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Introduction.

1. “Vortices in a viscous fluid ”’ has been since long an important
topic among meteorologists and those who work in aerodynamical
researches, and many interesting papers relating to this subject are
published. A gust in the atmosphere, smoke flowing out from a chim-
ney, the rear stream of an aeroplane, and such phenomena observed
every day in the motion of air have, almost without exception, eddy
motion accompanying them. So far as we are concerned with the mean
motion of the air, there are of course several problems which can be
solved by applying the hydrodynamical theory of a perfect fluid, but
if we look into the details of the phenomena concerned it will always
be found that it is quite indispensable to take the wiscosity of air into
account.

In establishing the wind channel in our Institute, one of the great-
est difficulties was to discover how the vortices which appeared in front
of the intake of the channel could be eliminated. As these vortices

had serious effects on the experiments undertaken by using this channel,

(1) This paper will, in revised form, be submitted to the publishing committee dealing
with the papers to be dedicated to Professor Nagaoka to commemorate the twenty-fifth
anniversary of his professorship. A part of this paper appeared in the Japanese Journal
of Physics, 1 (1922), pp. 7—I9.
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Zhe following lines are to be added 20 the botion of

which is evidently positive since 7 >a.

For large values of ¢ taking the terms of the lowest degree in 1/2

we get v
2 b4
20 _ Caq (I— v ), (33)
at qvtt \ 2vt

which is regative for sufficiently large values of 2.
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88 Kwan-ichi Terazawa.

several proposals to prevent their appearance were offered and some
revision of equipments was tried. It seems, however, that it is extra-
ordinarily difficult, or rather impossible, to attempt to obtain air streams
without any trace of eddies in such meéhanism as we employ in a
usual wind channel. It is therefore desirable, if possible, to find to what
extent the eddies affect the results of the experiments made. By apply-
ing the theory of a perfeet fluid, this problem could be solved to a
first approximation, and some general features of the solution obtained.
But, in effect, as the accuracy of the experiments improves, it must
naturally be required, as pointed out above, to treat the problem by
considering the air as a viscous fluid. In spite of the importance of
such an investigation, little work has yet been accomplished, and more-
over, we have no sufficient knowledge of the nature of vortices in a
viscous fluid to throw light on the research of such a problem. It is
thus of vital necessity, first, to study the properties of vortices.

2. 1In the present paper, an attempt is made to investigate the
manner in which the vortices in a viscous fluid dissipate, when they
are once created in some part of the fluid and are left to themselves.
Owing to the lack of experimental data this work is throughout theo-
retical, and yet it seems to be sufficient to reveal in what manner the
e;ddies die away, the cause of which may be considered to be mainly
due to the viscosity of the fluid.

The fluid, which may be air or water, is assumed to be viscous
and incompressible, and to fill up the whole space without any obstacle.
The assumption of the incompressibility of the fluid may introduce some
error into the result, but so far as the velocity of the fluid is small
compared with that of sound, this may besconsidered not to be very
serious.”? If we took the compressibility of the fluid into account, the
analysis would only become very complicated ; and we are now obliged

to leave this matter to another occasion. ‘

(1) Lord. Rayleigh, Tech. Rep. of the Adv. Comm. for Aeronautics, London, (1910-11),
p. 26.
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As to the vortices, we consider them, again to avoid complicated
calculations, as rectilinear, distributed symmetrically” about an axis.
Starting by solving the equations to determine the motion, we complete
the solution, in a quite general form, answering to any initial distribu-
tion of eddies. Several examples are given, some of them worth notice

as of practical importance.

General Solution.

8. The equation of motion of a viscous fluid, free from the action

of any external force, is

Do _ T grad p-l—i v grad div v—v curl curl p,
Dt P 3

where v and p denote the volocity and the pressure respectively, p the
density and » the coefficient of kinematic viscosity of the fluid. The

equation of continuity expressing the incompressibility of the fluid is
div p=o.

According to the assumption made, the motion is symmetrical about
an axis, and moreover it is the same in all planes perpendicular to the
axis, t.e. two dimensional motion with a point of symmetry. Thus if
we take the centre of symmetry as the origin of the polar coordinates
(7, 8), the velocity and the pressure at any point are independent of 6.

The equations of motion and of continuity in this simple case reduce

to.
ou Su v 1 Op (2 _u>(l) .
8t+uar ro p8r+v v ”/, )
ov ov |, uv _ 2, U
Srtuget = (vo-a) @
and m_—_—o, (3)
or

(1) ySee e.g. G.B. Jeffery, Phil. Mag. 29 (1915), p. 452.
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in which %, v arc the velocity components in the 7 and @ directions

respectively, and Vv* stands for the operation

, O 1 9
V“8ﬁ+r or

From the equation (3) we have at once
UY=—, (4)

where ¢ may be a constant or a function of time. To make the ma-
thematical analysis simple let us suppose that it is an absolute constant

arbitrarily given.

When ¢ is zero, the radial velocity at any point is ni, and
consequently the motion presents itself as circulating about the origin.
When ¢ is not zero, the radial velocity at the origin becomes infinitely
great, and therefore in order to render the case physically possible we
may have to consider that the origin is excluded from the region under
discussion by a barrier of an infinitely small extent, or more dynami-
cally, that a source or a sink with its strength proportional to ¢ is

situated at the origin.

Putting the value of % found in (4) into the equation (2) we have

v c Ov

cv
E R

or? r Or e

{azv+x ov v}’

to determine the component v. When we find the solution of this
equation, and substitute it, together with the value of % above obtained,
in the equation (1), we have an equation which serves to determine the

distribution of the pressure.

If we suppose that v is proportional to e—+k%* with respect to time,

the above equation transforms to

% (o) (o
8r2+r'1 v 8r+ r? +v g=0
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The solution of this equation is easily found to be, omitting the time
factor,

¢
v=r?% Jl,,_zc_(kr),
14

where () is the Bessel Function of the n th order.

Thus the typical solution for v is

v:Ae“’kztrEJHziv(kr), (5)

4 standing for any constant.

4. Let w2 be the rectilinear vortex whose axis is perpendicular

to the coordinate plane; then, as w and v are independent of 6, we
have

1 9(rv)

W= —
r or

By using the value of v obtained in (5) it follows that

w=Ake "y J, (kr), (6)
where
n=_2F (7)
2v

8. For the generalization of this expression so that it may repre-
sent the vortex motion subjected to any given initial distribution of w,
consider, as often we do in Fourier's analysis, the arbitrary constant
4 in (6) to be a function of k of the form A(k)dk and sum up all

the expressions thus formed for all*admissible values of k. Thus we

-can write

w:-.er (%) e T, (k) & dke.

0
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Suppose the initial distribution of @ to be given in the form
wy,=f (r), for t=o, (8)

where f(7) is any function of r at our disposal, then comparing this

with the above, we must have
£ :r"S " A (k) J, (kr) E dk.
0

Solving this equation for A (k), by the aid of Hankel’s reciprocal

relation’ ) we obtain

A (k):S” F(o8) I, (foex) 0" ™™ e, ()
for

n>-—I.

Therefore the general solution appropriate to the initial condition

(8), n being as defined in (7), is
- ""r e~ . (lr) ke dkr £ (o) iy (Fecs) o ™ o, (10)
0 0
provided that

n>—1, or c¢>-—2v.

The expression (10) can be partly integrated, by making use of

the formula

Swe—Asz;l(k'yj Jn (koc)kdk_—_—_l_e—rz:az];‘(ﬂ_)&)
0 24 28 /)

where

I, (x)=1t-nJ, (ix),

(1) N. Nielsen, Cylinderfunctionen § 14o.
(2) N. Nielsen, l.c. p. 184. Most integrals occuring in this paper are effected by the

aid of similar formulee found in his book.

