ISSN 1349-113X JAXA-SP-16-004

宇宙航空研究開発機構特別資料 JAXA Special Publication

Second Aerodynamics Prediction Challenge (APC-II)

開催日:平成28年7月6日 開催場所:金沢歌劇座

2016年11月

Japan Aerospace Exploration Agency

目	次
	入

1.	開脩	崔趣意書······1
2.	実行	f委員会 委員名簿 ·······3
3.	プロ	1グラム
4.	発表	長資料
	\bigcirc	課題説明,橋本敦 (JAXA),実行委員会
	2	実験説明(1), 上野真(JAXA)11
	3	実験説明(2),小池俊輔(JAXA)19
	4	FaSTAR による NASA-CRM 空力解析,
		橋本敦,石田崇,青山剛史 (JAXA),林謙司,竹川国之,上島啓司 (菱友システムズ)…25
	5	Cflow ソルバーによる各種格子での空力解析, 安田英将 (KHI)
	6	TASと MEGG3D 格子による支持装置有無での NASA CRM 解析, 伊藤靖 - 村山米安 - 山本一臣 (IAXA) - 田中健士郎 (美友システルズ)
	(\mathcal{D})	PC での FaSTAR 亚列計算による航空機クリーン形態シミュレーション, 小林大志,伊藤嘉晃,松島紀佐 (富山大)
	8	BCM-TAS カップリングソルバーを用いた NASA CRM 解析,
		牧野真弥,福島裕馬,三坂孝志,大林茂(東北大),廣瀬拓也,佐々木大輔(金沢工大)…57
	9	DG 法・SV 法による解析,澤木悠太,淺田啓幸,澤田恵介(東北大)
	10	階層型直交格子法と埋め込み境界法の組み合わせによる解析(その2),
		玉置義治, 原田基全, 今村太郎 (東京大院)
	11	Unsteady Simulations of the CRM using a Lattice-Boltzmann Approach, André Ribeiro (Exa Corporation)
	12	Aerodynamic analysis of the CRM model using a transonic Lattice-Boltzmann formulation,
		小形 研哉 (電通国際情報サービス)
	13	遷音速流れ場における非定常圧力計測のための感圧塗料技術の現状, 杉岡洋介,沼田大樹,浅井圭介(東北大学),中北和之,小池俊輔,中島努(JAXA)…119
	14	まとめ,橋本敦 (JAXA),実行委員会
	15	企業における CFD 活用の取り組みと展望, 吉本稔 (MHI)185

Aerodynamics Prediction Challenge (APC) 企画趣意書

1983年に初回が開催された航空宇宙技術研究所(当時)の航空機計算空気力学シンポジウムが,我が国 の航空宇宙分野における計算空気力学技術の発展を牽引したことは論じるまでもありません。第1回の シンポジウム論文集(NAL SP-1)の巻頭言では,当時の武田峻所長が「各分野の研究者や技術者の皆様に 研究発表と意見交換の場を提供し,それによって航空機設計技術の発展に寄与する」と記しています。 その意思は 30年以上経過した現在においても航空宇宙数値シミュレーション技術シンポジウム(ANSS) に引き継がれています。しかし,膨大な技術情報へのアクセスを容易に実現するインターネットの発達 は、学生や研究者と民間技術者の交流の機会を減少させ、近年の計算空気力学研究が航空機設計開発現 場の求める研究課題や方向性を見失う一因になっているのではないかと危惧されます。

今日の計算空気力学手法は,80年代には想像できなかった計算機ハードウェアの著しい発展と数々の 新しい計算技術に支えられ,航空機設計開発に不可欠なツールと認識されるまでに至りました。しかし 一方,計算空気力学手法の成熟度が高まるに連れて,定常流れ場に対する計算空気力学手法はある種の スタンダードが認知浸透し,設計開発現場では宇宙航空研究開発機構(JAXA)の標準コードや商用コード の活用も進められるなど,計算空気力学研究に停滞感が出てきているのも事実です。計算空気力学の停 滞は,空気力学研究のパートナーである風洞技術の高度化にも影響を与えかねません。この停滞感を打 破し,いま一度新たな高みを目指すには,航空機設計開発現場の求める研究課題や方向性が具体的に示 されることが重要だと思われます。

この APC と名付けられたワークショップでは、実機開発に活用されている計算空気力学課題や将来の 利用が期待されるテーマを選定し、JAXA で取得された風洞試験データとの詳細な比較を行うことによ って、計算空気力学ならびに風洞技術の発展に求められる新たな課題を抽出しその解決を共同で模索す ることを目指します。APC 参加者による新たな課題への挑戦は、計算空気力学研究や風洞技術開発を活 性化させ、機会の減少が懸念される産官学交流を促し、最終的には我が国の航空宇宙産業の発展と欧米 に次ぐ第3極としてのプレゼンス向上に貢献することが期待されます。産官学がそれぞれの立場から APC を活用していただくことを望んでいます。

> APC 実行委員会 代表 澤田恵介(東北大学) 松尾裕一(JAXA) 浜本滋(JAXA)

Second Aerodynamics Prediction Challenge (APC-II)の開催について

昨年度、第47回流体力学講演会/第33回航空宇宙数値シミュレーション技術シンポジウム(流力ANSS) 内で開催した First Aerodynamics Prediction Challenge (APC-I)は、JAXA、大学、産業界から、たくさ んの参加者にお集まりいただき、大盛況のうちに終えることができました。その成果は、JAXA の特別 資料 (JAXA-SP-15-005) で出版し、オンラインで公開されています。資料では、参加者全員の発表資料 と集計データが掲載されており、総ページ数は272ページになりました。それに引き続き、11月に開催 された第53回飛行機シンポジウムでは、フォローアップの企画講演を実施しました。集計結果や全体討 論を通して、現状の CFD や風洞試験における様々な課題が明らかになりました。それらの APC-I の素 晴らしい成功を受けて、関係者皆様のご要望により、前回の開催から1年ですが、Second Aerodynamics Prediction Challenge (APC-II)を開催することになりました。流力 ANSS は従来から2日間の開催です が、今年度は3日間開催とし、その初日に APC-II を単独開催することにしました。初めての試みであり、 不安もありましたが、初日の APC-II には予想をはるかに超える 100名以上の参加者が集まり、最先端 の CFD と風洞試験の発表を聞き、議論は大いに盛り上がりました。

APC の真髄は名前にもある通り Challenge です。今回は、空力弾性効果と支持干渉効果の両方を考慮 することで、高いレベルでの CFD と風洞試験の比較を実現することができました。これは、米国の Drag Prediction Workshop と比較しても、決して負けないレベルだと思います。また、世界に先駆けて、非常 に難しい問題の1つである遷音速バフェットを課題に設定し、これに対応した非定常圧力計測データを 公開しました。さらに、APC では、設定された課題に対し、従来手法だけでなく、直交格子、高次精度 非構造格子、格子ボルツマンなど、多様性に富んだ新しい手法で取り組まれています。その結果、今ま でにはない、豊富なデータが集まりました。

APCの成果を公開するため、JAXA 特別資料として出版します。JAXA、大学、産業界を含む All-Japan のチームに、今回は海外からの参加者も加わり、一丸となって、CFD の難題に挑んだ成果です。参加者 全員の発表資料と集計データを掲載しました。これらの成果が、今後の CFD と風洞試験の発展に寄与す ることを期待しています。

APC 実行委員会

Aerodynamics Prediction Challenge 実行委員会 委員名簿

代表	澤田恵介	東北大学	学大学院 工学研	F究科 航空宇	宙工学専巧	 友	
代表	松尾裕一	JAXA	航空技術部門	数值解析技	術研究ユニ	ニット	
代表	浜本滋	JAXA	航空技術部門	空力技術研	究ユニット		
委員	松島紀佐	富山大	学大学院 理工	学研究部 梯	幾械知能シ	ステム工学専攻	
委員	今村太郎	東京大	学大学院 工学	系研究科 航	空宇宙工学	兰専攻	
委員	吉本稔	三菱重	工業株式会社	総合研究所	流体研究	部 空力研究室	
委員	越智章生	川崎重	工業株式会社	航空宇宙力	ンパニー	技術本部研究部	空力技術課
委員	中北和之	JAXA	航空技術部門	次世代航空	イノベーシ	ノョンハブ	
委員【事	務局】青山剛史	JAXA	航空技術部門	数值解析技	術研究ユニ	ニット	
委員【事	務局】上野真	JAXA	航空技術部門	次世代航空	イノベーシ	ノョンハブ	
委員【事	務局】橋本敦	JAXA	航空技術部門	数值解析技	術研究ユニ	ニット	

Second Aerodynamics Prediction Challenge (APC-II) プログラム

開催日: 2016年7月6日(水) 13:30~18:00(13:00受付開始) 第48回流体力学講演会/第34回航空宇宙数値シミュレーション技術シンポジウム内で実施

