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Analysis of the plastic wave propagation in high
velocity tension of a bar of finite length

(I. rigid-linearly work hardening material )

By
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Summary. The mechanical behaviours of a bar of finite length in high velocity tension are
analyzed using characteristics basing upon strain rate independent theory, assuming rigid-
linearly work hardening material property. In this case, the solution on the relation of
breaking strain g, versus tensile velocity V, can be obtained for the all range of V,, though
it does not exist for the values of V; smaller than critical impact velocity V.., in the case of
a bar of semi-infinite length. The critical impact velocity exists in this case also and coin-
cides with the value derived Kirmdan in the case of semi-infinite length. Strain rate effect
in material properties can be determined by the difference between the theoretical results
above mentioned basing upon the strain rate independent theory and experimental ones.

1. INTRODUCTION

In the field of space technology, many problems, such as hypervelocity impact
by meteoroids, or high energy rate forming of vehicles, etc., are related with high
velocity deformation of materials. In studying the mechanical behaviours in
high velocity deformation, one of the most popular fundamental tests is high
velocity tension test of a uniform bar or plate [/] [2] [3]. When we intend to
investigate the variation of mechanical properties, especially breaking elongation,
in high velocity deformation, it is found that theoretical result on the relation of
breaking strain g, versus tensile velocity V,; to be compared with experimental
ones is not yet derived [4]. On a bar of semi-infinite length, the behaviour of
plastic wave propagation had been analyzed by Karman [5], Taylor [6], and
Rakhmatulin [77], and the existence of critical impact velocity V,, is shown, but
the relation of ¢, versus V, is unable to be described in the range 0<V,<V,,, as
shown in Fig. 1. As actual tensile specimens are always of finite length, the
relation of ¢, versus V, should be derived for tensile specimens of finite length.

To clarify the behaviours of tensile specimens of finite length, the plastic wave
propagation is analyzed by a graphical representation using characteristics [8],
assuming rigid-linearly work hardening material property. The assumption of
the simple material property enables analytical derivation of some important
behaviours, such as the relation of ¢, versus V,, in this case, and it is enabled to
suppose the strain rate effect in high velocity elongation, basing upon the difference
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Fic. 1 The theoretical relation derived by Karman, of breaking
strain ¢, versus tensile velocity V; for a bar of semi-infinite
length. ¢, is statical breaking strain of material, and
V.r.x is critical impact velocity.

between the theoretical results by the strain rate independent theory and experi-

mental ones.

2. GRAPHICAL REPRESENTATION OF PLASTIC WAVE PROPAGATION
BY MEANS OF CHARACTERISTICS

The equation of motion for an element initially of length dx, of a bar under
tension, is '

o*u do
Aod =AZd 1
paz—y =A= dz (1)

ax- de ax de ox?

where,
x2: Lagrange type coordinate along initially unstrained bar

% : displacement of a section
o: nominal stress, force per unit initial cross-sectional area
€: strain, =—odu/ox
A: initial cross-sectional area of bar é ‘
t: time

o: density of material unstrained.
From (1) and (2)

o’u  o*u

28:4:2 o ' (3)
where,

62=—;~g—g (4)

The propagation of stress waves is considered for an elasto-plastic material having
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the linear stress-strain relation in the plastic range as shown in Fig. 2. In this

i (a'rn,fm)
(c;,0) tan™'Ep
(0,0) € ——

F16. 2 Rigid-linearly work hardening material property. gy is yield stress.
It is assumed breaking occurs instantaneously when stress reaches to g,.

stress-strain relation, elastic strains are neglected. That is, the material property
is rigid-linearly work hardening one, as shown in (5).

0=, e=0
(5)

0,0 e=(0—0,)/E,

The relation is assumed to hold in high velocity deformation also. In the elastic
range, ¢ is the velocity of elastic wave propagation and a constant ¢,= 0. In the
plastic range, c is the velocity of plastic wave propagation and a constant, as
follows:

c*=E,/p (6)
In this case, general solution of (3) is given by
u=f(x+ct)+ F(x—ct) (7)

where f and F' are arbitrary functions. The characteristic lines in (x, t)—plane
for (3) are, [8]

dafdt==c (8)

When waves of stress discontinuity occur, the following relations are determined
by the equations of continuity and momentum change,

(pcv+a),=(pcv+0), (9)
for waves traveling in the positive direction, and
(pcv—a),=(pcv—0), (10)

for waves traveling in the negative direction, where points 1 and 2 are just ahead
and just behind of a stress wave, and ¢ is the absolute value of the velocity of
wave propagation, though stress o and particle velocity v=du/dt may take positive
or negative values. Application of equations (9) and (10) enables to determine
stress and particle velocity distributions in the (x, t)—plane.
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3. ANALYSIS OF THE PLASTIC WAVE PROPAGATION IN HIGH
VELOCITY TENSION OF A BAR OF FINITE LENGTH

We consider a bar extending from =0 to x={ and assume that the free end
point at x=0 is put into motion instantaneously at {=0 with the constant velocity
v,= — V, whereas the other end x=1 is fixed as shown in Fig. 3. When V] is large

v 7

-

/

x=0 x=|
Fic. 3 High velocity tension of a bar of length [.

enough, for t>0 an elastic wave front runs along the bar with the velocity ¢,== oo
and the stress amplitude o, (yield stress of the material), and a plastic wave front
follows along the bar with the velocity ¢c= (E,/p)} and the stress amplitude o,
(>0,). When the elastic wave reaches the fixed end, it is reflected at the end
and infinitely near elements are stressed to the stress:

_0,,(1—}——6—):0,, (11)
Co
The particle velocity induced by the elastic wave is
oy
f do/pce=0 (12)
o

So that, the assumption of neglecting elastic strains implies that the stress is o,
and the particle velocity is zero in the region 0 shown in Fig. 4. The linear stress-
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Fic. 4 Lagrange (z, t) diagram for finite bar shown in Fig. 3.