This document is provided by JAXA.




On the Decay of Vortical Motion in a Viscous Fluid. 93

in the form

,rn
w =
2vt

or I—-n
o dos. 1
2vt ) (11)

W OT A
0

Either of the formule {10) or (11) may be used for the evaluation
of the distribution of vortices at any time according to the form of the

given function f(r). A number of special examples will be given in
the following paragraphs.

The case of no dynamical effect.

6. It will be convenient to consider first the simple case in which
there is no dynamical effect, i.e. no radial velocity, as it is in this
case easier to comprehend the manner of dissipation of vortex than in

the general case. The solution to this special case is as follows :

When
wy=f(r), for t=o, (12)
then
wzr e—"k”,fo(kr)kdkr F(02) Ty (ot ez dlo, (13)
0 0 :
or
0= e_%rf(oz) e~ L2 )oadoz, (14)
2vt 0 \ 2vl

for any time.(r)

7. Let us take, first, the simplest example in which the initial

condition is given in the from

w(,:%, for {=o0, (15)

(1) It will be noticed that this simple case has the same form of solution with that
in the conduction of heat in a similar case. ’
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C being a constant. To realize this distribution physically makes a
necessity of having an infinite amount of energy, but this example may
serve to afford a simple idea of the decay in question. In this case,

since
r F(e8) o (o) ot e = OS” J (fot) doa:%,
0 0
we have |

0= oj e . (ker) . ‘
’ 0

After performing the integration, we obtain

—
w=0’\/ il e"s_szo( r ) (16)
4vt 8vt

for the value of @ at time &

Fig. 1 is drawn to illustrate how fast the vortices in a viscous

fluid dissipate, when they are initially distributed according as (13).

“
’i[’
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The ordinate is taken as the value of ®, for the times {=o, I[8v,
1/4v, 1|2y, 1]y, and the abscissa the value of the distance r from the
origin, both in arbitrary units. The constant C is put=1.

At the centre we have

W= OJ K ,
4vt

for finite values of £. The strength of the vortex at the centre decreases
at a decreasing rate as time increases; this will be seen from the figure.

For large values of », taking the first term of the asymptotic ex-
pansion of the Iyfunction, we have approximately

W=
r

Thus at a great distance from the centre the distribution of vortical
motion does not change much from the initially given state. This is

also shown in the same figure.

8. Next suppose that the initial condition is given by

w,=Ce~ ez, for t=o, (17)

a being a constant. This distribution of vortices is such that by taking
a very small it approaches to the case of concentrated vortices, of finite
amount, at points very near to the origin, and may be looked upon as
the isolated vortex usually observed in nature. By integrating the ex-
pression (17) multiplied by 2#rdr over the whole coordinate plane, it
will be easily seen that the total amount of vortices is ma*C, and the
parameter @ may be considered as the effective radius of the vortex
initially given.

In this case use is made of the formula (14) to evaluate the distri-

)ocdot.

bution of @ at any subsequent time. Thus

r2 oo 1 1
w:_CL e o e“(3:+7v7)°" ]6(
2vt 0

oy
2vt
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This gives us, on integrating, simply

w=_00 o ~har. (18)
o’ 4+ 4vt
In Fig. 2 we take a=1 for an example. The curves in it repre-
sent @ at t=0, 1=8v, 1[4», 1[2v. We can grasp from the figure that
when initially a given amount of vorticity is concentrated at a point, it
decreases rapidly in strength at that point, and at the same time spreads

out in all directions.

Fig. 2.

At the centre we have

_ Ca?
a*+4vt

@ (19)
The rate at which the vortex at the centre decays is much larger than
that in the last example. '
The time 7 at which the strength of vortex at the centre becomes
1/2 of the original value is
az
4v

T=

’
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proportional to the square of the effective radius of the initial vortex.
For air, if we assume v=o0.13 c.g.s., wWhen a=1,
T=2 SEC.
For water, if we take »=0.01 c.g.s.

T=2§5 8ecC.

In the atmosphere v increases with the height, and accordingly we
may, by applying the result of this example, suppose that the vortical
motion at a high altitude dissipates more quickly than that near the
ground. Thus, at a high altitude the state of motion of air may well

be considered to be comparatively uniform, and one may find there a

safe region for flying.

9, Let the initial condition be

re
wy=Cre a, for t=o. (20)
This distribution is such that there is no vorticity at the centre, and a
maximum intensity appears at a little distance off the centre. In this
case, by using the formula (14),

72 B 1 1
w=_C e—mg e"($+zr)°"jo( or )o&d«x.
2vt :

A little calculation gives us the result :

Ca'a‘l/_;;z 2 a2+8vt [I( az 7,2 )
ol ————————

W—=— Y " e tvt az+ive .
(a® + 4t 8vt (o + 4vt)

a’*r’ a’r? a’r’
M )T
+ 8vt (a* + 4vt) { "\ '8t (a® + 4vt) th 8vt (a® + 4vt)

At the centre we have simply

_ OdVmt
="
(0?4 svt)*"
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It is interesfing to observe that, calculating the time rate of ®, near
the centre, where there was no vortex .initially, a vortical motion be-
gins suddenly to set in and continues to grow until the time ¢=aq?%8v
is reached, when it has a maximum value, and after that time it sub-
sides slowly at an increasing rate. F ig. 3 shows the approximate
features of the distribution of vortices for the times ¢=o, 1/8v, 1/4v,

1/2v, when a=1.

From this example it can be

:L ' seen that when a group of rectili-
near parallel vortices is distributed
forming a hollow cylindrical shape,
il ) it will rapidly collapse towards the
Centre, leaving no free part in the

“ e interior, and producing, after a
while, a maximum strength at that

o

point, after which it will gradually

dissipate. A similar example will

0 : y . be given again presently in a later
Fig. 3. paragraph.
10. So far the examples considered are exclusively such that the
initial distribution of vortices spreads over the whole space, though
their effective part is gathered into a finite region, with decreasing '
strength as the distance therefrom increases, Now let us take an
example in which the initial vortices are limited to the finite region

of a circular cylinder, and have a constant intensity, without which

there is no vortex motion ; i.e.

w,=0C, for r<a,

(22)

3 =O’ » "‘>a,

when {=0, @ being the radius of the cylinder.
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In this case we have to calculate

0= OS” e~ J. (k) & der[, (Feer) ot oo,

0 0

to obtain the value of @ for any time and at any point. The process

of integration in this case may be worth sketching in a few lines.

Since

S Jy (eer) o doe=-2 J; (ka),
0 k
the above expression becomes

0= O’ar e~ T (k) o, (kar) dk.

0

Now by the aid of Neumann’s addition theorem for J; (kR), it is easy
to show that

Jolr) J; (ko) =" (k) 2= 25

0

where

R=V'a*— 2ar cos 0 —

Therefore

wzgﬁg"i—_ﬂ"ﬁdasm e~ J. (kR) dk.
™ Jo .R 0

On carrying out the second integration, we get

' Ca (™ R2 ) a—7r cos
= —€ g —m———————— d@. 2
@ - So {[ € au } 7 (23)

It can easily be found, by making use of the consine-series for

(a—r cos 0)[ R?, that
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" q—7cosf T )
‘ atrlag=",  r<a

v0 a

3 =0, r>a,

and, of Hansen’s integral formula for o/, (z), that

R2 a?+r2 ©
" a—1rcosd —5 T = r \™ r
_‘_z__r’o_s_e o g — PR Z‘!( >Im a ’
0 .R- a

o\ a 2vt

_ a24r2 o m a,r
- l e - ( a ) Im( ),
a —\r 2vt

Substituting these values of integrals in (23), we obtain

a2+r2 ®

0=C—-Ce * S(L)L(Z)  r<a

mo N a 2vl

az+r2 <]

99 = 06— e (L)ml;n( ar ), r .
g r 2vi ~a

t=0

ra,

r>a.

