鑄造用亞鉛合金に関する研究（第5報）

$\mathrm{Zn}-\mathrm{Al}$ 系合金に及ぼす第三元素の影響

和田次郎笹川雅信

Study on the Zinc Base Alloys used for Casting．V．

 Effects of the Additional Elements on Zinc－Aluminium Alloys．Jirô Wada and Masanobu Sasagawa．

Abstract

The authors investigated on additional elements which prevent the intercrystalline corrosion in zinc－aluminium alloys used for die casting．Additional elements are calcium，chromium，copper，lithium，magnesium，manganese，nickel and silicon． By using these alloys，the authors，also，measured the monotectoid transformation by means of the dimentional change method and investigated on a relation between the intercrystalline corrosion and the monotectoid transformation．The results obtained are as follows：（1）magnesium is most effective for preventing the intercrystalline corrosion， and also copper，calcium and nickel are effective，but lithium is less ；（2）magnesium， lithium and copper are effective for retarding the monotectoid transformation in the aging at room temperature and $95^{\circ} \mathrm{C}$ ；（3）there is no direct relation between the monotectoid transformation and the intercrystalline corrosion，so that it may be necessary for us to study the change of micro－structure in these alloys．（Received September．12，1951）

1．緒 言

ダイカスト用亞鉛合金である Al を含む Zamak合金は粒間腐蝕の点より高純度亞鉛地金を使用 し，且つ適量の $\mathrm{Mg}_{\mathrm{c}}^{(1)}$ を添加せねばならないとと は既に報告した。
現在迄に明にされている粒間腐蝕を加速する元素と洋延する元素とを分類すれば次の通りであ る．（1）加速する元素 $\mathrm{Pb}, \mathrm{Sn}, \mathrm{Cd}, \mathrm{Bi}, \mathrm{Ti}$ 等， （2）遅延する元素 $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Li}, \mathrm{Ni}$ 等。
著者等は（1）の加速する元素の許容限度並に その場合の（2）の遅延する元素の中最も有効な ＇Mg との定量的関係については既に第1報及び第2報で報告した。

今回は（2）の元素の中 $\mathrm{Cu}, \mathrm{Li}, \mathrm{Ni}$ 等につ てはその効果の程度が明かにされていないので，

この点を檢討すると共にとれ以外の元素を求める ため，不純物一定の高純度亞鉛地金を使用し，之 $\mathrm{K}^{\circ} \mathrm{Ca}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Li} . \mathrm{Mg}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Si}$ を少量添加し，とれが粒間腐蝕に及ぼも影響を主として機械的性質並に長さ変化の測定より求めた。とれ と共にとれ等の第三元素が $\mathrm{Zn}-\mathrm{Al}$ 系の偏析変態速度に及ぼす影響を測定し，此の偏析変態速度と粒間腐蝕との関係を明かにし，而して $\mathrm{Zn}-\mathrm{Al}$ 系粒間肏蝕の機構をも解明せんとして実驗した。

2．試料の調製及び実驗方法

実驗に用にた亞鉛地金は Pb 0.003% ． Fe 0.001 $\%, \mathrm{Cd}$ 及び Cu 痕跡の four nine Zn （神岡鉱業製）であり， Al は 99.97% 以上， Mg は 99.9 $\%$ 以上， Cu は 99.94% 以上のものを使用した。 Li は 98\％以上のもので太平鉱業製である。之以

外の Ni, Mn は夫々電解で得られたものであり， $\mathrm{Ca}, \mathrm{Si}, \mathrm{Cr}$ 等は分析は行わなかつたが，可成り純度の高いものである。
之等の元素を添加するに当つて第1表の如き母合金を予め溶解して使用した。各試料の溶解に際 しては $\mathrm{NH}_{4} \mathrm{Cl}$ を溶剤として用い，黑鉛ルツボで各 2.5 kg 宛溶解した。偏析変態速度の測定には $\mathrm{Al} 21 \%$ の合金を選んだが，とれ以外は Al 4\％の合金で行つた。各元素の添加方法並に溶解温度を第2表に示す。