	ワークショップ "Aerodynamics Prediction Challenge"(1) 司会:松尾裕一 (JAXA)								
開始時刻終了時刻発表時間		発表時間	講演タイトル	発表者					
13:30 13:35 0:05		0:05	開会挨拶	澤田恵介(東北大)					
13:35	13:40	0:05	課題説明	橋本敦(JAXA)					
13:40	13:50	0:10	実験説明(1)	上野真(JAXA)					
13:50	14:00	0:10	実験説明(2)	小池俊輔(JAXA)					
	以降、計算結果の発表								
14:00	14:10	0:10	FaSTARによるNASA-CRM空力解析	橋本敦、石田崇、青山剛史(JAXA)、〇林謙司、 竹川国之、上島啓司(菱友システムズ)					
14:10	14:20	0:10	Cflowソルバーによる各種格子での空力解析	O安田英将(KHI)					
14:20	14:30	0:10	TASとMEGG3D格子による支持装置有無での NASA CRM解析	〇伊藤靖、村山光宏、山本一臣 (JAXA)、田中 健太郎 (菱友システムズ)					
14:30	14:40	0:10	PCでのFaSTAR並列計算による航空機クリーン 形態シミュレーション	〇小林大志、伊藤嘉晃、松島紀佐(富山大)					

	ワークショップ ″Aerodynamics Prediction Challenge″(2) 司会: 浜本滋(JAXA)								
開始時刻	終了時刻	発表時間	講演タイトル	発表者					
14:55	15:05	0:10	BCM-TASカップリングソルバーを用いたNASA CRM解析	〇牧野真弥、福島裕馬、三坂孝志、大林茂(東 北大)、廣瀬拓也、佐々木大輔(金沢工大)					
15:05	15:15	0:10	DG法・SV法による解析	〇澤木悠太、淺田啓幸、澤田恵介(東北大)					
15:15	15:25	0:10	階層型直交格子法と埋め込み境界法の組み合わせによる解析(その2)	〇玉置義治、原田基至、今村太郎(東京大学 大学院)					
15:25	15:35	0:10	Unsteady Simulations of the CRM using a Lattice-Boltzmann Approach	OAndré Ribeiro (Exa Corporation)					
15:35	15:45	0:10	Aerodynamic analysis of the CRM model using a transonic Lattice-Boltzmann formulation	〇小形 研哉 (電通国際情報サービス)					
15:45	15:55	0:10	遷音速流れ場における非定常圧力計測のため の感圧塗料技術の現状	〇杉岡洋介、沼田大樹、浅井圭介(東北大 学)、中北和之、小池俊輔、中島努(JAXA)					

	ワー	クショップ	"Aerodynamics Prediction Challenge" (3)	司会: 澤田恵介(東北大)
	終了時刻	発表時間	講演タイトル	発表者
16:10	16:30	0:20	まとめ	橋本敦(JAXA)
16:30	17:10	0:40	全体討論	澤田恵介(東北大)

	特別企画 Networking Session 司会:浅井圭介(東北大)							
	終了時刻	発表時間	発表者					
17:20	17:55	0:35	企業におけるCFD活用の取り組みと展望	吉本稔(MHI)				
17:55	18:00	0:05	閉会挨拶	吉田憲司(JAXA)				

第48回流体力学講演会/第34回航空宇宙数値シミュレーション技術シンポジウム 2016年7月6日(水)、金沢歌劇座

ワークショップ実行委員会

内容

- APC-IIで取り組む主な課題
- 形状
- 課題
 - -課題1-1
 - -課題1-2
 - -課題1-3
 - -その他

APC-IIで取り組む主な課題

- CLの勾配が合わない →低迎角の迎角の刻みをAPC-Iから3点増やして比較
- Cmのばらつきが大きい
 →コンポーネント別の空力係数を集計して、原因を究明
 →尾翼のCp分布を実験と比較
 →尾翼のCpは支持の影響が大きいため、支持付きの計算も実施
- ・ 非定常解析の検証データが無い
 →JAXAで計測した風洞試験データを提供
 →それに伴い、APC-Iから条件(迎角、Re数など)を変更

3

7

- 格子: Medium(1000万)相当
- 条件: M = 0.847, Re_c = 2.26 × 10⁶, T_{ref} = 284K
- 迎角: -1.79deg, -0.62deg, 0.32deg, 1.39deg, 2.47deg,

2.94deg, 3.55deg, 4.65deg, 5.72deg

- 提出データ:
 - ・空力係数(C_D,C_L,C_m)
 - 圧力・摩擦の寄与に分解
 - コンポーネント別(主翼・胴体・尾翼の3つ)に分解
 - CD,CL,Cmのスパン方向分布
 - 表面C₀分布
 - 主翼·尾翼·後胴

課題1-2(任意):迎角スイープ(支持有)

- 形状:NASA-CRM(水平尾翼0°)、変形有、支持有
- 格子: Medium(1000万)相当
- 条件: M = 0.847, Re_c = 2.26 × 10⁶, T_{ref} = 284K
- 迎角:-1.79deg, -0.62deg, 0.32deg, 1.39deg, 2.47deg,

2.94deg, 3.55deg, 4.65deg, 5.72deg

- 提出データ:

- ・空力係数(C_D,C_L,C_m)
 - 圧力・摩擦の寄与に分解
 - コンポーネント別(主翼・胴体・尾翼の3つ)に分解
 - CD,CL,Cmのスパン方向分布

•表面C_p分布

- 主翼·尾翼·後胴·支持

課題1-3(任意):非定常計算

- 形状: NASA-CRM(水平尾翼0°)、変形有
- 格子:自由
- 条件 : M = 0.85, Re_c = 1.5 × 10⁶, T_{ref} = 282K
- 迎角: 4.87deg, 5.92deg
- 提出データ:空力係数(C_L,C_D,C_m)と表面C_p分布の
 平均量とRMS

- APC-Iのフォローアップ及び関連研究

1.200

実験説明(1)

宇宙航空研究開発機構 次世代航空イノベーションハブ 上野 真

趣旨

- NASA CRM 80%縮尺模型のJAXA 2m×2m遷 音速風洞風洞試験データについて、APC-Iで 報告したデータに対する修正と追加公開デー タを説明する
 - 修正
 - ・スティングたわみ係数の修正
 - 追加公開データ
 - 主翼揚力分布
 - ・尾翼周り圧力分布
 - 後胴胴体表面圧力分布

スティングたわみ係数の修正

較正された最大荷重までの錘が無かったため、2500Nまでの荷重でたわみ係数をだしていたが、あらためて10000Nまで較正し直したところ、たわみ係数に違いが表れた

JAXA、NTF、ETWの比較

主翼揚力分布データ

研究報告2016年6月29日

研究報告2016年6月29日

研究報告2016年6月29日

後胴胴体表面圧力分布データ

矢視B1

19

実験説明(2) (非定常圧力計測)

宇宙航空研究開発機構 次世代航空イノベーションハブ 〇小池 俊輔

APC-II (金沢 2016/7/6)

<u>関連情報, 文献, 発表</u>

- 1. NASA-CRM非定常圧力特性取得試験(課題1-3に対応) https://cfdws.chofu.jaxa.jp/apc/upc.html
- Koike et al., "Unsteady Pressure Measurement of Transonic Buffet on NASA Common Research Model," <u>AIAA-2016-4044</u>, 2016.
- 3. 小池ら, 「JAXA2mx2m遷音速風洞におけるNASA-CRM 非定常圧力データの相関解析」, 1D02, 第48回流体力学 講演会/第34回航空宇宙数値シミュレーション技術シン ポジウム, 2016. (明日AM)
- 4. 小池ら, 「JAXA2mx2m 遷音速風洞におけるNASA-CRM 非定常圧力特性取得試験」, 3B04, 第53回飛行機シンポジ ウム, 2015.

<u>*文献4のみ旧スティングたわみ係数を使用. それ以外の</u> データは修正済み.

1

APC-II (金沢 2016/7/6) XA 🖉 風洞試験 ・風洞 JAXA 2m X 2m 遷音速風洞 Plenum chamber High pressure air tank 多孔壁カート(第4カート) Cooling system Settling chambe 4.2 ·気流条件 M=0.85, Re=1.515M (0.947M) Thyristor motor P0=80kPa (50kPa) Test section T0= about 323K 50°C Diffu Main blower ・模型 80% 縮尺NASA CRM模型 右主翼は新規に製作 非定常圧力センサ24点埋め込み n=0.5 Re数ごとにラフネスを選定 n=0.6

APC-II (金沢 2016/7/6)

|--|

Run No. (Experiment number)	4910	4911	<u>4912</u>	4913	4917	4914	<u>4915</u>	4916	
	Uni	form flow a	nd wind tunn	el operation	conditions				
Mach number		1			0.85				
Reynolds number		I	1.515×10 ⁶			0.947×10^{6}			
Total pressure [kPa]		I	80			50			
Total temperature [K]					323				
Angle of stator [deg]		25		15	25	25			
Rotation frequency		530 - 545	i I	505 609	520 545	520	53	3-550	
of fan blade [rpm]		-550 - 545	j I	393-008	550 - 545	530 555-550		5-550	
Due point [K]	265.5	266.1	261.6	256.6	257.3	260	252.6	255.9	
		I	Model con	dtions					
Trip dots		80k	Pa-1		80kPa-2	50kPa-2(*3)	50	kPa-1	
Marker	glu	ed	Ν	I/A	glued	N/A	4	glued	
		1	Measurer	nents					
Balance		I	measured			N/A	me	asured	
Steady pressure		I	measured	measured		N/A	measured		
Unsteady pressure			measured N/A		me	asured			
Model deformation	meas	ured	Ν	I/A	measured	N/A	4	measured	
Note		*1			*2	*3			

*1 Cover of middle body was opened and closed after Run No. 4910.