(24)
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Numerical calculations have been worked out for the case a=1
in the above expressions. The results. of these are shown in Fig. 4.
The curves in it represent @ at {=o, 1/8v, 1[4, 1]2.

At the centre of the initially disturbed area we have, by putting
r=0 in the upper formula of (24), that

wWy— @ a2,

—=e ot . (25)
o
If we look upon the quantity (w,—®)/®, as the measure of decay of
vortex, it increases, at the centre, rapidly with time. The time 7' at
which the amount of decaye at the centre becomes e~ of the original

strength of the vortex is
=2, (26)
4v

again proportional to the square of the radius of initial vortex.

For air, if we take v=0.13 c.g.s., we get, when a=1,
=2 sec.
nearly. For water if we take v=o0.01 c.g.s., then

T'=25 sec.

1. To sece what takes place at the periphery of the circle, along
which initially a discontinuous distribution of vortices exists, will be of
interest. Both the formulae (24) converge to the same expression

w:—O—{I—C—%IO( o )}(1) (27)

2 2vt

<

which may be obtained, except when t{=o0, by putting r=a in either
of them. Thus we have at the point just inside the circle

M:_L{[_*‘e——;%k( a’ )}, (28)

@y 2 2vi

(1) When we put =0 in this expression, it does not afford the initially prescribed con-
dition, but the mean of the values at points just inside and just outside the circle, as usually
the case in the expansion ef discontinuous function. This remark applies also to (29) and
(30).
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as the measure of decay.
For small values of ¢, taking the first term of the asymptotic ex-

pansion for the I-function into account, we get

L=l 5

For large values of ¢, we obtain approximately

o :—I-{I +e—_za:%}. (30)
@ 2

From (27) or (29), it appears that, for small values of ¢, the strength
of the vortex at the point very near to the periphery of the circle is
nearly @2, never exceeding this value. Thus at the point just inside
the cylinder the strength of the vortex will decrease suddenly to half
of its initial value and the vorticity will be communicated to the neigh-
bouring part of the fluid which was initially just outside the cylinder.

Taking the ratios of (27) to (29) and to (30) it will be seen at
once that, for small values of ¢, the measure of decay at the centre is
much less than that at the periphery, and ultimately, as time advances,
they tend to the same limiting value, when the vortices will altogether

dissipate.

12. The rate at which the vortex grows up at the points initially
undisturbed (r>a) is obtained by differentiating the lower formula of
(24) with respect to £&. Thus

v O e~ e Z”(%)m{(a2+ﬁ) Im<a_rt>_2arpm(ﬂ,)}, (31)

R 4t o 2v 2vt

the dash denoting the differentiation with respect to the argument.
For small values of £, taking the first term of the asymptotic ex-

pansions of I, and T, into account we find

o C (7._ a) _(r-a)2 ( a )%
_— . 7 » 2
ot 4 ¢ wort’ (32)

which is evidently positive since r>a.
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" For large values of ¢, taking the terms of the lowest degree in 1/t

we get

0 _ _Ca®( 7\~
ot 4vt2(l zvt)’ '(33).

which is negative for sufficiently large values of &.
In this way, at any point initially free from vortical motion, the
vortex develops at first, at a considerable rate, to a certain amount,

2 attaining its maximum st-
ot

ol rength, and then ultimately

dies away at an evanescent

ast rate.

The courses of ® and

of dw[ot for the point r=2a

04
ok are exhibited in Fig. 5, in
which the abscissa is the

oz value of vt[a*; the scale of

. the ordinate for each of
XY o

them is quite different, that

for @ being much enlarged.

From the figure can be seen
Hr what we have stated in the

Fig. 5. above.

13. Egualizer in a wind Channel. The result of the example in
the preceeding three paragraphs may find its application in determining
the position of the equalizer in a wind channel. Usually in a wind
channel an equalizar of honeycomb shape, made of some sheets of
metal, is placed ahead of the experimental post to which the model is
attached. Suppose that the equalizer is made of metal sheets of 1 mm.
thickness and that a uniform air stream passing this forms, at the point
just leaving it, an eddy of 1 mm. in its diameter. This eddy will drift
along the general current decreasing its strength in its course. The

amount of its decay can be approximately calculated by using the
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equations in the preceeding paragraphs, provided that the dynamical
effects are considered to be negligible. Thus in the formula (26) if we
put @=0.05 cm., we shall have 7/=0.005 sec.; in words: the time in
which the strength of the eddy becomes 1—e™), or nearly 639% of its
initial strength, is 0.005 sec. During this time the eddy will be carried
away down the stream asfar as accords with the velocity of the general
current. The distance covered in this way by the vortex in the inter-

val 0.005 sec. is as follows :

velocity of wind in m/sec. distance covered in cm.
10 5
20 10
30 I5
60 30
100 50
150 75

These figures may be utilised to determine approximately the re-
lative position of the model and the equalizer, when the velocity of the
general current is given, according to the required degree of accuracy
of the experimennts. Conversely, in a wind channel where the relative
position of them is fixed, the accuracy of the experiments may be
prejudged in connection with the velocity of the stream. But, from
the fromula (26), the time 7/ is proportional to the square of the thickness
of the sheets, and, as we usually empoloy thinner sheets than those given
in 'the above example, the figures in the second column in practical
cases will become far smaller; and thus the effect of the vortical motion

due to the equalizer will not be very serious in usual wind channels.

14. Lastly we consider the case in which the vortices initially
distribute themselves along ‘the circumference of a circle of radius a
with an infinitely small thickness 8a, forming a sort of cylindrical

vortex sheet; to be precise :—
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w,=0, for r<a,
»=C, , a<r<a+da,
» =0, ,, a+oa<lr,

when {=o.

Inlthis case making use of equation (13), we have

0= CS” e T (r) T dkgaﬁi',' (kee) ot dls.
' 0 a
Since

SJO (ket) adoc:_;?Jl (kot) Fect,

(34)

if we neglect (8a)® and higher terms in it, we get, on writing A for C8a,

szaS” e, (ka) J, (er) & db.

0

L-d
-
b
oo
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On carrying out the integration, it follows that

0=A0 —0r 10( ar ) (35)
2vt : :

The same result may of course be arrived at, to the same order of
approximation, on starting from the general equation (14).

In Fig. 6, the approximate curves of w for the times (=1 /12v,
1/8v, 1]4v, 1|2v, taking a=1, 4=1, are shown.

The position of maximum intensity of @ may be found by putting
the right hand side of the equation .

Qw Aa{ (ar) '(m- )\ _aler®
= I —r T,
or 476 %4 2vt th 2vt Je ”

equal to zero. As we have always.

5L>1,

for all real values of the argument, the value of r giving the maximum
position of @ must be less than a@; and obviously r=o0 makes the
above expression vanish, affording an extremum value of w. More
detailed investigation will show that for small values of { a maximum
of ® appears at the point whose distance from the centre is very little
less thg.n a, and a minimum at the centre, and .that as time advances
the maximum point travels towards the centre, coalescing at last with
the minimum point r=o0, when the centre is transformed to the point
of maximum strength of the vortex. In this way, if, in a viscous fluid,
an isolated cylindrical vortex sheet is once created, its effective radius
becomes smaller and smallcr,' tending to collapse towards the centre,
and then it dissipates in such a manner as we saw in many examples

in preceeding paragraphs.

