

Approach Application

Risk-informed decision support

- -Requirement verification
- -Design optimization
- -Selection/procurement

PRA is informative, not predictive

- Provides quantitative answers to specific questions
- Always driven by specific application
- Based on traditional methods and extended as appropriate

Iterative, <u>responsive</u> modeling approach

Integrated Ascent Risk Modeling

NASA

Monte Carlo results are binned to produce the desired mapping (branch splits) between the initial manifestation and the explosion(s)

Transition Analysis Thought Process

- Energy Transfer Mode(s)
 - Overpressure
 - -Kinetic Energy (Fragments)
 - Shock & Vibration
 - Environment (pressure, temperature)
 - Etc.
- Source Severity
 - -Energy type: [KE]
 - Magnitude: [Velocity and density]
 - Uncertainties: [Velocity and density]
- Target Vulnerability
 - -Energy type: [KE]
 - Magnitude: [Size, Location, Limit velocity]
 - Uncertainties: [Limit velocity]
- Energy Decay
 - Natural decay with distance: [1/d²]
 - Obstructions: [%]

Example: TP Burst \rightarrow He tank burst

Test Case: 4 Engines + Tanks

- Simple engine model for generic launch vehicle platform (derived from J2X)
- 32 components: 7 per engine and 4 tanks
 - -Main combustion chamber (MCC)
 - 2 turbopumps: fuel (FTP) and oxidizer (OTP)
 - -3 pipes (fuel, oxidizer, hot gas)
 - -Nozzle
- Between ~1k–6k triangles per component
- 3 different initiators: MCC, FTP, and OTP

NAS

- Models failure propagation of debris field and blast wave environments
- Consists of component-to-component interactions and behaviors given initial conditions
- Uses Monte Carlo framework developed in C++:
 - Execution begins by seeding a failure and letting it cascade until propagation ends
 - Results include probabilities of component vulnerabilities and scenario tracking
- 100,000 realizations run in ~2 minutes on laptop for current test case

 LOM outcome occurs with 2nd engine out – propagation leads to strike of a critical component in another engine

東京大学 ロケット・宇宙機モデリングラボラトリー (JAXA 社会連携講座) シンポジウム ~宇宙開発分野でのブレークスルーを目指して~ 後刷集

Integrated Ascent Risk Modeling

NASA

Blast & Debris Modeling

- **Engineering-level models:** quick, easily reconfigurable sensitivity and trade studies
- **CFD blast wave simulations:** more accurate blast propagation and interaction effects
- **CFD tank burst simulations:** launch vehicle tank failure scenarios
- **Structural response modeling:** effects of blast pressures on vehicle

- •Objectives:
 - Provide data to support requirement definition/refinement/ verification for structural survival of blast loading
 - For a given structure, provide data to support failure probability analysis
 - Provide risk information for use in integrated ascent/abort risk assessment
- •Key problem elements:
 - -Blast size specification (yield %)
 - -Blast propagation, including vehicle velocity effects
 - Overpressure decay
 - •Blast trajectory (time-of-arrival)
 - -Interaction of blast with abort vehicle (LAV)
 - -Response of structure to blast loading

Debris propagation

- Three degrees-of-freedom (3DOF) trajectory integration using MISSION code
- -Trajectories calculated for:
 - Launch vehicle
 - Crew module
 - Each fragment of potentially dangerous size

Initial debris conditions ("Debris Catalog")

- Mass distribution based on experimental data

- Velocity distribution
 - Experimental and historical data
 - Computed results
- Debris Impact risk determined from intersection of CM and debris trajectories

Debris field caused by fragmentation of the Ares I CLV during ascent

Strike probability as a function of MET with penetration criterion

Debris Propagation Model

Analysis of Debris Strike Probability

- Debris catalog generation
 - Generate debris field based on vehicle dimensions and failure mode
 - Assess sensitivity of strike probability to debris field parameters
- Response surface approach to predicting strike probability
 - Full Monte Carlo analysis can be computational expensive and time-consuming
 - Investigated accuracy and speed of response surface approach

Launch Vehicle Debris Catalog

- Number of pieces
- For each piece
 - Mass
 - Reference area
 - Aerodynamic characteristics
 - Imparted velocity

Ken Gee (Ken.Gee-1@nasa.gov)

Debris Catalog Model

- Number of pieces and mass distribution
 - Based on analysis of explosion of cylinders
 Sternberg 3-part
 exponential distribution
 - Controlled by average mass of debris pieces
- Imparted velocity
 - Flight termination system (FTS)
 - Activation of linear shaped charges
 - Controlled by tank pressures and crack/hole size (venting)
 - Explosion
 - CTH solution Johnson-Cook fracture Grady-Kipp fragmentation
 - Controlled by equivalent mass of TNT

Ken Gee (Ken.Gee-1@nasa.gov)

Debris Strike Sensitivity

- Effect of number of debris pieces
- Warning time = 0.5 sec

Space Shuttle ET debris model

Ken Gee (Ken.Gee-1@nasa.gov)

45

Debris Strike Sensitivity

- . Current model
- Effect of imparted velocities
- Warning time = 0.5 sec

Ken Gee (Ken.Gee-1@nasa.gov)

• "Original Baker" (Baker 1977): Isentropic Expansion with Orifice Plate leakage

	Tank Burst Cases				NASA
	STS ET	SSME MCC	SRB	RL10 MCC	Baker 6
Tank contents	Air	H_2, O_2, H_2O	APCP gas	H_2, O_2, H_2O	Air
Tank material	Aluminum	Inconel	Steel	Inconel	Aluminum
Radius (cm)	420	22.3	184	11	25.4
Thickness (cm)	0.21	1.24	1.2	1.17	0.68
$p_{00} \{\Delta p\}$ (psi)	{22}	3000	800	500	10,000
$T_{\rm ov}(\mathbf{K})$	203	3400	3430	3400	272
$p_{\infty}(\text{atm})$	0.001~1.0	1	1	1	1
Pressure Ratio	1300~2.5	205	54	9	680
Internal spec heat ratio y	14	1.37	1.155	1.37	1.4
Fragment count: N	3~24	3~24	4~24	3,12	3~24
Phase-in $\Delta t a_0/\psi R_{\text{frag}}$	1	0.1	1	1	1
Phase-in factor <i>n</i>	8	8	8	8	8
Discharge coeff. C_{d}	0.8	0.8	0.8	0.8	0.8

STS External Tank: External Pressure Senstivity

NASA

Tank Burst Simulations

 Developed CFD-based capability to predict fragment velocity and understand flow field

- Engineering Modeling
 - -Better understand limitations of Baker tank burst velocity model
 - –Improved Baker Model account for external atmospheric effects and fragment size/curvature
 - -Improvements greatest for low altitude tank (low pressure ratio)
- Future Work:
 - -Extend Modified Velocity Model
 - To other burst geometries: sphere and tank domes
 - Include effects of cryogenics
 - -Apply velocity model results to
 - Debris strike risk assessments
 - Failure propagation analysis
 - Develop fracture sizing models