第1 表 母合金の化学成分

| 種 | 別 | 化学成分 | （\％） | 備 |
| :--- | :--- | :--- | :--- | :--- |\quad 考

第 2 表 溶 解 方 法

種 別	添 加 方 法＊	溶 解 溫 度（ ${ }^{\circ} \mathrm{C}$ ）
Zn－Al－Ca 系	$\mathrm{Ca} 0.1 \%$ は $\mathrm{Al}-\mathrm{Ca}$ 母合金， $\mathrm{Ca} 0.35 \%$ は単体	約 650
$\mathrm{Zn}-\mathrm{Al}-\mathrm{Cr}$ 系	$\mathrm{Al}-\mathrm{Cr}$ 母 合 金	＂ 900
Zn－Al－Cu 系	$\mathrm{Zn}-\mathrm{Cu}$ 母 合 金	＂ 700
Zn－Al－Li 系	Li は 単 体	＂． 500
Zn－Al－Mg 系	$\mathrm{Zn}-\mathrm{Mg}$ 母 合 金	＂ 500
$\mathrm{Zn}-\mathrm{Al}-\mathrm{Mn}$ 系	Al－Mn母 合 金	＂ 850
Zn－Al－Ni 系	Al－Ni 母 合 金	＂ 800
Zn－Al－Si	Al－Si 母 合 金	\％ 650

＊不足の AI 量は $\mathrm{Zn}-\mathrm{Al}$ 母合金を用いた。

溶解混和が終了した後除滓し $\mathrm{Al} 4 \%$ は $430^{\circ} \mathrm{C}$ で， $\mathrm{Al} 21 \%$ は $520^{\circ} \mathrm{C}$ で鑄造した。此の場合の鑄型 は板を作るには $27 \times 90 \times 100 \mathrm{~mm}$ の常温の金型を用に，長さ変化の測定用試驗片には $8 \phi \times 220 \mathrm{~mm}$ の約 $150^{\circ} \mathrm{C}$ に予熱した金型を使用した。何板は次の方法で鑄塊より压延して作つた。

鏜鬼の押湯並に表面欠陷の除去——熱間压延 （ $200^{\circ} \mathrm{C}$ で 6 mm 迄）——燒鈍（ $200^{\circ} \mathrm{C} 1$ 時間）—冷間压延（ 4 mm 迄）——焼鈍（ $200^{\circ} \mathrm{C} 1$ 時間）——冷間压延（ 2 mm 迄）——憢鈍（ $200^{\circ} \mathrm{C} 1$ 時間）——冷間压延（ 1 mm 迄）

実驗に用いた試料符号と化学成分との関係を第 3 表及び第4表に示す。
之等の第三元素が粒間底蝕抑制剤の作用をなす か否かを明にするため Al4\％の場合につき，次 の如き実驗を行つた。
（1）JIS 5 号引張り試驗片で引張り强さ低下率 を求める。此のため試驗片を $320^{\circ} \mathrm{C} 50$ 分の加熱 の後水燒入を行い，直に $95^{\circ} \mathrm{C}$ の蒸気槽へ 100 時間入れる。及び燒入後直に $95^{\circ} \mathrm{C} 100$ 時間の燒戻 を行ら，之等と燒入直後のと合計三種類の処理を

第3表 試料の化学成分（AI 4\％の場合）

試料符号	化学成分（\％）	試料符号	化学成分（\％）
1	－	5	Cu 0.1
2	Mg 0.05	6	$\begin{array}{ll}\mathrm{Cu} & 0.35\end{array}$
3	Li 0.1	14	Cu 0.5
17	Li 0.35	15	$\begin{array}{ll}\mathrm{Cu} & 0.75\end{array}$
4	Ca 0.1	16	$\begin{array}{cc}\mathrm{Cu} & 0.1\end{array}$
7	Ni 0.1	11	Mn 0.1
8	Ni 0.35	12	Mn 0.35
9	Si 0.1	13	Cr 0.35
10	Si 0.35	18	Ca 0.35 （九棒のみ）

第4表 試料の化学成分（Al 21% の場合）

試料符号	化学戌分	（\％）	侙料符号	化学成分	$(\%)$
A	-		F	Si	0.35
B	Mg	0.1	G	Cu	0.1
C	Li	0.1	H	Mn	0.35
D	Ca	0.1	I	Cr	0.35
E	Ni	0.1			