15. It will be interesting to consider the case in which two coaxial
cylindrical vortex sheets such as discussed in the preceeding paragraph
exist at the same time. Indeed if these were not coaxial it would be

more interesting and important in practice, but, in the present investi-
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gation, such a general case is unfortunately excluded and must be left

to,be"studied on another occasion.

In this case the initial conditions are:

‘Wy=0, for . . r<bh

=0, .  b<r<b+8h, ,

,, =0, . - b+8<r<a, (36)
L, =C . a<r<a+da,

,, =0, . atda<lr,

when {=o0.

On writing 4 for C8a and B for ('8b, we shall have

1 _.rz ar \ _% br \ 2
— 1 a4 I(—) : Bva<_-) S }
© 21/66 ”{ . 2vt e 0 2ut ¢ (37)

up to the second order in éa and 86,.~

The question is what will be;,'the mutual interference of these two
systems of vortices when they are created at the same time and left
to themselves. Anyhow, as we know from the preceeding examples,
the vortices spread out thrgiigh _the whole space distributfng themselves
in a proper way; but wﬁere will"be the centre, if any, of the joint
existence ? The ce,ntrgl,'x or the point at which the strength of the
resulting vortex " is max1mum will bé'”fOund as usual . by obtaining

w[dr and putting the result equal to zero.” Thus
:: ‘ ‘ B oy y a2 - ‘
Aa{ajl(ﬂl _TIO(ﬂ'_»e‘TF |
2vt 2vi '

+Bb{b I, (ﬁ"_)_ , L(ﬂ)};f%zo,
2vt 2vt _

1t can be seen without laborious calculation that when

(i) 4 and B are of the same sign,

there is one value of 7 such that b<r<a for which o0 /ar vanishes, at
least for small values of ¢, and for the values of r greater than a it

is constantly negative. On the contrary, when
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(ii) 4 and B are of different sign,
there can be one value of » in the region r>a which makes Sw[or

vanish, and between b and a it is of a definite sign.

When r=o0, 90[0r vanishes for all values of ¢ Although this
affords a maximum or a minimum value of ®, this point,“for3the pre-
sent, does not play an important role and may be dispensed with, as

the existence of extremum values of ® at the origin may be ascribed to
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the property of one hollow cylindrical vortex sheet but not of the joint

action of two systems of such vortex sheets.

" From the above analysis an interesting result may be enunciated;
viz., when two coaxial cylindrical vortex sheets are created at the
same time théy tend to approach each other, coalescing if the sens of
rotation of the two is the same, and, on the contrary, flying apart if
the sense of rotation is different. These properties' may be observed vi‘n
Fig. 7, in which the resultants of two vortical systems are approxi-
mately exhibited. In this figure we take as the one vortex system : radius
a=1 and intensity 4=1, and as the other: b=1 [2, B=+1. The upper
three curves are for the case 4=1, B=1,4e. 4 and B are of the same
sign, at the times §=1[12y, 1/8», 1[4»; and the lower three are for the
case 4A=1, B=—1, i.e. they are of opposite sign, at the same times

as the above.

16. Okada’s law in meteorology. According to Dr. S. Fujiwhara(®,
if two vortical motions exist in the atmosphere at the same time, they
tend to approach one another, when they have the same vortical sense,
and they tend to repulse each other when they are of the opposite
sense. He says that this law was deduced many years ago by Dr.
T. Okada in the Central Meteorological Office in Tokio from a number of
observations of cyclones and is called by his name among some mete-
orologists in Japan. This law, established statistica"lly,‘ is not _only"
important in practical meteorology, but is very interesting from the
theoretical point of view. In effect, it is a well known fact that if two
rectilinear vortices exist in a perfect fluid they rotate round each other
with the centre at the mean point of their distance when the sense is

the same, and travel along a certain direction through the fluid without

(1) FEHRMIEET—LEXR BYHREEN, ME/ EURLKE Alo see: the
same author, On the Growth and Decay of Vortical Motion. Bul. Meteorological Observatory.
Tokyo. 3, No. 4.
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changing their mutual distance when the sense is opposite. Long ago,
in his splendid work on the theory of motion of the atmosphere, the
late Professor J. Kitao!™ obtained a series of remarkable theorems some
of which may be looked upon, at least in some cases, as the general
basis of _Okada’s law. He considers the étmosphere to be, so to say,
a semiviscous jluid or in other words, subjected to the frictional force
due to the rotation of the earth and transmitting the force vertically
with more or less decrease as the height from the surface of the earth
incfeases. He says that two cyclones in the atmosphere approach each
other rotating. about their middle centre in the cyclonic sense, while
two anticyclones separate themselves rotating about their middle centre
in the anticyclonic sense. Since, in Japan, cyclones are usually observed
and one may well deduce statistically the law concerning the coexistence
of two cyclones. The first part of Okada's law affirms the first part
of Kitao’s theorem, but the second part docs not. On the other hand,
Kitao further says that when a cyclone and an anticyclone occur at
the same time they approach each other or separate, describing spiral
orbits in the sense of cyclonic or anticyclonic, according as the strength
of the cyclone surpasses that of the anticyclone or not. Thus the second
part of Okada’s law does in one case confirm this statement, and does
not in another. Kitao’s atmosphere, however, is of a particular nature
as ysﬁated’ in th¢ above, and the viscosiﬁy of air in its ordinary m,éaning
is not faken into account. Consequently .it cannot well be said that
his theorem, though elegant in its form, govérns all the phenémena of
the real atmosphere. At any rate, if the law discovered through
neteorological observations by Dr. Okada is true, it is desirable to

>stablish the theoretical basis on which it stands.

We' have obtained, in the preceding article, a similar result

(1) Beitrige zur Theorie der Bewegung der Erdatmosphire und der Wirbelstiirme.
ournal of the College of Science, Imperial University Tokyo. 2, part 5 (1889), p. 330—.
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to Okada’s law in connection with two systems of vortices, considering
the air as a viscous fluid. The analytical result obtained, however,
concerns only the case in which two vortical systems are of coaxial
cylindrical sheets, but not two systems of random distribution. There-
fore it cannot be regarded as a theoretical interpretation of the law in
hand, but it may well serve as a demonstration of a special case. A
satisfactory treatment in the general case will be undertaken on another
opportunity. At present, the author is content with only slightly
touching on the above law and a recollection of the said theorem, both

enunciated by Japanese meteorologists.

Case with dynamical effects.

17. Hitherto we have been exclusively concerned with the simple
case in which there are no dynamical effects, and many examples with
interesting and important result have been illustrated. In the following
we shall give a few examples of the general case in which dynamical
effects give rise to results. Here by dynamical el;'fects is meant the
existence of the radial velocity u, obtained in §3 as a possible solution
of the general equations of motion. The investigation of this case may
not play an important part in finding simple properties of the vortices
themselves as in the case previously cvonsidered, yet we may have
interesting results from examining special examples in this general case.
The solution to this case is given in (10) or (11) answering to the
initial distribution of vortices such as expressed in (8), the radial velo-

city » being prescribed as in (4).

18, Let us take, first, the example which has been considered in

§ 7 with the initial distribution of vortices as

Qo:-g-, for .t:—o,, S , . (38)
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but with the radial velocity

In this case we have n=1, n being defined in (7), and
0= O’rr e~ ], (kr) b k.
0
- Performing the integration we shall obtain the expression
—_ 2 2 2\ 2 ‘
w=C I_Le‘?vz“{[(f_>_j( T )} ' 0
vt 8ut Nawt/ 7\out | (40)

as the distribution of @ at any time.

w
2=

(2l

[ 2]

Fig. 8.