*2 Trip dots were removed after Run No. 4913. The trip dots in Run No. 4917 were attached afeter Run No. 4916.

*3 Transition of the boundary layer was checked using an infrared camera. A small number of trip dots were attached on the main wings.

XXA 🧭

提供データ

- ・天秤データ
- ・圧力データ(圧力孔データCp, 非定常データCp_{RMS})
- ・主翼変形量データ(圧力計測を実施した右翼を提供)
- * 注意点
- ※支持装置のたわみ補正用係数を修正したため、迎角は旧 データから変化しています.
- α = 4.87deg(修正前) -> α = 4.94deg(修正後) α = 5.92deg(修正前) -> α = 6.00deg(修正後) この修正に伴い、CFDは以下の実験結果と比較します。 α = 4.87deg(CFD) -> α = 4.84deg(EXP) α = 5.92deg(CFD) -> α = 5.90deg(EXP)

0.8 ● 解析対象		0000000	0.8 -	• 解析対:
0.7		COLOR COLOR	0.7 -	
0.6		poon	0.6	
0.5	1		0.5 -	
, 0.4	1		0.4 -	
0.3	8		0.3	
0.2			0.2 -	
0.1	1		0.1 -	
0			0 -	
-0.1			-0.1 -	
-0.2		<u> </u>	-0.2	
0.25	α[deg]		0.09	5 (FOR 2011) 1
0.20			0.08 -	RUN49: ● 解析対
			0.07 -	
			0.06 -	
0.15				
0.15			0.05 -	
0.15			0.05 - ص	
0.15	A A A		0.05 - C 0.04 -	
0.15	la l		0.05 - عن 0.04 - 0.03 -	

α[deg]

0.3

C_L²

0.5

0.6

APC-II (金沢 2016/7/6)

5

APC-II (金沢 2016/7/6)

APC-II (金沢 2016/7/6)

第48回流体力学講演会/第34回航空宇宙数値シミュレーション技術シンポジウム 2016年7月6日(水)

橋本敦、石田崇、青山剛史(JAXA) 〇林謙司、竹川国之、上島啓司(菱友システムズ)

課題1-1,1-2の解析手法

- 流体解析ソルバ: FaSTAR
 - 計算格子
 - •課題1-1:HexaGrid,MEGG3D,UPACS,BOXFUN
 - 課題1-2:HexaGrid,MEGG3D
 - 有限体積法
 - ・セル節点法:MEGG3D
 - ・ セル中心法:その他の格子
 - 非粘性流束:HLLEW
 - 高次精度化: U-MUSCL(χ=0.5)
 - 勾配計算:GLSQ
 - 制限関数: Hishida(van Leer型)
 - 時間積分:LU-SGS(局所時間刻み)
 - 乱流モデル: SA-noft2-R-QCR2000

支持を考慮することで実験の値に近づくが、低迎角の傾きは合っていない 3

支持有することで、特に尾翼の値がシフトし、実験の結果に近つく HexaGridは他の格子より過大評価ぎみ → 尾翼(バリ)が原因

RANS/LES切替位置の影響

6

- まとめ
- •課題1-1,1-2
 - 実験とは概ね良好に一致
 - 支持を考慮することで、さらに実験と近い結果
 - 低迎角のCLの傾きは実験と合わない
 - Cmのばらつきは尾翼の影響が大きい
- •課題1-3
 - RANS/LESの切り替え位置で結果に大きく影響
 - 衝撃波位置の予測に課題
 - CpのRMS値のピークは実験に近い
 - RANS/LESの切り替え位置の設定には工夫が必要か?

2nd Aerodynamic Prediction Workshop 2016.07.06 at 金沢歌劇座

Cflowソルバーによる各種格子での空力解析

〇安田 英将、永田 卓、上野 陽亮、越智 章生(川崎重工業)

16KT009725

Powering your potential

実施課題(X印)および発表内容(①~③)

		·	事務局提供格子			自作格子			
	Grid	HexaGrid	MEGG3D	UPACS	PUFGG	Cflow	マッハ数		
	Туре	Cartesian +BL	Prism+Tetra (node base)	Structured	Structured +Prism	Cartesian +BL			
>	課題1-1 wbh形態、縦3分力	Х	Х	x 2	支持干涉効果 ×	х	0.947		
>	課題1-2 wbhs形態、縦3分力	Х	Х		Х	Х	0.047		
>	課題1-3 ① ~wbh形態、Buffet	格子間の比較	¢		③バフェット	Х	0.85		

CFD解析手法

Cflowソルバーにおける数値解析手法

RANS(課題1-1, 1-2) / DDES(課題1-3)	
セル中心有限体積法	
2次精度MUSCL	
SLAU	
2次精度中心差分	
SA-noft2	
2次精度MFGS陰解法	
	RANS(課題1-1, 1-2) / DDES(課題1-3) セル中心有限体積法 2次精度MUSCL SLAU 2次精度中心差分 SA-noft2 2次精度MFGS陰解法

コンポーネントCm - HexaGridのCmが大きくなる原因

支持干涉効果 (Cflow格子)

This document is provided by JAXA.

コンポーネントCm

Powering your potential 12

まとめ

- wbhs形態について、Cflowソルバーにより、4種類の格子(HexaGrid, MEGG3D, PUFGG, Cflow)でNASA-CRMの空力解析を実施した。
 - HexaGridのみ尾翼で発生するダウンフォースが他格子より大きいため、Cm が大きくなった。(HexaGridは水平尾翼格子が粗く翼根後縁にコブがあるが詳細な原因は不明)
- 支持付加による影響は以下の通りである。
 - 支持を模擬することで、縦3分力は風試結果に近づいた。
 - 全コンポーネントでCLが減少 ⇒ 模型周りのマッハ数が減少したため
 - 水平尾翼のCmが+側にシフト ⇒ 水平尾翼まわりの局所迎角が減少したため
 - 揚力傾斜はほとんど変わらず、風試とのずれは解消しなかった。
- バフェット解析を実施し、以下の結果を得た。
 - Cprmsのピーク値は風試結果と概ね一致した。
 - ピークのコード方向位置は、衝撃波の位置が合わないため一致しなかった。

JAXA

Second Aerodynamics Prediction Challenge (APC-II) 2016/7/6

概要

■ 背景

■ APC-1への参加

■ 目的と解析手法

■ 格子生成: MEGG3D

Suppressed Marching Direction法

局所格子再生成法を用いた支持装置の付加

■ 解析結果

■課題1-1, 1-2: 支持装置有無による空力係数の変化

🔳 まとめ

APC-1への参加

- MEGG3D格子の提供と、TASを用いた解析結果を発表
 - 事務局の尽力による模型変形効果の考慮
 - SA乱流モデルではQCRを付加し、高迎角時の翼胴結合部の流れを適切 に表現

支持装置なしでは、高迎角時に実験値と比較し、剥離が大きい傾向

- 支持干渉効果を考慮するため、支持装置を追加した解析を実施
 - -0.62°≤α≤4.65°の範囲ではCFDで算出した空力係数は実験値により近づくことを示した
 - 支持装置により高迎角時の翼胴結合部の剥離が小さくなる可能性を示した
 - α = 5.72°では実験値とC_Mの傾向がずれる
- 現在の課題
 - 他のソルバーで支持装置を考慮した際の傾向:一助として支持装置付きの格子も提供
 - 線形域に解析点を追加しても同様の傾向が得られるかどうか:課題の一部として実施
 - 高迎角時の格子依存性確認: 未実施

JAXA

■ APC-1で使用した支持装置付きCRM非構造格子を提供する

目的

- 低迎角での計算点を追加し、支持装置の影響を調べる
 - 解析ソルバー: TAS Code
 - 乱流モデル: SA-noft2-R (C_{rot} = 1)-QCR2000
 - SpalartのQuadratic Constitutive Relationを考慮したSAモデル
 - Yamamoto et al., AIAA Paper 2012-2895.

