2nd Aerodynamic Prediction Workshop 2016.07.06 at 金沢歌劇座

Cflowソルバーによる各種格子での空力解析

〇安田 英将、永田 卓、上野 陽亮、越智 章生(川崎重工業)

16KT009725

Powering your potential

実施課題(X印)および発表内容(①~③)

		事務局提供格子			自作格子		1
	Grid	HexaGrid	MEGG3D	UPACS	PUFGG	Cflow	マッハ数
	Туре	Cartesian +BL	Prism+Tetra (node base)	Structured	Structured +Prism	Cartesian +BL	
>	課題1-1 wbh形態、縦3分力	Х	Х	x 2	支持干涉効果 ×	х	0.947
>	課題1-2 wbhs形態、縦3分力	Х	Х		Х	Х	0.047
>	課題1-3 ① ~wbh形態、Buffet	格子間の比較	¢		③バフェット	Х	0.85

CFD解析手法

Cflowソルバーにおける数値解析手法

RANS(課題1-1, 1-2) / DDES(課題1-3)	
セル中心有限体積法	
2次精度MUSCL	
SLAU	
2次精度中心差分	
SA-noft2	
2次精度MFGS陰解法	
	RANS(課題1-1, 1-2) / DDES(課題1-3) セル中心有限体積法 2次精度MUSCL SLAU 2次精度中心差分 SA-noft2 2次精度MFGS陰解法

コンポーネントCm - HexaGridのCmが大きくなる原因

支持干涉効果 (Cflow格子)

Powering your potential 8

コンポーネントCm

Powering your potential 12

まとめ

- wbhs形態について、Cflowソルバーにより、4種類の格子(HexaGrid, MEGG3D, PUFGG, Cflow)でNASA-CRMの空力解析を実施した。
 - HexaGridのみ尾翼で発生するダウンフォースが他格子より大きいため、Cm が大きくなった。(HexaGridは水平尾翼格子が粗く翼根後縁にコブがあるが詳細な原因は不明)
- 支持付加による影響は以下の通りである。
 - 支持を模擬することで、縦3分力は風試結果に近づいた。
 - 全コンポーネントでCLが減少 ⇒ 模型周りのマッハ数が減少したため
 - 水平尾翼のCmが+側にシフト ⇒ 水平尾翼まわりの局所迎角が減少したため
 - 揚力傾斜はほとんど変わらず、風試とのずれは解消しなかった。
- バフェット解析を実施し、以下の結果を得た。
 - Cprmsのピーク値は風試結果と概ね一致した。
 - ピークのコード方向位置は、衝撃波の位置が合わないため一致しなかった。

Powering your potential