Fig. 8 is the general representation of the distribution of vortices.
The curves in it are » for the times o, 1 [8v, 1/4v, 1 [2v, the abscissa
being 7 as before.

As we see from the figure, the intensity of the vortices near the

point r=o0, where it was initially greatest, is evanescently small, while
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there appears a maximum intensity at the point a little distance off.
This maximum travels outwards as time advances, which may be
ascribed, on comparing the above figure with Fig. 1, to the existence

of the radial velocity.

The very point r=0, however, must be put aside out of the con-
sideration, since the analytical method employed in obtaining the general
solntion in § 5 is not valid, in general at this point, unless the order of
the Bessel Function involved is zero, which is the case of no dynamical

effect. This remark will apply to all the following paragraphs.

The maximum point of @ at any instant can be found by differ-
entiating the expression for @ with respect to » and putting it equal

to zero. In this way we have the equation

:vzt {Ib( Sit )—Il( 87:5 )}—IU( Sr;t ):O' (41)

to determine the value of » for which the intensity of @ is maximum

at time . To solve this equation may not be very difficult, but it
will not reward the labour, since the example in this paragraph is not,

as stated in § 7, very important in its practical application.

The velocity U with which the maximum point travels can be
obtained by finding the value of Or[0f from the equation (41). A little

calculation will give us simply that

o v

2t W

t

where 7, is the root of the equation (41). From this we see that the
most intense part, in this special example, of the vortical motion is not
composed of the same fluid.
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19. Next consider the initial distribution of @ such that

re
w,= Ce oz, for t=o.

(42)

This example has been discussed already in §8 in the case of no

dynamical effect. Let us now superpose the radial velocity

u="
r

on the above vortical motion.

Making use of the formula (11) we have to calculate

72 A® 1 1 -
0= e‘(37+m)°""'L( @ -)doa.
2vt ) 0 2vt

(43)

The evaluation of this integral can be effected _in terms of Bessel's

modified function of the order 1/2 and ﬁnélly we shall arrive simply at

r2 re
©= O’{e— azrave e}e"ﬁ}.

Fig. 9. | _

(44)

Fig. g shows the approximate courses of @ at the times o, I (8,

This document is provided by JAXA.




On the Decay of Vortical Motion in a Viscous Fluid. 115

1 ]4y, I [2v, taking a=1 as before.

Again we have the point of maximum intensity for each instant, and
this point travels, as in the last example, outward from the centre.
The position of this maximum point is easily found from

)log(l + :ft ), (45)

7"12:41)[2(1 + 41}:

a
for any value of & The velocity U with which the point of maximum
intensity travels is

U .—_'_.TL 1 +,_£_t____)-—u_
2t af 4 4vt

It can be computed that this velocity is less than that of the fluid
particles for the finite values of ¢, and as time increases indefinitely the

former converges to the latter, both being of course inflnitely small.

The maximum intensity of the vortex for any time £ is obtained
by substituting the value of #, found from (45), in (44), and if we

write o,, for it, we have

v

Co? ( a? )“ a2
@, = I . 6
a4 4vt + 4vt (45)

By comparison of this value with that of (19) we see that the maximum
value of @ found here is always less than the corresponding value in

the case of no dynamical effect.

The type of the initial distribution of the vortices considered in
this article, as stated already in §8, is of common occurrence in nature
and it is worth while to pay special notice to it. From the above
we see that when there is a source of a certain strength, as in (43), at
the vortical centre, the most intense part of the vortical motion travels,
as might be imagined, outward with a velocity decreasing with time but
always less than that of the fluid due to the source, and that the decay
of the vortices occurs more quickly than when there is no source at the

centre.

This document is provided by JAXA.




116 Kwan-icki Terazawa.
20. Take the initial distribution of vortices such as
wy= O’r’e"a—;, for t=o, (47)
with the radial velocity

U= (48)

This example may be considered as a special case of the initial
distribution such as

r2
wy= Cr*™e ™z, (49)

when m=1. In this latter case we have to calculate

ny r2 o 1 1
0=C" e j- e~(ar +ae) o Im( or )oa”‘“doc.

2vt 0 2vit

=0
o3

02r

il =
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On carrying out the integration it follows that

o a?. m+l r2
W= T‘m(—-—) e az+évt (50)
a? 4 4t

Putting m=1 in this expression we get

” az 2 re
= C'r*(__.__) e azadnt (5 1)
o? 4+ 4vt

as the expression for the vortical distribution answering to the pre-

scribed conditions (47) and (48).

The approximate courses of the distribution at the times o, 1/8v,

1/4v, 1]2v are drawn in Fig. 10, taking a=1.

The point at which the vortical motion is most intense can be

obtained in the usual way and is found to be determined by
7' =0+ 41,
for any value of . The traveling velocity U of this maximum point

becomes

2y
U= =Uu,
7

being equal to that of the fluid due to the source at the centre. This
property, as may be easily calculated, is common to every vortical
distribution corresponding to the condition (49) with any admissible

value of m. Another example of this property will follow immediately.

21. Next consider

wO:C're_?:T, for t=o, (52)

with the radial velocity
u="2_. (53)
r

This initial distribution of vortices has been discussed previously in
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§ 9, but without the dynamical effect. The present case is also a
special one of (49) with the value of m=1/2, and consequently the ex-
pression for @ at any time is obtained by putting m=1[2 in the formula
(50); thus

2 2 re
w=Cr (_a_)ge_ azaavt |
a2+4'/t * - (54)

Fig. 11 represents the distribution of @ for the times o, 1/8v, 1[4,
I[2v in the case a=1. Comparison of this figure with F xg 3, which
corresponds to the same initial condition but without the radial velocity,

will serve to see the effect of the existence of the source at the centre.

(X3 o

e3r

! { = Jr
° . z 3 -

Fig. 11.
The point at which the vortical motion is most intense is found from
2 _ 1 2
71 =——(a*+4vt),
2
and the velocity of travel of this maximum is

v
U:—:u,
r
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again equal to that of the fluid due to the source.

22. Again consider the same initial distribution of vortices as in

the last article, z.e.,

r2

w,= Cre"ax, for t=o, (55)
but with different radial velocity

=22, (56)

In this case, employing the formula (11), we have

2 72 ;v 1 1 2
0="0" e"Tch e~z tae)e L( ar )doc,
2vt 0 2vt

and performing the integration we obtain

. re 4w 2.2
©— Cal/; 72 e—év—t(l-’- az_'.ivt )L(G—T) (57)
2 Vi@ +avl) 8vt (a® 4 4vt)

Fig. 12 exhibits the approximate vortical distribution for the times
o, 1/8v, 2[4v, 1/2v, taking again a=1 and C=1I.
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The maximum point of the vortical distribution will be found by

solving the equation

(: +- 20 [ ()= 1B,

a

where

2: azrz
8vt (a®+ 4vt)

The velocity U of travel of the maximum point cannot be obtained
as in the former examples, but we may estimate from the figure that the
velocity U is less that that of the fluid due to the source. The initial
distribution of vortices in this example is the same as that in the last
paragraph, but the radial velocity % in each of them is different, that
for the former being four times as large as that for the latter. Thus
the strength of the source makes, as might be expected, its effect on

the travelling velocity of the most intense part of the vortical motion.

23. So far, we have been considering only the case in which the
origin is a source. In this closing paragraph let us take the other
case, having a sink at the origin, though the result of this is not very

interesting.