	TAS		
格子タイプ	非構造格子		
離散化	セル節点有限体積法		
流東評価	HLLEW 2 nd -order with Venkatakrishnan's limiter		
時間積分	LU-Symmetric Gauss-Seidel		
乱流モデル	SA-noft2-R (C _{rot} = 1)-QCR2000		

JAXA

39

MEGG3Dでの格子生成

■ MGG3Dバージョン3

- 支持装置なし
 - APC-1で提供した格子のまま (再度、4th DPW 格子生成ガイドラ インに照らし合わせて問題なしという判断)
- 支持装置あり
 - 2015年飛行機シンポジウムで使用した格子を提供
 - 支持装置周りはソルバーの収束性に問題が出ないよう、格子を 細かめに作成
- Medium格子の迎角ごとの翼変形は事務局に依頼

MEGG3D: Suppressed Marching Direction法

翼胴結合部での要素形状を改善し、格子密度制御を容易にした
 Ito et al., AIAA J, 51(6) 1450-1461, 2013, DOI: 10.2514/1.J052125.

MEGG3Dでの支持装置追加

課題1-1, 1-2: 巡航状態及び高迎角時の NASA-CRM空力予測

尾翼C_p分布 (M_∞ = 0.847)

尾翼C_p分布 (M_∞ = 0.847)

JXA

まとめ

- 非構造格子生成ソフトウェアMEGG3Dで作成した格子を提供した
 - Suppressed marching direction methodで凹んだ角周りの格子品質 を確保した
 - 支持装置の影響の有無を効果的に調べるため、局所格子再生成法 を用いた
- TAS CodeとMEGG3D格子を用いた解析を行い、低迎角での解 析点を追加した
 - SA乱流モデルでは、APC-1と同様にSpalartのQCRを使用
 - 実験値と支持装置ありCFD結果で揚力傾斜は異なるが、C_L-C_Dはよく
 一致
 - 尾翼は支持装置に近いので断面C_p分布は主翼よりも影響を受け、さらに主翼後流の影響も受けるため、解析と実験の対応を見る指標として有用であった

アウトライン

- ・目的
- •計算条件
- ·計算環境
- ·計算結果 主翼+胴体+尾翼(圧力+摩擦)

風洞実験との空力係数の比較
 主翼表面C_p分布
 発散した高迎角への対応(5.72deg)
 表面C_p分布
 表面C_pコンター図
 尾翼表面C_p分布

•結論

2016/7/6	Second Aerodynamics Prediction Challenge (APC-II)	2/25

目的

課題1-1:巡航状態及び高迎角時のNASA-CRM空力予測 (尾翼有、変形計測データを反映)

2016/7/6	Second Aerodynamics Prediction Challenge (APC-II)	3/25

計算条件

ソルバコード	FaSTAR
離散化手法	有限体積法 セル中心法
非粘性流束	HLLEW
粘性流束	空間2次精度
勾配評価	GLSQ
勾配制限関数	Van Lee型オリジナル制限関数
時間積分	LU-SGS(Local Time Stepping)
乱流モデル	SA-noft2-R

2016/7/6	Second Aerodynamics Prediction Challenge

4/25

計算条件

マッハ数:0.847[-]

迎角 :-1.79, -0.62, 0.32, 1.39, 2.47, 2.94, 3.55, 4.65, 5.72[deg] 計算格子:JAXA提供格子(HexaGrid格子)(尾翼有、変形有、支持無)

2016/7/6

計算条件

訂昇琼垷		
PC1		
OS	Linux(OS:CentOS6.3 64bit)	
CPU	intel Xeon E5-2687W 3.1GHz	ener :
CPUコア数	16⊐ ア (8⊐ ア ×2)	E I
計算メモリ	62.9GB(使用メモリ:18.8GB)	Ę
		A NORTH AND
PC2		
OS	Linux(CentOS6.6 64bit)	A STATE OF THE STA
CPU	intel Xeon E5-2687W 3.4GHz	
CPUコア数	$16 \exists \mathcal{P}(8 \exists \mathcal{P} \times 2)$	
計算メモリ	62.9GB (使用メモリ:19.1GB)	

=⊥ 佐 т罒 + 立

2016/7/6

Second Aerodynamics Prediction Challenge

7/25

計算結果主翼+胴体+尾翼(圧力+摩擦)

AoA[deg]	C _D	CL	C _m
-1.79	0.02195	-0.11207	0.18856
-0.62	0.02015	0.04943	0.12533
0.32	0.02085	0.16694	0.08768
1.39	0.02315	0.29892	0.04422
2.47	0.02775	0.43964	0.01088
2.94	0.03126	0.50512	-0.00707
3.55	0.03792	0.57669	-0.01716
4.65*	0.05533	0.65920	-0.00473
5.72*	0.07322	0.70422	-0.00165

*

AoA=4.65deg ~10000回までα=3.55° 1 10001~30000回までα=4.65°で計算

AoA=5.72deg

~10000回までα=3.55° 1

- 10001~20000回までα=4.65°
- 20001~90000回までα=5.72°

20001~90000回のみ流体方程式移流項を HLLEW→SLAUに変更

Second Aerodynamics Prediction Challenge 2016/7/6 (APC-II)

8/25

計算結果 風洞実験との空力係数の比較

						Sect	ionA		
計昇花未 ^{土異衣面Cp} 分布 Section									
	-1.79	-0.62	0.32	1.39	2.47	2.94	3.55	4.65	5.72
SectionA		51 52 52 54 54 54 54 54 54 55 54 55 55 55 55 55		- 12 MA		- SADAR AND			1 1 1 1 1 1 1 1 1 1 1 1 1 1
SectionB									
SectionC									
SectionD									
SectionE					- Cold and a second sec		13 au au au au au au au au au au au au au	13 a a a a b a b a b a c a c a c a c a c a	
SectionF				AL COLOR				a a a b a c c c c c c c c c c c c c c c	
SectionG	13 43 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1		22 04 03 1 52 04 03 1 52 04 03 1 - 5000000000000000000000000000000000000				11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	All a	1 1 1 1 1 1 1 1 1 1 1 1 1 1
SectionH			1000 100 1000 1					11 a a a b b c a c c c c c c c c c c c c c	
SectionI				1000 1000 1000 1000 1000 1000 1000 100					
2016/7	7/6		Second	Aerodynamics (APC	Prediction Char C-II)	allenge			14/25

計算結果 発散した高迎角への対応 α=5.72°

計算結果 発散した高迎角への対応 α=5.72°

SectionSA

SectionSB

-1.79	-0.62	0.32	1.39	2.47	2.94	3.55	4.65	5.72
43 45 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	215 -1 -1 -2 	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		01 01 01 01 01 01 01 01 01 01	44 44 44 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	44 44 44 5 6 6 6 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7	03 04 02 02 02 02 04 04 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 05 05 05 05 05 05 05 05 05	44 44 44 5 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7

SectionSC

-1.79	-0.62	0.32	1.39	2.47	2.94	3.55	4.65	5.72
12 4 4 5 6 6 6 6 6 7 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.5 0.6 0.1 0.1 0.2 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0.00 0.00	44 44 64 64 64 64 64 64 64 64 64 64 64 6	46 44 5 5 5 6 6 6 6 6 6 6 6 7 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8	24 44 54 55 64 65 64 65 64 75 75 75 75 75 75 75 75 75 75	44 44 45 5 6 6 6 6 6 6 6 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	04 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Second Aerodynamics Prediction Challenge	SectionSAでは	は支持の影響により差が大きくなり、また高迎角になると差か	「大きくなる
2016/7/6 (APC-II) 24/25	2016/7/6	Second Aerodynamics Prediction Challenge (APC-II)	24/25

デスクトップPC上でFaSTARを利用しNASA-CRMをCFD解析したことから次のことが得られた。

デスクトップPCに限った事ではないが、
•α-C_Dは風洞試験結果と一致した
•C_Lは低迎角において風洞試験結果よりわずかに大きい値となった
•C_mは迎角によらず風洞試験結果よりほぼ一定に小さい値となった
•C_L/C_D、C_L²/C_Dはどちらも風洞試験結果と解析結果とでわずかに差が生じた
•AoA=5.72degではCycleの途中で段階的に迎角を大きくすると共に、
他のパラメータ(N-S方程式の空間精度や流体方程式移流項etc)を変更することで発散を抑制することが出来た
・尾翼では翼根付近で支持干渉の影響により風洞試験結果と解析結果に差が生じたまた、高迎角になると差が大きくなった
・今回使用したPCではコア数(16core)と同並列数のとき最も高速(35h)で計算できたが 場合により数時間の誤差(3h)が見られた

2016/7/6

Second Aerodynamics Prediction Challenge (APC-II)

25/25

BCM-TASカップリングソルバーを用いた NASA CRM解析

 牧野 真弥,福島 裕馬,三坂 孝志,大林 茂 (東北大学 流体科学研究所)

> 廣瀬 拓也,佐々木 大輔 (金沢工業大学)