This document is provided ;

o @®




@ -~

Analysis of the plastic wave propagation in high velocity tension of a bar of fintte length 169

strain relation in the plastic range gives a constant wave velocity and a single
plastic wave front of stress discontinuity. In the graphical representation of this
case in the (z, t)-plane, we obtain a family of wave fronts showing the process of
successive reflections as shown in Fig. 4. The inclinations of these fronts are,

dt/dx==+1/c (8")

If the stress and the particle velocity are put equal to ¢, and v, respectively, in
the region 1,

o1+ pcv;=a,+0
g,=0d,—pcv;=a,+pcV,

So that, (o, v) in the region 1 are given as

(o,+p0cV,, —V)) (13)
And then,
(6,+20cV,, 0) (14)
for the region 2, and
(o,430cV,, —V)) (15)

for the region 3, are derived successively. Generally, (o, v) are determined as

{o,+npcV,, —V(1+(-1)""")/2} (16)

for the region 7.
The stress distributions at various times after the impact are shown in Fig. 5.
The times t,, t,, t; are shown in Fig. 4. The variations of stress and strain with
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F16. 5 Some examples of stress distribution at various times after the impact.
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time at various points of the bar are shown in Figs. 6 and 7. 1)
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t/(1/c) — %
F1G. 6 The variations of stress with time at various points of the bar.
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FIG. 7 The variations of strain with time at various points of the bar.
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Next, the relation of breaking strain ¢, versus tensile velocity V, may be defived
using (13)~(16). If we assume the breaking will occur instantaneously, where
the condition :

Uz/+npcvlgo'm (17)

are satisfied for the first time, the strain distribution at the instant of breaking is
the one for which the strain corresponding to the stress: ¢,+(n—1)pcV, is uni-
formly distributed. So the breaking strain is

s,,=(n— DocV,/E, (18)

The relation of ¢, versus V, is obtained as follows :
(A) a bar of semi-infinite length :

V1=(01_‘7y)/90 (19)
If we assume breaking occurs when o, reaches to o,
Vcrz(am_ay)/noc:c' Em (20)

where, V., is the critical impact velocity. This value agrees with that calculated
by the formula derived by Karmén for semi-infinite bar [5]

Vc,.k—_-fm cde (21)
0

where, V..., is the critical impact velocity derived by Karman for a bar of semi-
infinite length.

(B) a bar of finite length:
(i) When

o,+pcV,Z0,>0, (22)

holds, breaking occurs at t=0, and =0, and

abzo (23)
The condition (22) can be written in the form,
Vizt(0,~0,)=V,,..>0 (24)
pc
(ii) When
o,+20cV,20,>0,+pcV, (25)

holds, breaking occurs at t=I/¢, and =1, and

8b=pcV1/Ep=(VI/ Vcr'k)sm (26)

The condition (25) can be written in the form,

Vcr'k> Vlg%Vcr‘k (27)
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(n) When
o,+npcVi=e,>0,+(n—1)ocV, (28)

holds, breaking occurs at t=(n—1)l/c, and x=1 if n is even, or x=0 if = is odd,
and

&=(n—1)pcVi/E,=(n—U)(Vi/V.)en (29)

The condition (28) can be written in the form,

Ly, .>v,=

Ly, (30)
n—1 n

From these calculations, the plot of the relation of &, versus V, is obtained as
shown in Fig. 8. The breaking strain ¢, of a bar of finite length in high velocity
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Fic. 8 The relation of breaking strain ¢, versus tensile velocity V; of finite bar.

tension is not always equal to the static breaking strain ¢, but varies as shown in
the figure for tensile velocity V.

4. (CONCLUSIONS

(1) The mechanical behaviours of a bar of finite length in high velocity tension
are derived in analytical forms, by the strain rate independent theory, assuming
rigid-linearly work hardening material property.

(2) In the case of a bar of finite length, the solution on the relation of breaking
strain ¢, versus tensile velocity V; can be obtained in the form as shown in Fig.
8, for the all range of V, though the solution does not éxist for the values of V,
smaller than critical impact velocity, in the case of a bar of semi-infinite length.
Critical impact velocity V., exists in this case also, and coincides with the value
V.,.. obtained by Kiarmaén for a bar of semi-infinite length.

(3) The upper limit of dynamical breaking strain ¢, is breaking strain of
material ¢,.

(4) Apparent scattering of experimental data of the relation of ¢, versus V;
seems to depend, partially at least, upon the characteristics of the relation as shown
in Fig. 8.
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(5) The relation of &, versus V, does not depend upon the length of the bar I.

(6) Strain rate is stepwise, and conventional strain rate V,/l shows the mean
value approximately.

(7) Because the above mentioned calculations are made by the strain-rate
independent theory, strain-rate effect is added to the theoretical results, for real
materials.

The strain-rate effect in material properties appears as the difference between
the theoretical results such as the relation of ¢, versus V, and experimental ones.

(8) When finite elastic strains are considered in the stress-strain relation of
material, the behaviours on breaking differ from the results above mentioned.
The results assuming another material properties will be reported in near future.

Department of Materials,
Aeronautical Research Institute,
University of Tokyo, Tokyo.
March 12, 1964.
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