Assume the same initial condition as that in the two preceeding

articles, t.e.

r2

wy=Cre¢ ez, for t=o, (58)

but with the negative radial velocity

U= —— (59)
r

In this case we have to find the value of

om e ) L2 )b

_—T‘*e
2vlV r 0 2vt
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By expressing the functien I_ 3 in terms of hyperblic functions, we get
finally that

' 2 § 2 re
w=0_0 2v6 ( - ol );-{ 1 +._ﬁa2_r___,}e_ az+evt . (60)
r \a’+4vt 2vt (a* + 4t)

The approximate course of the distribution of vortical motion is
shown in Fig. 13. The curves in it are for w at times o, 1/8», 1[4v,

1/2v, assuming a=1.

As will be seen w
from the figure, when
there is a sink at the  ®¢[ =<
centre of initial dis-
tribution the vortical
motion will tend to 93
accumlate near that
point. Other exam-
ples with a negative o021~
radial veldcity has
been tried, but the
results are not, gene- o0l
rally, much different
from that of the pre-

sent example. 0

Examples in Fig. 13.
which the maximum

point travels towards the centre have been sought, as one might imagine
it would involve the case of a sink at the centre, but, so far, no in-

teresting results have been obtained.

The only defect of the analytical method used in the present
paper is, as mentioned already, that the condition 2> —1 (eq. 9) must
be satisfied, viz. a sink of an arbitrary strength cannot be assumed,

contrary to the case of a source.
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Tables for plotting the curves.
Table 1, (for Fig. 1.)
t=o0 t=1/8 t=1/4v t=1/2y t=1/v
r w r w r w r w r w
0.30  3.3333 0.000 2.4808 0.000 1.7542 0.000 1.2404 0.000 0.8771
035 28571 0.224 2.3612 0.316 1.6696 0.448 1.1806 0.632 0.8348
040  2.5000 0.316 2.2503 0.447 15012 0.632 I1.1252 0.894 0.7956
0.45 2.2222 0.447 2.05I15 0.632 I.4506 0.894 1.0258 1.265 0.7253
0.50  2.0000 0.632 I1.7301 0.894 1.2234 1.264 0.8651 1.549 0.6117
055 18182 0.775 1.4868 1.095 I1.05I3 1.550 0.7434 2.19I 0.5257
o.60  1.6667 0.894 1.3003 1.265 0.9195 ‘ 1.788 0.6502 2.530 0.4597
0.70  1.4286 1.000 I.I555 1.414 0.8171 2.000 0.5778 2.828 0.4085
080  I.2500 1.095 I.0414 1.549 0.7364 2.1g0  0.5207 3.098 0.3682
090 rIrrr | 1183 o.gs0o3 | I673 o0.6720 | 2366 04752 | 3.347 0.3360
1.0 1.0000 1.265 0.8765 1.789 0.6198 2.530 0.4383 3.578 0.3099
1.2 0.8333 1.342 0.8I59 1.897 0.5769 2.684 0.4029 3.795 0.2885
1.4 0.7143 1.414 0.7654 2.000 0.54I2 2.828 0.3827 4.000 0.2706
1.6 0.6250 1.549 0.6863 2.19I 0.4853 3.008 0.3432 4.382 0.2426
1.8 0.5556 1.612 0.6547 2.280 0.4629 3.224 0.3274 4.561 0.2315
20 0.5000 1.732 0.6029 2.449 0.4263 3.464 0.3015 4.899 0.2132
2.5 0.4000 1.844 0.5617 2.608 0.3972 3.688 0.2809 5.215 0.1986
3.0 0.3333 1.949 0.5281 2.757 0.3734 3.898 0.2641 5.5I4 0.1867
3.5 0.2857 2.049 0.5002 2.898 0.3537 4098 o0 2501 5.797 0.1768
4.0 0.2500 2.145 0.4760 3033 0.3366 4290 0.2380 6.066 0.1683
5.0 0.2000 2.236 0.4555 3.162 0.3221 4.472 o0.2278 6.325 0.1610
6.0 0.1667 2.449 0.4136 3.464 0.2925 4.898 0.2018 6.928 0.1462
7.0 0.1429
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Table 2, (for Fig. 2).

(X)

T t=0 t=1/8y t=1/4 v t=1/2y
0.0 1.0000 0.6667 0.5000 0.3333
0.1 0.9901 0.6621 0.4975 0.3322
0.2 0.9608 0.6491 0.4901 0.3289
0.4 0.8521 0.5990 0.4615 0.3160
0.6 0.6977 0.5244 0.4176 0.2956
0.8 0.5273 0.4395 0.3631 0.2693
1.0 0.3679 0.3421 0.3033 0.2389
1.2 0.2369 2.2553 0.2434 0.2063
Lg 0.1054 0.1488 0.1623 0.1575
1.8 0.0392 0.0769 0.0989 0.1I32
2.2 0.0079 0.0263 0.0445 0.0664
2.6 0.0013 0.0074 0.0170 0.0350
3.0 ©0.0001 0.0017 0.00 56 0.0166
3.6 0.0001 0.0008 0.0044
4.2 0.0001 0.0009
4.8 0.0002
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Table 3. (for Fig. 3).
t=o0 t=1/8y t=1/4v t=1/2s
r w r w r w r w

0.000 0.0000 0.000 0.341I 0.000 0.3133 0.000 0.2412
0050 0.0438 0.122 0.3411 0200 0.3I01 0.346 0.2341
0.I00 0.0990 0.173 0.34I0 0.283 0.3070 0.490 0.2271
0.200 0.1922 0.245 0.3407 0.400 0.3007 0.693 ©0.2137
0.283 0.2611 0.300 0.3402 0.490 0.20943 0.849 o0.2010
0.316 0.2861 0.346 0.3396 0.566 0.2879 0980 0.1839
0.447 0©.3661 0.387 0.3388 0632 0.2819 1095 0.I775
0.632 0.4240 0.548 0.3325 0.894 0.2500 1.549 0.1290
0.775 0.4251 0.775 0.3120 1.265 O0.Ig2I 2,191 0.0665
0.894 0.4019 0.949 0.2855 1.549 0.I439 2.683 0.0334
1.000 0.3679 1.095 0.2566 1.789 o0.1059 3.098 0.0165
1.095 0.3297 1.225 0.2275 2.000 0.0769 3.464 0.0080
1.183 0.2918 1.342 0.1997 2.19I 0.0553 3795 0.0039
1.265 0.2554 1.449 ©.1739 2.366 0.0394 4.099 0.0018
1.342 0.2218 1.549 0.1505 2.530 0.0279 4.382 0.0009
1.414 0.19I4 1.643‘ 0.1295 2.683 o0.01g7 4.648 0.0004
1.549 0.140%5 1.732 ©O.III0 2.848 o0.0138 4.899 0.0002
1.673 o.1018 1.857 0.0874 3.033 0.0081 5.254 ©.0001
1.844 0.061% 1.975 0.0684 3.225 0.0030
2.000 0.0366 2086 0.0533 3.406 0.0027
2.12I 0.0236 2191 0.04I3 3.578 o0.00135
2.236 0.0I5I 2.29I 0.0315 3.742 0.0009

2.387 0.0246 3.899 0.0005

2.510 0.0172 4.099 0.0002

2,627 o.12I 0.0001

4.290
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Table 4, (for Fig. 4).