第48回 流体力学講演会/ANSS Aerodynamics Prediction Challenge II 2016年7月6日 金沢歌劇座

発表内容

▲ BCM-TASカップリングソルバーの紹介

□ BCM, TAS

- BCM-TASカップリングソルバー
- ▲ 巡航状態及び高迎角時の空力予測(課題1-1)
 - □ 計算条件,格子情報
 - □ 計算結果
- 🛛 まとめ

57

BCM-TAS カップリングソルバー

BCM-TASカップリングソルバー

- ・物体近傍領域を効率的に解析:TAS
- ・壁面近傍以外の空間での格子均一性,空間精度:<u>BCM</u>

▲ 課題1-1

- ightarrow M = 0.847, $Re_c = 2.26 \times 10^6$
- ▶ 迎角: <u>-1.79</u>, -0.62, <u>0.32</u>, <u>1.39</u>, 2.47, 2.94, 3.55, 4.65, 5.72 deg
- ▶ 格子(尾翼有): MEGG3D 物体近傍格子 + BCM格子
- > 変形: -0.62 degのケースはオリジナル(変形無)

計算条件

	非構造格子(TAS)	直交格子(BCM)
支配方程式	圧縮性NS方程式	圧縮性Euler方程式
乱流モデル	Spalart-Allmaras	なし
空間スキーム	HLLEW+ 線形再構築	HLLEW+ 3次精度MUSCL
時間スキーム	陰解法	陰解法
並列化	OpenMP	OpenMP

- BCM-TASカップリングソルバーを用いてCRMの空力予測解析を 行った(追加迎角分)
- □ C_D, C_mは実験値と同傾向(値のずれは有り), CLは低迎角で揚力傾斜が 異なる
 - ⇒ 翼変形無しでは翼変形有りよりも1.39[deg]のCL が大きくなり,実験に近い 揚力傾斜になる
- 負の迎角では翼変形有りと無しで圧力分布はほぼ同じ(CLもほぼ同じ)
 ⇒ 1.39[deg]では変形を考慮することで圧力係数が実験値に若干近づいた (CLの微増)
- □ 低迎角では変形の有無に関わらずSectionE下面Cpが合わない
 - ⇒ 隣のSectionD,F では Cp が合っている(1.39[deg])

15/28

補足スライド

64

68

69

Х

28/28

2016年7月6日, 金沢歌劇座 Second Aerodynamics Prediction Challenge (APC-II)

DG法・SV法による解析

〇澤木悠太,淺田啓幸,澤田恵介(東北大)

目的と参加課題

- □ 目的
 - ▶支持の考慮が低迎角のC_LとC_m にどう影響するか調べること
- □ 参加課題
 - ▶課題1-1: 支持装置なし
 - 2次精度SV法
 - ・UPACS格子(900万セル)
 - ▶課題1-2:支持装置あり
 - •4次精度DG法
 - ・自作格子(450万セル)

支持装置を考慮した空力係数

赤線:支持なし 青線:支持あり 4

□ C_L, C_mともに実験値に近づいた

□ 揚力傾斜は合わないまま

□ 衝撃波がない場合は特段の変化はなし

□ 衝撃波の前方へのシフトは計算手法の問題か

□ 揚力減少, ピッチングモーメント増加

□ 支持前縁で圧力が高くなり, -z方向に向かって 圧力勾配が生じている

- □ 支持前縁からの圧力勾配で支持側面付近で−z方向の 速度が大きくなっている
- □ 尾翼のよどみ点が上面下流側に移動,下面では加速 上面では減速した可能性

□ 下向き揚力増加, ピッチングモーメント増加

□ 揚力減少, ピッチングモーメント増加

赤線:支持なし

まとめ

- □計算手法,格子が異なるため尾翼以外の空力係数の 変化は支持の影響とは言い切れない
- □ 揚力傾斜のずれは支持が原因ではないと考えられる
- □ 尾翼の揚力、ピッチングモーメントの予測には支持干渉の影響が大きい

Backup

数値計算法

- □ 高次精度非構造格子法
 ▶ 不連続ガレルキン法(DG法)
 ▶ スペクトラルボリューム法(SV法)
 ▶ 利点
 非構造格子でも高次精度
 - ・コンパクトなデータ構造
 - ・高い並列化効率

16

DG法の基底関数

SV法のセル分割

	DG	SV
支配方程式	3次元圧縮性RANS方程式	3次元圧縮性RANS方程式
乱流モデル	SA-noft2	SA-noft2
空間離散化	4次精度DG法	2次精度SV法
対流流束	AUSM-DV	SLAU
粘性流束	BR2	BR2
時間積分	1次精度セル緩和型陰解法	2次精度LU-SGS陰解法

計算時間

18

□ SV:7,200万自由度,512コア(14万自由度/コア)で7日 □ DG:9,000万自由度,640コア(14万自由度/コア)で7日

計算機:東北大学流体研スパコン

Intel Xeon E5-4650v2

迎角-0.62度のC_p分布(2)

迎角0.32度の C_p 分布(2)

x/c

迎角1.39度のC_p分布(2)

x/c

迎角2.47度の C_p 分布(2)

x/c

階層型直交格子と埋め込み境界法の組み合わせ による解析(その2)

2016/07/06 Aerodynamic Prediction Challenge II 金沢歌劇座

1

発表内容

東京大学大学院

- □ 解析の目的
- □ 前回からの改善点
- NASA-CRM周りの遷音速流れ解析(課題1-1)
 - ・ 計算手法・格子の設定
 - 格子収束
 - ・ 迎角スイープ (課題1-1)

□ まとめ・今後の展望

解析の目的 ■ 直交格子における<u>埋め込み境界法</u>を用いた高レイノルズ 数流れの解析手法を検証 ✓ 自動・高速な格子生成が可能 ✓ 格子の歪みがなく,安定性に優れる ✓ <u>乱流境界層</u>の扱いに課題→ <u>壁関数を用いる</u>

■ 主に巡航状態(AoA=0.294[deg])における格子収束性 について調査

埋め込み境界法

点FCに与える境界条件を 埋め込み境界法により求める

- □ Image Point (IP)から境界条件を外挿
- 壁関数を用いて壁面摩擦を計算

APC-Iからの改善点

- □ 対流境界条件の改善による振動の抑制・表面摩擦の高精度化(◆)
- MPI実装による計算の大規模化
- □ リミタ, カ積分, 可視化手法等の見直し

発表内容

- □ 解析の目的
- □ 前回からの改善点
- NASA-CRM周りの遷音速流れ解析(課題1-1)
 - ・ 計算手法・格子の設定
 - ・ 格子収束
 - ・ 迎角スイープ (課題1-1)

□ まとめ・今後の展望

計算手法

	UTCart	FaSTAR (参照結果)	
計算格子	セルベース八分木直交格子 (非構造)	HexaGrid Medium	
支配方程式	Favre-Averaged Navier-Stokes方程式		
乱流モデル	SA-noft2		
非粘性流束	SLAU		
数値スキーム(対流項)	MUSCL		
数値スキーム(粘性項)	2次精度中心差分		
リミタ	Barth-Jespersen	Hishida	
時間積分	LUSGS		

計算格子の設定 (UTCart)

格子	Coarse	Medium	Fine (計算中)
最小格子幅 (in.)	0.9768	0.4884	0.3254
平均空力翼弦/最小 格子幅	282	565	848
総セル数	~800万	~3000万	~1億

スムーズ層の設定

- □ Medium (B)格子
 - ・ スムーズ層: 3~8 (層ごとに可変)
 - ・ 平均空力翼弦の2倍程度までを細分化
 - ・ セル数33,262,395 (+7%)

空力係数の内訳

- □ 粘性抵抗の差異は合計5 [cnt]以内
- ・胴体と尾翼における圧力抵抗の収束性に難(力積分方法の問題?)