施したものの機械的性質を測定し，粒間肏蝕の影響を判定する。
（2） $95^{\circ} \mathrm{C}$ の蒸気処理を行にその場合の長さ変化の大小より粒間㡵蝕の程度を比較する。此のた めAl4\％で丸棒に鑄造した試驗片について実驗し た。試料は $340^{\circ} \mathrm{C}$ で夫ャ 1 時間加熱後水燒入し，次で $95^{\circ} \mathrm{C}$ で 50 時間燒戻後蒸気槽へ入れた。
又偏析変態速度の大小と粒間巂蝕との直接的関係の有無を明にするため，Al 21% の試料で偏析変態速度を長さ変化の測定より求めた，測定は常温と $95^{\circ} \mathrm{C}$ とについて行い，測定方法は第 3 報 で远べたのと同樣に行つた。測定中の室温は 26° $\pm 1^{\circ} \mathrm{C}$ である。沿試驗片は $340^{\circ} \mathrm{C}$ で 1 時間加熱後水燒入れを施し，直に測定を始めた。

3．実驗結果

I．粒間腐蝕に及ぼす第三元素の影響

燒入直後， $95^{\circ} \mathrm{C} 100$ 時間の燒戻並に蒸気処理後の引張り强き及び伸を図にして夫々第1図及 び第2図に示す。図で科線をつけたのは燒入直

第1図 燒入直後（斜線） $95^{\circ} \mathrm{C} 100$ 時間燒杘 （白地） $95^{\circ} \mathrm{C} 100$ 時間蒸気処理（黑地）各々の場合の引張 $ワ$ 强き（ $\mathrm{Al} 4 \%$ ）

第2図 燒入直後（科線） $95^{\circ} 100$ 時間烓杘 （白地）， $95^{\circ} \mathrm{C} 100$ 時間蒸気処理（黑地）各々の場合の伸（Al 4\％）

第 3 図•引張り强さ低下六（ $\mathrm{Al} 4 \%$ ）
後の場合，白地のは $95^{\circ} \mathrm{C}$ の燒杘の場合，黑地の は蒸気処理の場合である。とれを引張り强き低下率で示せば第3図の如くになる（とれ等の実驗結果は試驗片夫々 4 個以上の平均値である）。引張り强さ低下率は $95^{\circ} \mathrm{C}$ の加熱による合金の内部組織の変化に基く影響を除くため， $95^{\circ} \mathrm{C}$ の燒㞍 の結果と蒸気処理の結果とを比較した。郎ち此の場合の引張り强さの低下は粒間䧻蝕のため强度に あづからない断面積の減少によるものと考えて大体差支えない。
次に蒸気処理による長さ変化の結果を示せば第 4 図の如くになる。此の場合の測定は24時間每 に行つたが，図では 240 時間後の結果のみを示

第 4 図 蒸気処理 240 時間後の長さ変化（AI 4\％）

す。
今とれ等の実驗結果を要約すれば－ケの如くにな る．
（1）燒入直後に比較し， $95^{\circ} \mathrm{C}$ で 100 時間燒戻した場合には，どの試料に於ても引張り强さは低下し，伸は逆に上昇する。とれは燒入直後に於 ては偏析変態の途中で測定しているためで，燒戻 した場合には変態の終了後になるためと思われ る。
（2）粒間腐蝕による强度低下の防止には Mg が最も有効である。然してれ以外でも Cu, Ca ， Ni ，等は効果がある．その抑制剤としての强さの順に並べれば $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Ca}, \mathrm{Ni}$ となる。 Si, Mn ， の効果は䏩んど問題にならない程僅少である。Cr は効果がない。Liは却つて惡い。Cu は 0.35 ～ 0.75% の範囲が最多有効である。 Ni は 0.1% よ りも 0.35% の方が良に，Li が惡い結果を示した が，とれにつんては從来 Li が粒間腐蝕の抑制に有効だともいわれているので，長さ変化の結果と対照して後で考えるととにする。
（3）粒間腐蝕による長さ変化の点よりは Mg， Cu, Ca 共有効である。 $\mathrm{Li} 0.1 \%$ 良に。然し Li 0.35% は抑制剤として良くない。Caは 0.1% よ りは 0.35% の方が有効であり，Ni， Si も同様で ある． Cu はやはり $0.35 \sim 0.75 \%$ の範囲が良い。 Mnは良くない。