r t=o0 t=1/8y t=1/4v I=1/2y
0.0 b 0.8647 0.6321 0.3935
0.2 I 0.8430 0.6176 0.3875
0.4 I 0.7785 0.5756 0.3699
0.6 1 0.6745 0.5III 0.3424
08 I 0.5411 04316 0.3072
10 — 0.3965 0.3457 0.2671
1.2 o 0.2620 0.2620 0.2250
14 o 0.1544 0.1874 0.1836
1.6 o 0.1262 0.I450
2.0 o 0.0524 0.0819
2.4 o 0.0404
3.0 o 0.0108
Table 5, (for Fig. 5).
vt vt 4 Pw_
a? @ a? Vot

0.200 0.0352 0.333 +0.6405

0.250 0.0472 0.500 0.2962

0.333 0.0628 0.625 0.1454

0.500 0.0819 0.714 0.0738

0.625 0.0886 0.833 +0.0I115

0.714 0.09I0 1.000 —0.0389

0.833 0.0922 1.250 0.0708

1.000 0.0915 1.667 0.0793

1.250 0.0879 2,500 0.0614

1.667 0.0785 5.000 ~0.0252

2.500 0.0651

3.000 0.0583
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Table 6, (for Fig. 6).
=112y =1/8y t=1/4v
r © r w r w

0.000 0.2987 0.00 0.5413 00 07358
0.100 0.3166 0.I0  0.552I 0.1 0.7357
0.200  0.3730 0.20  0.5829 0.2  0.7355
0.300 0.4537 0.30 0.6302 0.3 0.7343
0.400 0.5636 0.40 0.6948 0.4 0.7314
0.500  0.6887 0.50  0.7485 0.5 07255
0600  0.8144 060 08033 06 07134
0.700 0.9233 0.70 0.8446 0.7 0.7002
0.800 0.9982 080  0.8650 0.8 0.6976
0.900 1.0260 0.85 0.8659 0.9 0.6512
1.000 1.0000 0.90 0.8600 1.0 0.6170
1.333 0.5898 1.00 0.8280 1.2 0.5316
1.500 0.3830 1.20 0.6927 1.4 0.4309
1.667 0.2227 1.40 0.5020 1.6 0.3269

1.75 0.2023 1.8 0.2313

2.00 0.0776 2.0 0.1523
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Table 7, (for Fig. 7).

npper three curves lower three curve

" t=1/12y t=1/8y t=1/4v t=1/12y t=1/8y t=1/4v
0.000 1.7158 1.7544 1.5146 —1.1183 —06717 —0.0430
0.100 1.7229 1.7530 1.5087 1.0898 0.6489 0.0372
0.200 1.7455 1.7480 1.4912 0.9996 0.5821 —0.0203
0.300 1.7659 1.7367 1.4622 0.8585 0.4763 +0.0065
o.4o'o 1.7858 1.7224 1.4218 0.6585 0.3327 00491
0.500 1.7910 1.6800 1.3703% 0.4136 0.1330 0.0804
0.600 1.7718 1.6264 1.2979 —0.1431 —0.0195 0.1330
0.700 1.7203 1.55I9 1.2376 +0.1262 +0.1374 0.1628
0.800 i.63 17 1.4553 1.1766 0.3647 0.2748 0.2186
0.900 1.5052 1.3376 10714 0.5467 0.3824 0.2310
1.000 1.3444 1.2022 0.9798 0.6557 0.4538 0.2543
1.200 — 0.9002 0.7887 — 0.4851 0.2744
1.333 0.6671 — — 0.5125 —_ —
1.400 — 0.6021 0.6012 —_ 0.4019 0.2604
1.500 0.4120 — — 0.3540 — —
1.600 — — 0.4322 — — 0.221%
1.667 0.2320 —_ —_ +0.2134 — —
1.750 — 0.221g — - 0.182% —
1.800 — — 0.2920 _— — 0.1706
2,000 — 0.822 0.1848 —_ +0.0730 +0.1198
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Table 8, (for Fig. 8).
t=o0 =1/8y t=1/4v t=1/2,

r w r w r @ r w
0.50 20000 0.100 0.0494 0.I141 0.0349 0.200 0.0247
0.60 1.6667 0.141 0.0973 0.200 0.0688 0.283 0.0487
0.70 1.4286 0.200 0.1889 0.283 0.1336 0.400 0.0945
080 1.2500 0.245 0.2750 0.346 0.19435 0.490 0.1375
0.90 LIIII 0.283 0.3560 0.400 0.2517 0.566 0.1780
1.00  I.0000 0.316 04319 0.447 0.3055 0.632 o0.2160
1.15  0.8696 0.447 0.7468 0.632 0.5281 0.894 0.3734
1.30  0.7692 0682 1.1243 0.894 0.7950 1.265 0.5621
145 06897 0.775 I 2849 1.095 0.9086 1549 0.6424
1.60 0.6250 0.894 1.3221 1.265 0.9348 1.789 0.6610
1.80 0.5556 1.000 I.2927 1.414 0gI41I 2,000 0.6463
2.00 0.5000 1.095 I1.2304 1.549 0.8700 2.19I1 0.6152
2.20  0.4545 1.183 I.I549 1673 0.8167 2.366 035775
2.50  0.4000 1.265 I.oy772 1.789 0.761%7 2,530 0.5386
280 0.3571 1.342 10030 1.897 o0.7092 2.683 o0.50I5
3.20 0.3125 1.414 0.9349 2000 0.6610 2.828 0.4674
3.60 0.2778 1.549 0.8199 2.191 0.5797 3.098 0.4099
400 0.2500 1.673 0.7309 2366 0.5168 3.347 0.3654
4.50 0.2222 1.844 0.6341 2.608 0.4484 3.688 o3171

2.000 05665 2.828 0.4006 4.000 0.2833
2.121 0.5234 3.000 0.370I 4.243 0.2617
2.236 0.4905 3.162 0.3468 4.472 0.2453
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Table g, (for Fig. 9).

129

r t=o0 t=1/8y t=1/4 t=1/2y
0.0 1.0000 —_ —_ —
o.1 0.9901 00130 0.0050 0.0017
0.2 0.9608 0.0506 0.0104 0.0066
0.4 0.8521 01724 0.0710 0.0249
0.6 0.6977 0.2999 0.1376 0.0517
0.8 0.5273 0.3812 0.1989 0.0817
1.0 0.3679 0.3782 0.2387 0.1102
1.2 0.2369 0.3268 0.2498 0.1320
L5 0.1054 0.2120 0.2193 0.1477
1.8 00392 0.1138 0.1537 0.1417
2.2 0.0079 0.0396 0.0810 0.,1103
26 0.00I3 00111 0.0328 0,0710
30 0.0001 0.0025 00110 0.0387
3.6 0.0002 0.0015 oor18
4.2 0.0002 0.0026
4.8 0.0005
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Table 10, (for Fig. 10).
t=0 t=1/8» t=1/4, t=1/2y
r w r @ 7 @ r @
0.000 0.0000 0.122 0.0066 0.I41 0.0050 0.173 0.0033
©0.100 0,009 0.245 00256 0.283 0.0192 0.346 0.0128
0.200 0.0384 0.346 00492 0.400 0.0369 0.490 0.0246
0.283 0.0738 0.387 0.0603 0.447 00452 0.548 0.0302
0.316 0.0905 0.548 0.1092 0.632 00819 0.775 0.0546
0.447 0©0.1637 0775 0.1788 0.804 o0.1341 1.095 0.0894
0.632 0.2681 0949 0.2195 1.095 0.1696 1.342 0.1098
0.775 0.3293 1095 0.2396 1.265 0.1798 1.549 0.1198
0894 ©0.3595 1.225 0.2453 1414 0.1830 1732 0.1226
1,000 0.3679 1.342 ©0.24I0 1.549 0.1807 1.897 o0.120%
1.095 0.3614 1.449 0.2302 1.673 0.1726 2.049 O.II§I
1.183 0.3452 1.549 ©.2154 1.789 0.1615 2.191 o.‘1077
1.265 0.3230 1643 0.1984 1897 0.1488 2.324 0.0992
1.342 0.2975 1.732 0.1804 2,000 0.I353 2.449 0.0g02
1.414 o0.2707 1897 01431 2.191 0.1089 2,683 0.0726
1.549 ©0.2177 2.049 ©0.II35 2.366 00851 2.898 0.6568
1673 0.1703 2258 00756 2,608 0.0567 3.193 00373
1844 o.11335 2449 0.0488 2.828 0.0361 3464 00244
2,000 0.0733 2,508 0.0333 3.000 0.0250 3.674 00167
2121 0.0500 2739 00225 3.162 0.0168 3.873 ool12
2.236 0.0337

This document is provided by JAXA.