表面y+_{IP}分布 (Medium格子)

- □ IPでのy+(※)
- ⇒翼上面で最大550, 胴体で300~400
- ・Corse格子:2倍
- ・Fine格子: 2/3倍

17

まとめ

■ 直交格子・埋め込み境界法を用いたNASA-CRM周りの 遷音速空力予測を実施

□ 巡航条件で格子収束の傾向を確認

- ・ 粘性抵抗の予測は比較的高精度
- ・ 物体から離れた領域の格子がモーメントに寄与
- ・ Medium格子で圧力抵抗誤差~35[cnt]
- ・ 翼端, TE, 尾翼で不一致が見られる⇒モーメントの差異
- □ 剥離の定量的予測は現状困難

今後の改善点

- □ 非粘性流でのソルバーの検証(圧力抵抗の低減)
 - ・ 力積分方法
 - ・ LE/TE, 翼端等へのフィッティング
 - ・ 表面曲率の考慮, sharp-edgeの取り扱い
- - ・ Fine格子での計算
 - ・ QCRの利用
 - ・ 壁関数+埋め込み境界法のさらなる高度化

表面摩擦 AoA=2.94 [deg]

Introduction

- Recently PowerFLOW has been extended to transonic flows
 - Lattice Boltzmann based solver
 - D3Q39 LBM
 - Cubic Volume Cells (Voxels)
 - Surface elements (Surfels)
 - Fully transient
 - Turbulence Model: LBM-VLES
 - Modified RNG k-ε model for unresolved scales
 - Swirl model
 - Extended wall model

Run summary

Cases for which PowerFLOW simulations were performed

	Re = 1.5M (buffet)	Re = 2.3M
Cp cuts	Mid span of main wing	Full wing/tail sections
Cp' cuts	Mid span of main wing	No
Cd/Cl/Cm	Yes	Yes
AoA simulated	4.87°, 5.92°	2.94°
Sting	No	Yes/No
Resolutions	C/M/F	F

König, Fares, Nölting, "Validation of a Transonic Lattice-Boltzmann Method on the NASA Common Research Model", AIAA Paper 2016-2023

© Exa Corporation

High Angles Investigation

- Notes on inboard wing and shock position
 - This part of the wing has complex flow features in the wind tunnel at high AoA
 - Results from APC-1 also show CFD codes to be sensitive at high AoAs
 - Shock very close to trip

High Angles Investigation

 Results for high AoA match high Reynolds experiments better

Conclusions

- Sting effects were investigated
 Similar conclusions to the NASA CRM simulations
- Buffet simulations were successfully performed
- Results are in some regions closer to higher Reynolds numbers experiments

© Exa Corporation

- Sensitivity to the transition location was demonstrated

103

_

Questions?

- 1. XFlow: an Innovative LBM Approach
- 2. 課題1:巡航状態及び高迎角時のNASA-CRM空力予測

- 1. XFlow: an Innovative LBM Approach
 - XFlow の概要紹介
 - 格子ボルツマン法
 - LES乱流モデル
 - ・ 壁関数モデル
 - 解析事例

XFlow : an Innovative LBM Approach

- XFlow の概要紹介
 - 毎開発元 Next Limit Dynamics (スペインマドリッド)
 - ⊕ 解析手法
 - ▶ 格子ボルツマン法
 - ▶ D3Q27 格子による高い表現力と対称性の確保
 - ▶ 独自の衝突演算手法
 - ⊕ 解適合による格子再分割
 - > 渦度、液面への動的な追従
 - ⊕ 壁面モデルを含むLES乱流モデル
 - ⊕ 移動体への対応

Structure D3Q27

XFlow : an Innovative LBM Approach

XFlow : an Innovative LBM Approach

<text><image><image>

課題1:巡航状態及び高迎角時のNASA-CRM空力予測 (尾翼有、変形計測データを反映)

1. 課題1:巡航状態及び高迎角時のNASA-CRM空力予測

- 解析条件
- 風洞モデル
- 空力係数(全体)
- 揚抗比による評価
- 成分分解結果
- 翼断面圧力係数分布
- 表面圧力係数分布図

課題1:巡航状態及び高迎角時のNASA-CRM空力予測 (尾翼有、変形計測データを反映)

■ 計算格子

課題1:巡航状態及び高迎角時のNASA-CRM空力予測 (尾翼有、変形計測データを反映)

■ 成分分解

母 揚力係数

主翼	胴体	尾翼	全体	実験結果
0.52114	0.07152	-0.01215	0.58051	0.508794
89.8%	12.3%	-2.1%		

⊕ 抗力係数

主翼	胴体	尾翼	全体	実験結果	
0.02130	0.01432	0.00234	0.03796	0.028263	
56.1%	37.7%	6.2%			

■ 尾翼分布の誤差について

⊕ 本解析は支持部無でのデータであり、実験結果と解析条件が異なります

■ 計算コスト

⊕ 端末仕様

- > CPU : Intel(R) Xeon(R) CPU E7- 4870 × 4
 - ✓ コア数: CPU単体 10 ノード全体 40
 - ✓ 周波数: 2.40 GHz
 - ✓ キャッシュメモリ:30 Mb
- ▶ メモリ 125 GB DDR3

⊕ 計算負荷

- ▶格子数: 30,893,747 格子
- ▶ 時間ステップ: 2万ステップ
 - ✓ 現象時間 1.2e-2 sec
 - ✓ 時間刻み 5.9e-4 sec (最小格子部分)

⊕ 計算時間

▶ 30日間

🔳 まとめ

⊕ 圧縮性ソルバによる現象の再現が可能であることを確認いたしました

- ▶ 機体表面上の圧力分布結果より、衝撃波をとらえられていることを確認
- >計算過程についても異常値はなく、圧縮性対応ソルバの安定性も良好

⊕ 課題

- >ポスト処理(グラフ・数値取得)の対応

COPYRIGHT 2016 INFORMATION SERVICES INTERNATIONAL - DENTSU, LTD. ALL RIGHTS RESERVED.

Second Aerodynamics Prediction Challenge (APC-II)

遷音速流れ場における非定常圧力計測 のための感圧塗料技術の現状

○<u>杉岡洋介</u>, 沼田大樹, 浅井圭介(東北大学) 中北和之, 小池俊輔, 中島努(JAXA)

金沢歌劇座 A会場(大集会室) 2016年7月6日

高速応答感圧塗料を用いて, NASA CRM 主翼上の 遷音速バフェット現象に関連する非定常圧力場を計測 する.

◆ 塗膜が空力係数に及ぼす影響

◆ 非定常圧力センサ計測値との比較

◆時間平均・時系列圧力分布の計測

感圧塗料 (Pressure-Sensitive Paint)

- ◆ 原理
 - ✓ 酸素消光性を利用した圧力計測法
 - ✓ 色素の発光を光学的に計測し, 圧力を算出可能

低表面粗さ高速応答感圧塗料 "TU-PSP" ダ Sugioka Y., et al., AIAA-2016-2018

ЖА 🥁 тоноки

- ◆ Polymer/Ceramic バインダ
 - ✓ ポリマーバインダに微小粒子を添加し, ガス拡散性を向上
 - ✓ 模型表面にスプレーガンによる塗装が 可能
- ◆ "TU-PSP MOD-2"の特性

*** technical roughness height

Frequency [Hz] 周波数応答性 (*P*=100kPa, *T*=313K)

実験装置および計測条件

- 光検出器:
 - ✓ 高速度カメラ (Phantom V1211)
 - 解像度: 1280 × 800 pix - 階調: 12 bit
 - ✓ 光学フィルタ (バンドパス 590 710 nm + IR cut)
- 励起光源:
 - ✓ UV-LED (IL-106)

中心発光波	長: 395 nm				
		Left wing			
		Whole	Kink, Center		
LED	Illuminated area				
	Frame rate [fps]	2000	7000		
Camera	Exposure time [sec]	499.646 µ	140 µ		

High-speed

camera

L)

Flov

5

UV-LED

結果および考察

2016/7/6

Second Aerodynamic Prediction Challenge

PSP の塗布は空力係数にほとんど影響を及ぼさない.

迎角ごとの圧力変動 RMS の比較

2016/7/6

Second Aerodynamic Prediction Challenge

11

LA XA

まとめ

新たに開発した高速応答 PSP を用いて, NASA CRM 主翼上の遷音速バフェット現象に関連する非定常圧力 場を計測した.

- ◆ 高速応答 PSP の適用により, 主翼上の非定常圧力分布が明らか になった.
- ◆ キンク付近において遷音速バフェットの要因となる現象が生じている.
- ◆ 新たに開発した PSP は空力係数にほとんど影響を及ぼさない.

- ◆ 第48回流体力学講演会 先進流体計測技術 (1) 7月8日 15:10: 杉岡洋介 他,「高速応答感圧塗料を用いた三次元翼上遷音速バフェットの解析」, 2D12
- 54th AIAA Aerospace Sciences Meeting: Y. Sugioka, et al. "Polymer/Ceramic PSP with Reduced Surface Roughness for Unsteady Pressure Measurement in Transonic Flow" AIAA-2016-2018.