Li 0.35% は弓張り强き低下率でも長さ変化で も惡い結果を示した。然しLi 0.1% は引張り强 さ低下率で惡く，長さ変化では有効であるととが玮つた。Li が果して粒間腐蝕抑制に有効である かとい5問に対しては，先づ此の違ひの生じを原因を考えなければならない。郎ち試料として引張 り强さの測定には压延板を用々，長さ変化の測定 には丸棒に鑄造したものを用いた。從来 Li が有効とされているのは主として鑄造狀態であるの で，著者等の压延板で行つた結果との比較は不適当かもしれない。というのは鑄造狀態と压延板と では結晶聚合組織が異るため，析出に基因する粒間腐蝕の進行にも相違を来すものと考えられる。然し此の点については今後の研究によ．り明にした いと思う。但し鑄造用合金としてはLi を添加す るととは効果があると思われるが，その場合も 0.35% よりは 0.1% の方が良い。との結果は渡辺，唐島，斎藤の結果と一致している。
晌 Ca の溶解に際し，最初は $800^{\circ} \mathrm{C}$ で金属 Ca として 0.5% 加えたとてろ，分析結果は 0.276% で約 45% の溶解による損失を生じた。次にとれ を $500^{\circ} \mathrm{C}$ で再溶解したが，との場合には 0.228 $\%$ と更に約 20% の減少をみた。從つて更に溶解方法について檢討するため，愼重に Ca 0.35% を配合して添加した。 とのときには Ca 0.33% と僅 か 6% 程度の損失で溶解するととが出来た。それ

故上述の試料では此の溶解方法に從つて行つたの で，化学分析は行わなかつたが，大体 10% 以下 の溶解損失に過ぎないと考えてよい。 Li につい ても上述の試料では分析結果を出さなかつたが，渡辺，唐島，斎藤の結果では再溶解しなければ約 30% の溶解損失に過ぎないので，本実驗でも同程

度と思われる。
II．偏析変態速度に及ぼす第三元素の影響常温時効の場合の偏析変態速度に及ぼす第三元素の影響を第 5 図に， $95^{\circ} \mathrm{C}$ の燒戾時効の場合の結果を第6図に示す（図は補正後の値を示してあ る）

第 5 図 常溫時効の場合の偏析変態速度に及屋す第三元素の影響

第 6 図 $95^{\circ} \mathrm{C}$ の焼戻時効の場合の偏析変意速度に及ほす第三元素の影響

此の偏析変態速度に及ばす第三元素の影響につ わての実驗結果を要約すれば次の如くになる。
－（1） $\mathrm{Zn}-\mathrm{Al}$ 系合金の偏析変態の遅れは Mg ， Li, Cu の順に常温時効の場合にも叉 $95^{\circ} \mathrm{C}$ の燒戻時効の場合にも起る。 Ca ，Ni． $\mathrm{Si}, \mathrm{Mn}, \mathrm{Cr}$ 等 は変態速度の逢速には殆んど影響しない。添加量 による差は Mg を除いては余り著しくないよう である．倘收縮後の長さは，鑄造聚合組織によつ て多少異るため，とのまま比較するととは困難で ある。
（2） Ca の如く偏析変態速度の速いものでも粒間腐蝕の防止に役立つとと， Li の如く渥れを生 ずるものでも粒間腐蝕の防止に有効でないととよ

り考えても変態速度の大小と粒間腐蝕とは一義的 には関係づけられない。從つて Mg の添加によ る粒間雀蝕防止の役割は此の偏析変態速度の遅れ のみに基因すると考えるととは早計であると思 ち。

何蒸気処理前後の顯微鏡組織も調べたが上述の事実を褁書きした結果が得られた。

4．考 察

亞鉛合金の粒間䏑蝕に関しては從来 Al を含む合金に於て認められ，此の場合に $\mathrm{Pb}, \mathrm{Sn}, \mathrm{Cd}$ 等 が存在すれば著しく粒間腐蝕が進行するととは既 によく知られている事実である。然しながら此の