On the Decay of Vortical Motion in a Viscous Fluid. 131

Table 11, (for Fig. 11).

t=o0 t=1/8y t=1/4v t=1/2y
T @ T w r (2] r (2]

0.000 0.0000 o122 0.0660 0.I41 0.0495 0.173 0.0330
0.050 0.0488 0.245 0.1281 0.283 0.0961 0.346 0.0041
0.I00 0.0990 0.346 o0.1741 0.400 0.1305 0.490 00870
0.200 0.1922 0.387 0.1908 0.447 0.1431 " 0548 00954
0.283 0.2611 0.548 0.2441 0.632 0.1831 0.775 0.1220
0.316 0.2861 0.775 0.2826 0.894 0.2120 1.095 ©0.I413
0.447 0.3661 0.949 ©0.2834 1.095 0.2126 1.342 0.I1417
0.632 0.4239 1.095 0.2673 1.265 0.2005 1.549 0.1336
0.775 0.42531 » 1.225 0.2453 1414 0.1839 1.732 0.1226
0.894 o0.4019 1.342 0.2198 1.549 0.1649 1.897 0.1099
1.000 0.3679 1.449 ©0.1985 1.673 0.1459 2,049 ©.0993
1.095 0.3297 1.549 0.1703 1.789 0.1277 2,191 0.0851
1.183 0.2918 1,643 0.1478 1.897 0.I109 2.324 0.0739
1.265 0.2554 1732 0.1276 2.000 0.0952 2.449 0.0638
1.342 0.2218 1.897 0.0937 2,191 0.0703 2,683 0.0468
1414 o0.1914 2,049 0.0678 2.366 0.0508 2898 0.0339
1.549 0.1405 2.258 0.0410 2,608 0.0308 3.193 0.0205
1.673 o0.10I8 2,449 0©0.0244 2828 0.0183 3.464 00122
1.844 o0.0615 2.598 00157 3.000 00II3 3.674 0.0079
2000 0.0366 2.739 0.0100 3.162 0.0075 3.873 0.0050
2.121 0.0236

1.236 0.0I5I
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Table 12, (for Fig. 12).
t=o0 t=1/8y t=1/4y t=1/2y
r w r w r w r @

0.000 0.0000 0.122 0.0002 0.200 00003 0.346 0.0004
0.050 0.0488 0.173 0.0006 0.283 0.0009 0.490 0.0016
0.I00 0.0990 0.245 0.0023 0.400 ©.0036 0693 0.0057
0.200 0.1922 0.300 0.0049 0490 0.0075 0849 o0.0116
0.283 0.26I1 0.346 0.0084 0.566 0.0126 0.980 0.0186
0.316 0.2861 0.3387 o0.0126 0.632 0.0186 1.095 0.0264
0.447 0.3661 0.548 0.0414 0894 ©0.0553 1.549 0.0642
0.632 0.4239 0.775 ©.1126 1.265 o0.1232 2191 0.0959
0.775 0.425 I 0.949 0.1740 1.549 o0.I560 2.683 00814
0.8394 0.4019 1.095 0.2146 1.789 0.1575 3.008 0.055I
1000 0.3679 1.225 0.2348 2,000 0.I411 3.464 0.0331
1095 0.3297 1.342 0.2388 2.I9I 0.I175 3.795 0.0185
1.183 0.2918 1.449 0.2316 2.366 0.0933 4.099 0.0098
1.265 0.2554 1.549 0.2172 2.530 0.0716 4.382 o0.0051
1.342 0.2218 1.643 0.1989 2.683 0.0537 4.648 0.0025
1414 o0.1914 1.732 0.1789 2.848 0.0395 4899 o0.0013
1.549 0.1405% 1857 0.1489 3.033 0.0244 5.254 0.0004
1.673 o0.1018 1975 o0.1213 3.225 00147 5.586 0.000I
1.844 0.0615 2,086 0.0974 3.406 0.0087
2,000 0.0366 2,191 00773 3.578 o0.0051I
2,121 0,0236 2.29I 0.0608 3.742 0.0030
2.236 0.0151 2.387 0.0475% 3.899 00017

2,510 0.0340 4.099 ©0.0008

2.627 0.0241 4.290 0.0004

2.739 00170 4.472 0.0002

This document is provided by JAXA.



On the Decay of Vortical Motion in @ Viscous Fluid. 133

Table 13, (for Fig. 13).

t=0 t=1/8y t=1/4y t=1/2y
T w r w r w r w
0.000 ©0.0000 0.346 0.4787 0.316 0.5849 0.346 0.5551
0.050 0.0488 0.458 o0.4027 0.447 0.4292 0.458 0.4I90
0.100 ©.0990 0.648 0.3364 0.632 0.3204 0.648 0.2943
0.200 0.I922 0.794 0.30I9 0.775 0.270% 0.79% 0.2378
0.283 0.2611 0917 0.2748 0.894 0.2385 0917 0.203
0.316 0.2861 1.0I0 0.2539 1.000 0.2144 1.0l0 o0.1817
 0.447 0.3661 1.123 0.2282 1.095 0.1948 1.123 0.1600
0632 ©.4240 1.225 0.2044 1.183 0.1781 1.225 0.1430
0.775 0.4251 1.285 0.1g04 1.265 0.1633 1.285 0.I340
0.894 o0.4019 1.386 0.1671 1.342 0.1500 1.386 0.1245
1.000 0.3679 1.449 o0.1528 1.414 o0.1380 1.449 o.1121I
1.095 0.3297 1.549 o.1312 1.549 0.1169 1.549 0.1005
1,183 0.2018 1.643 o©.1123 1.673 0.0990 1.643 o.ogo_s
1.265 0.2554 1.732 0.0957 1.789 0.0838 1732 0.0818
1.342 0.2218 1.849 0.0762 1.897 0.0708 1.849 o0.0712
1414 o0.1914 1975 0.0583 2,000 0.0598 1975 ©0.061K
1.549 0.1405 2.100 0.0437 2,121 0.0483 2,100 0.0520
1.673 o0.1018 2.I9I  0.0408 2.236 0.0389 2,191 0.0461
1.844 0.0615 2.324 0.0246 2.449 0.0252 2.324 0.0383
2,000 0.0366 2.449 0.0173 2646 0.0161 2.449 0.03I9
2121 0.0236 2.683 0.0084 2,828 o0.0103 2,683 o0.0221
2.236 o0.0151 2898 0.0041 3.000 0.0065 2898 0.0I53
2.449 0.0061 3.000 0.0028 3.162 0.0041 3.000 0.0128
2.646 0.0024
2.828 0.0009
3.000 00004
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