2016/7/6

Second Aerodynamic Prediction Challenge

第48回流体力学講演会/第34回航空宇宙数値シミュレーション技術シンポジウム 2016年7月6日(水)、金沢歌劇座

127

Summary of Second Aerodynamics Prediction Challenge (APC-II)

ワークショップ実行委員会

- •参加者
- •課題1-1
- •課題1-2
- •課題1-3
- まとめ

提出データの統計

- 参加機関とデータ提出数(計16件)
 - 国立研究機関: JAXA(5)
 - 大学:富山大(1)、東北大(1)、東北大&金沢工大(1)、東大(1)
 - 企業:川崎重工(5)
 - ベンダー: Exa Corporation(1)、電通国際情報サービス(1)
- 格子の種類(課題1-1に使用されたもの)
 - HexaGridで作成した格子(HexaGrid):2
 - MEGG3Dで作成した格子(MEGG3D):4
 - UPACS用に作成した格子(UPACS):3
 - 上記以外の自作格子(Custom):6
- 乱流モデル
 - RANS(SA系):14
 - LES(VLES):1

ID	名前	所属	コード名	格子	乱流モデル
A1	橋本 敦	JAXA	FaSTAR	HexaGrid	SA-noft2-R-QCR2000 SA-DES(課題1-3のみ)
A2	橋本 敦	JAXA	FaSTAR	MEGG3D	SA-noft2-R-QCR2000
A3	橋本 敦	JAXA	FaSTAR	UPACS	SA-noft2-R-QCR2000
A4	橋本 敦	JAXA	FaSTAR	Custom(BOXFUN)	SA-noft2-R-QCR2000
B1	安田 英将	川崎重工業	Cflow	HexaGrid	SA
B2	安田 英将	川崎重工業	Cflow	MEGG3D	SA
B3	安田 英将	川崎重工業	Cflow	UPACS	SA
B4	安田 英将	川崎重工業	Cflow	Custom(PUFGG)	SA
B5	安田 英将	川崎重工業	Cflow	Custom(Cflow)	SA
С	伊藤 靖	JAXA	TAS	MEGG3D	SA-noft2-R-QCR2000(Crot=1)
D	小林 大志	富山大学	FaSTAR	Custom(HexaGrid)	SA
E	佐々木 大輔 三坂孝志, 牧野真弥	金沢工業大学 東北大学	BCM-TAS カップリング	MEGG3D	SA
F	澤木 悠太	東北大学	SV2nd	UPACS	SA-noft2
G	玉置 義治	東京大学	IB-Cartesian	Custom(Cartesian)	SA-noft2
н	Andre Ribeiro	Exa Corporation	PowerFLOW	Custom(LBM)	VLES

参加者リスト

3

提供格子

ARC

_										
ID	コード名	離散化手法	セル中心/節点	非粘性流束	粘性流束	時間積分				
A1	FaSTAR	有限体積法	セル中心	HLLEW + U-MUSCL(2nd)	中心差分(2nd)	LU-SGS				
A2	FaSTAR	有限体積法	セル節点	HLLEW + U-MUSCL(2nd)	中心差分(2nd)	LU-SGS				
A3	FaSTAR	有限体積法	セル中心	HLLEW + U-MUSCL(2nd)	中心差分(2nd)	LU-SGS				
A4	FaSTAR	有限体積法	セル中心	HLLEW + U-MUSCL(2nd)	中心差分(2nd)	LU-SGS				
B1	Cflow	有限体積法	セル中心	SLAU + MUSCL(2nd)	中心差分(2nd)	MFGS				
B2	Cflow	有限体積法	セル中心	SLAU + MUSCL(2nd)	中心差分(2nd)	MFGS				
B3	Cflow	有限体積法	セル中心	SLAU + MUSCL(2nd)	中心差分(2nd)	MFGS				
B4	Cflow	有限体積法	セル中心	SLAU + MUSCL(2nd)	中心差分(2nd)	MFGS				
B5	Cflow	有限体積法	セル中心	SLAU + MUSCL(2nd)	中心差分(2nd)	MFGS				
С	TAS	有限体積法	セル節点	HLLEW + U-MUSCL(2nd)	中心差分(2nd)	LU-SGS				
D	FaSTAR	有限体積法	セル中心	HLLEW + U-MUSCL(2nd)	中心差分(2nd)	LU-SGS				
E	BCM-TAS カップリング	有限体積法	セル節点(TAS) セル中心(BCM)	2nd(TAS) 3rd(BCM)	2nd(TAS)	LU-SGS				
F	SV2nd	2次精度SV法	セル中心	SLAU(2nd)	BR2(2nd)	BDF2(LU-SGS)				
G	IB-Cartesian	有限体積法	セル中心	2nd	2nd	LU-SGS				
Н	PowerFLOW	LBM	セル中心	-	-	Explicit				

計算手法

ARC

計算に関する情報(課題1-1)

ID	コード名	計算機のスペック	コンパイラ	コア数	計算時間	メモリ
A1	FaSTAR	SPARC64XIfx(2GHz)※1	Fujitsu Fortran	96コア	5h30m	27GB
A2	FaSTAR	SPARC64XIfx(2GHz)※1	Fujitsu Fortran	96コア	9h	25GB
A3	FaSTAR	SPARC64XIfx(2GHz)※1	Fujitsu Fortran	96コア	1h	21GB
A4	FaSTAR	SPARC64XIfx(2GHz)※1	Fujitsu Fortran	96コア	30h	26GB
B1	Cflow	Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz	Intel Fortran	44コア	5h	20GB
B2	Cflow	Intel(R) Xeon(R) CPU X5660 @ 2.80GHz	Intel Fortran	44コア	16h45m	44GB
B3	Cflow	Intel(R) Xeon(R) CPU X5660 @ 2.80GHz	Intel Fortran	44コア	3h40m	13GB
B4	Cflow	Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz	Intel Fortran	32コア	1h15m	9.2GB
B5	Cflow	Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz	Intel Fortran	128コア	1h45m	29GB
С	TAS	SPARC64XIfx(2GHz)※1	Fujitsu Fortran	1152 コア	1h10m	268.5GB
D	FaSTAR	intel Xeon E5-2687W 3.1GHz	Intel Fortran	16コア	30h	19.3GB
E	BCM-TAS カップリング	SGI UV2000	Intel Fortran	160コア	168h	18GB
F	SV2nd	Intel Xeon E5-4650v2※2	Intel Fortran	512コア	150h	600GB
G	IB-Cartesian	Xeon E5-2643 v3 @3.40GHz × 2	Intel Fortran	12コア	48h	60GB
Н	PowerFLOW	Xeon E5-2680 v2	Intel	340コア	38h	174GB

参加課題												
								断面CD),CL,Cm	Cp分布(Ξ	主翼以外)	
課題	1-1	1-2	1-3	1-1	1-2	1-3	1-1	1-2	1-1	1-2	1-1	1-2
A1	0	0	0	0	0	0	0	0	0	0	0	0
A2	0	0		0	0		0	0	0	0	0	0
A3	0			0			0		0		0	
A4	0			0			0		0		0	
B1	0	0		0	0			\bigtriangleup	0	0	0	0
B2	0	0		0	0			\triangle	0	0	0	0
B3	0			0					0		0	
B4	0	0		0	0			\bigtriangleup	0	0	0	0
B5	0	0	0	0	0	0		\bigtriangleup	0	0	0	0
С	0	0		0	0		0	0	0	0	0	0
D	0			0			0		0		0	
E	0			0								
F	0			0			0		0		0	
G				Δ								
н	Δ	Δ	0	Δ	\triangle	0		\bigtriangleup				\triangle
計	15(13)	8(7)	3(3)	15(13)	8(7)	3(3)	14(7)	8(3)	12(12)	7(7)	13(12)	8(7)

○:全て提出 △:一部のみ提出 空白:不参加または未提出

APC-IIで取り組む主な課題

- ・ CLの勾配が合わない
 →低迎角の迎角の刻みをAPC-Iから3点増やして比較
- Cmのばらつきが大きい
- →コンポーネント別の空力係数を集計して、原因を究明
- →尾翼のCp分布を実験と比較
- →尾翼のCpは支持の影響が大きいため、支持付きの計算も実施
- ・ 非定常解析の検証データが無い
 →JAXAで計測した風洞試験データを提供
 →それに伴い、APC-Iから条件(迎角、Re数など)を変更

- 形状:NASA-CRM(水平尾翼0°)、変形有
- 格子: Medium(1000万)相当
- 条件: M = 0.847, Re_c = 2.26 × 10^6 , T_{ref} = 284K
- 迎角:-1.79deg, -0.62deg, 0.32deg, 1.39deg, 2.47deg,
 - 2.94deg, 3.55deg, 4.65deg, 5.72deg
- 提出データ:
 - ・空力係数(C_D,C_L,C_m)
 - 圧力・摩擦の寄与に分解
 - コンポーネント別(主翼・胴体・尾翼の3つ)に分解
 - CD,CL,Cmのスパン方向分布
 - 表面C_n分布
 - 主翼·尾翼·後胴

空力係数を前回(APC-I)と比較する

空力係数を前回(APC-I)と比較する

空力係数を前回(APC-I)と比較する

<u>スパン方向の揚力分布を評価</u>

課題1-1:SectionC_m(支持無) 入 Name

課題1-1:SectionC_m(支持無)

スパン方向分布とCp分布の関連

20

課題1-1:SectionC_m(支持無) 入 Notes National Nationa

2014/06/25 Run No. 4631 Data No. 6 PP = 102000 Mra PP = 173 62 M Kr PP = 73 62 M Kr PP = 119 99 Kr PP = 119 89 Kr PP = 119 80 Kr PP = 119 90 Kr PP = 110 00 Kr PP = 110 00 Kr PP = 110 00 Kr PP = 100 Kr PP = 100 Kr

