocket, the value of the stable region is that enclosed by the abscissa, the ordinate
and the boundary of B type. If the flutter speed is smaller than that of divergence
speed in nonspinning rocket, i.e. {Ur}po<{Up}p.s though such case hardly
exists actually, the stable region is that enclosed by the obscissa and the bounda-
ries of A and D types as shown in Figs. 12 and 13.

FIGURE 12.
————— ; S.B. of A Type,
—; S.B. of B Type,
~---; S.B. of D Type.

—Fr
P Cruo

1.0

’

S.B. of A Type,
S.B. of B Type,
----; S.B. of D Type.
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In the above discussion, the aerodynamic coefficients and the coefficients of
Magnus effect are considered to be constant, but actually these coefficients are
functions of the velocity and spinning rate. Then, in such case, if the structural
characteristics and flight conditions are given and as far as considering the quasi-
steady air forces, the stability bonndary P v.s. U/ curve will be obtained under
the conditions that the above coefficients are functions of velocity and spinning
rate. The primes of P,/ and U mean P,, and U,, in the case of the coefficients,
21Cpy 22C,y, kb et.c., are functions of U and P. Comparing P/~ U, curve with
Pc,/Pc,Uovac,/Uc,m curve, PP}l ~U,//UJ, curve will be easily obtained.
In comparison P.J/Py ~UJ/ U;,, curve with P./P, ~U.,,/ U,,p, curve, the
following two cases are considered. First, on the S.B. of B type, the magnitude
of modification by >1C,,, 31C,,, k,;, e.c. is to be considerably small, then the
basic form of S.B. of B type is hardly affected, but U.,p, is much affected by these
values. Second, on the S.B. of A type, the modification by these values is con-
siderably small, but {U/},,-.. is much affected. Then, in this case, it will be
considered that the form of S.B. is considerably affected. Futhermore, the predo-
minant term deciding the critical value of A type is k,,, wich is small value com-
paring with the other aerodynamic coefficients, and this means that if more
strict evaluation of k,, is made, then the posibility of considerable change of S.B.
of A type is remained.

Such analysis about the stability of rigid body is made by D.R. Davis, but about
the stability of elastic body, it is expected in future.

CONCLUSION

The general equations of motion for the spinning rocket of elastic body using
body axes were presented. The stability ¢riteria under some limitation of spin-
ning rate were approximotely analyzed including the case of rigid body and also
of nonspinning elastic rocket, as special cases. Comparing these analytical appro-
ximate results with the digital computational results, the applicability of these
results was examined as a results, empirical formulas for stability boundaries
were also presented and furthermore the physical meanings of stability boundaries
of spinning elastic rocket were given.

ACKNOWLEAGEMENT

The author wishes to express his sincere thanks to professors K. Washizu, K.

Ikeda, T. Hayashi, M. Yamana, M. Sanuki and M. Hosaka for their kind advice .

and encouragement throughout this work.

Department of Structures,

" Aeronautical Research Institute,

University of Tokyo, Tokyo.
February 25, 1964.

This document is provided by JAXA.




118 B. Tomita

REFERENCES

* K. Ikeda: Jour. Japan Soc. Aero. Engg., Vol. 7, No. 68, 69, 70.
T. Ichikawa : Jour. Japan Soc. Aero. Engg., Vol. 8, No. 72.
B. Tomita: Aero. Res. Inst., Univ. of Tokyo, Rocket Note Vol. 1, No. 19.
** R.E. Bolz: Dynamic Stability of a Missile in Rolling Flight, JAS, Vol. 19, No. 6.
R.A. Davis: The Response of a Bisymmetric Aircraft a Small Combined Ditch, Yaw and Roll
Control Actions, J.A.S. Vol. 24, No. 12.
R.A. Dosenberg: On the Flight Dynamics of Slender Special Purpose Aircraft, JAS, Jan., 1952.
[1,2] C.D. Perkins: Airplane Performance, Stability and Control, John Wiley & Sons, 1958.
W.F. Durand: Aerodynamic Theory, Vol. 5, 1943,
[3,4] S. Timoshenko: Vibration Problems in Engneering, D. Van Nostrand, 1955.
[5] L. Davis, Jr: Exterior Ballistics of Rocket, pp. 236~239, D. Van Nostrand, 1958.
[6] S.M. Harmon: Stability Derivatives of Thin Rectangular Wing at Supersonic Speeds,
NACA TN, No. 1706.
[7] C.H.Murphy Jr: The Prediction of Nonlinear Pitching and Yawing Motion of Symmetric
Missiles, JAS, Jul., 1957.
[8]1 C.H.Murphy Jr: Criterion for the Generalized Dynamic Stability of a Rolling Symmetric
Missiles, JAS, Oct., 1957,
[9,10] R.A. Scanlan: Introduction to the Study of Aircraft Vibration and Flutter, pp. 116~122,
Macmillan, 1951.

This document is provided byiJAXA.