粒間腐蝕の起る機構については決定的な說明はな されていない。即ち現在迄に考えられて来たとと は偏析変態に関係のあるとと，並に不純物の存在 が粒間应蝕を加速するととである。然しながら著者等は先に偏析変態のなに $\mathrm{Zn}-\mathrm{Mg}$ 系合金につ いて実驗を行い。此の合金に於ても Pb が存在す れば粒間腐蝕の起るととを明にし，偏析変態速度 それ自身と粒間肏蝕と一義的関係のないととを示 した。その際寧ろ偏析変態後の結果として生ずる二相への分離並にその場合の析出物の分布，形狀，大さ等が問題になるととを提案した。

此の見地より粒間腐蝕抑制剤の効果を考えると次の各項の何れか或は全部を満足する元素なれば抑制剤としての働きをなすものと考えられる。
（a）偏析変態速度を遅くする。
（b）β 相の析出を遅延する．
（c）β 相以外の析出物を生じ，腐蝕を抑制す。 る．
（d）結晶粒を微細化する。
之で上述の粒間腐蝕抑制作用のある元素を分類 すれば Mg, Cu は全部の要素を充し， Ca, Ni ， Mn は（c），（d）の要素を充すものと推察される。

5．結 語

不純物の量一定の高純度亞鉛地金を使用し，之 K $\mathrm{Ca}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Li}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Si}$ 等を少量添加し，之等添加元素の $\mathrm{Zn}-\mathrm{Al}$ 系合金の粒間腐蝕

の軽減に及ぽす効果について実驗した，之と共に偏析変態速度を比較し，両者の関係を明にした。 その結果を綜合すると次の通りである。
（1）粒間腐蝕抑制剤としての効果は Mg が最大で， Cu, Ca が之に次ぐ， Ni \＆有効であるが その程度は少い。Li については余り期待出来な い。 $\mathrm{Si}, \mathrm{Mn}, \mathrm{Cr}$ の効果は䏩んど問題にならない。
（2）偏析変態を遅らせる効果は $\mathrm{Mg}, \mathrm{Li}, \mathrm{Cu}$ の順に常温時効の場合でも又 $95^{\circ} \mathrm{C}$ の憢戻時効の場合でも起る。 $\mathrm{Ca}, \mathrm{Ni}, \mathrm{Si}, \mathrm{Mn}, \mathrm{Cr}$ 等は変態を遲らせる効果は䏩んどない。
（3）偏析変態と粒間腐獊とは一義的に結びつ けられない。それ故変態による内部組織の変化を先づ考えなければならない。
最後に本研究に当り実驗に必要な高純度亞鉛地金並に金属 Li を戴にた神岡鉱業と太平鉱業に対 し厚く感謝する次第である。

文 献

（1）和田，笹川：理工研報告， 3 （1949）， 280 ．
（2）和田，笲川：理工研報告， 5 （1951）， 87.
（3）E．Brauer and W．M．Peirce：Trans．Amer． Min．Metallarg．Engr． 68 （1923）， 796.
（4）A．Burkhardt：Technologie der Zinklegier－ ungen（1940）．
（5）渡辺，唐島，斎藤：三菱鉱業研究報告（1949）。
（6）和田，钻川：未発表

正

誤

卷	號	頁	左 右	行＊	誤	正
4	9～10	243	\bigcirc	12	（本表 a 圖）第 1 圖左下部	本表 b 圖
4	$9 \sim 10$	243	\bigcirc	$7{ }^{\prime}$	（1）式右邊第 2 項 $\frac{\varepsilon_{0}+1}{\varepsilon_{0}+2} \cdot(v+\beta)$	$\frac{\varepsilon_{0}-1}{\varepsilon_{0}+2} \cdot\left(v_{0}+\beta\right)$
5	1～2	58	\bigcirc	12	緒き	縮先
5	5	175	\bigcirc	第9圖	0005 Mg	0． 05 Mg
5	5	175	\bigcirc	第9 圖	10 Mg	1.0 Mg
5	5	177	\bigcirc	28	勃果	効果
5	5	185	\bigcirc	5＇	$\cos \mu \mathrm{y}$	$\cos 2 \mu \mathrm{y}$
5	5	187	\bigcirc	7	Q	Q^{\prime}
5	6	218	\bigcirc	31	分解液	分解
5	6	230	\bigcirc	第1表	Gu 20.22	Cu 20.22

＊行數に＇を附したものは下より數えたもの。

正
（b 圖）