スパン方向分布とCp分布の関連

オイルフロー計測結果

η=0.7付近は、付着領域と 剥離領域の境界付近 → 予測が難しい

修正迎角4°

修正迎角5°

課題1-1 まとめ

- CL, CD, Cmのばらつきが、前回のAPC-Iに比べて、小さくなった。
 →日本全体のCFD技術の底上げ。
- Cl-η、Cm-ηは巡航状態では差が小さいが、 高迎角でη=0.7付近で差が生じる。その付近は、剥離領域と付着領域の境界位置であり、 解析手法・格子・乱流モデル(QCRの有無など)が、影響していると考えられる

23

|課題1-2(任意):迎角スイープ(支持有) 🛛 🔊

- 形状:NASA-CRM(水平尾翼0°)、変形有、支持有
- 格子: Medium(1000万)相当
- 条件: M = 0.847, Re_c = 2.26 × 10⁶, T_{ref} = 284K
- 迎角:-1.79deg, -0.62deg, 0.32deg, 1.39deg, 2.47deg,

2.94deg, 3.55deg, 4.65deg, 5.72deg

- 提出データ:

- 空力係数(C_D,C_L,C_m)
 - 圧力・摩擦の寄与に分解
 - コンポーネント別(主翼・胴体・尾翼の3つ)に分解
 - CD,CL,Cmのスパン方向分布
- ・表面C_p分布
 - 主翼·尾翼·後胴·支持

課題1-2:低迎角のC_L-α(支持有) 🔊 🕰

交差する場所は補正ゼロの場所と一致するが、これは何を意味しているのか

課題1-2:尾翼のC_p分布(支持有) 🛰

課題1-2 まとめ

- ・支持を考慮することで、実験に近づく。特に、 Cmの線形部分や、CDOに改善が見られる。
 → 非常に高い精度で実験データを再現
- ・迎角を追加することで、CL-αの勾配が低迎角 で異なることが明らかになった。実験とCFDが 交差する場所は、補正がゼロの場所である が、詳細は不明。
- Cmの線形部分のばらつきは、尾翼が原因。
- 支持の影響は、尾翼や後胴で適切にとらえられている。

39

課題1-3(任意):非定常計算

- 形状: NASA-CRM(水平尾翼0°)、変形有
- 格子: 自由
- 条件: M = 0.85, Re_c = 1.5 × 10⁶, T_{ref} = 282K
- 迎角: 4.87deg, 5.92deg
- 提出データ: 空力係数(C_L,C_D,C_m)と表面C_p分布の 平均量とRMS

41

課題1-3:非定常計算

課題1-3:非定常計算

R

課題1-3:非定常計算

150

ARC

課題1-3 まとめ

- 非定常解析における衝撃波位置の予測精度に課題。特に、高迎角の5.92°の予測が困難。
- RMSのピーク変動量は同程度。おそらく、衝撃波強さで決まっている。
- 衝撃波より下流の変動は大きめに予測。原因として、解像度不足が考えられる。

全体のまとめ

- 課題1-1
 - CL, CD, Cmのばらつきが、前回のAPC-Iに比べて、小さくなった。
 →日本全体のCFD技術の底上げ。
 - CI-η、Cm-ηは巡航状態では差が小さいが、高迎角でη=0.7付近で差が生じる。その付近は、剥離領域と付着領域の境界位置であり、解析手法・格子・ 乱流モデル(QCRの有無など)が、影響していると考えられる
- 課題1-2
 - 支持を考慮することで、実験に近づく。特に、Cmの線形部分や、CD0に改善が 見られる。 → 非常に高い精度で実験データを再現
 - 迎角を追加することで、CL-αの勾配が低迎角で異なることが明らかになった。実験とCFDが交差する場所は、補正がゼロの場所であるが、詳細は不明。
 - Cmの線形部分のばらつきは、尾翼が原因。
 - 支持の影響は、尾翼や後胴で適切にとらえられている。
- 課題1-3
 - 非定常解析における衝撃波位置の予測精度に課題。特に、高迎角の5.92°の予測が困難。
 - RMSのピーク変動量は同程度。おそらく、衝撃波強さで決まっている。

VRC

今後の課題(案)

- まだ存在する実験との差(CL-α、Cm-α、CL-CD)
 - 壁干渉(多孔壁)
 - 遷移
 - その他
- ・高迎角時の予測精度向上
 - 定常解析:乱流モデルの改良など
 - 非定常解析:乱流モデル(URANS, DES, WMLESなど)の
 比較、NSとLBMの差の分析、流れ場の乱流統計量の
 比較など
 - さらに高迎角の計算(α~10°)
 - 低速バフェット(M=0.70)
- その他の課題?

ARC

- 多くの方にご参加いただき、どうもありがとうご ざいました。
- 下記の方にもご協力いただきました。ここに感謝の意を表します。
 - 格子の提供:山本一臣、村山光宏、伊藤靖(JAXA) 、田中健太郎(菱友システムズ)
 - 格子変形ツール: 保江かな子(JAXA)
 - Web、格子・形状作成、データ集計:林謙司、上島 啓司(菱友システムズ)
 - 実験データの提供:小池俊輔、風洞試験にご協力 頂いた皆様(JAXA)

53

以降、参考資料

低迎角におけるCmの勾配を評価

課題1-1: 圧力・摩擦別のC_D(支持無) AR

ID

課題1-1: 圧力・摩擦別のC_D (支持無) 🔊

課題1-1:尾翼のC_p分布(支持無) 🛰 🔍

課題1-1:SectionC_L(支持無) 🔍 🔍

課題1-1:SectionC_L(支持無)

79

ARC

課題1-2: 圧力・摩擦別のC_D (支持有) 🔊 🔊

課題1-2: 圧力・摩擦別のC_D (支持有) 🛰

課題1-2:尾翼のC_p分布(支持有) 🛰 🔍

115

ARC

課題1-3:非定常計算

116

APC-II ネットワーキングセッション話題提供 「企業におけるCFD活用の取り組みと展望」

2016年 7月 6日 三菱重工業株式会社 総合研究所 流体研究部 空力研究室 吉本 稔

One day CFE

空力1600012 2 /

複雑形状の形状定義、格子生成はまだ人の手を十分離れたとは言えない。

航空機設計適用の観点におけるCFDの課題 – 実務上の課題

- 空力形状最適化で形状の自由度は欲しいが、妥当な制約条件をどのように設定するか。
- 非構造格子生成はかなり手間が減少しているが、最適化ループの中でロバストに格子生成できてほしい。
- 直交格子, BCM等
- 定常CFDは概ね成熟, 非定常CFDはどうか?
 - 計算時間はハードウェアの能力向上を待てばよいだけか?
 - 大規模な計算ができるようになってきたが、ポスト処理も追いつかなければならない。
 - 多量の3次元の非定常データをどのように解釈するか。
- 空力+α
 - 三次元着氷(scallop ice accretion)はまだ解析できない。
 - Contaminated Runwayのwater splash(離陸性能)。
- 新たなCFD
 - 粒子法(Lattice Boltzmann Method, Discrete Element Methodなど)
 - 設計への本格的用に向けた検証,改良,使い方の検討。

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

航空機設計適用の観点におけるCFDの課題 – 環境,運用面の課題

● Moore's lawに従ってハードウェアの能力は伸びてきたが...

- CFDはアーキテクチャの変遷を牽引しているのか、 アーキテクチャに応じたコーディングに振り回され ているのか?

ベクトル, スカラー並列, GPU, アクセラレータ, 量子コンピュータ?, etc.

- 設計に空力最適化が適用されてきてはいるが...
 - 空力だけでは本当の設計できない。 構造,装備等も考慮が必要であり、制約条件にど のように落としこむのか、それらも同時に最適化す るのか?
 - ⇒ 最適化の問題設定の方がボトルネック
- IoT/AIの活用は?
 - 省力化されつつも人間の介在がまだ必要な形状定義 や格子作成程度なら、AIに任せられるか?
 - 自動GPU対応などができないか?
 - 学習のため膨大なデータが予め必要。

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

空力1600012 4./

Projected Performance Development

総合研究所

空力1600012

3 /

★ 三菱重工

総合研究所

宇宙航空研究開発機構特別資料 JAXA-SP-16-004 JAXA Special Publication

Second Aerodynamics Prediction Challenge (APC-II)

発		行	国立研究開発法人 宇宙航空研究開発機構(JAXA)
			〒182-8522 東京都調布市深大寺東町7-44-1
			URL: http://www.jaxa.jp/
発	行	日	平成28年11月10日
電 子	出版制	作	松枝印刷株式会社
©2016 by the authors. Published by JAXA with permission. ※本書の一部または全部を無断複写・転載・電子媒体等に加工することを禁じます。			
Unauthorized copying, replication and storage degital media of the contents of this publication, text and images are strictly			
prohibited. All Rights Reserved.			

