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Introduction.

The star type engines are characterised by having the cylinders
disposed at equal intervals around a complete circle. The number of
cylinders is usually seven or nine. From their mechanism they are
classified into two kinds :—radial and rotary engines, The former has
stationary cylinders and a revolving crankshaft similar as the ordinary type
of engines, and the latter has revolving cylinders and a fixed crankshaft.
In this case the propeller hub is attached to the revolving crankcase.

In these engines a connecting rod containing the crank pin bearings
acts as a main connecting rod, that is to say, it goes through a series
_ of definite angular positions thereby determining the angular move-
ments of the remaining rods which are pin-jointed to it. These latters
may, for purpose of reference, be called auxiliary connecting rods.
The piston attached'to the main rod makes the usual harmonic motion
of the ordinary type of engines, i. e., the motion of single obliquity.
Those attached to the auxiliary rods*, however, produce a more or less
distorted movements, i. e., the motions of double obliquity.

Usually the dynamics of these engines are approximately treated
assuming that they have single obliquity, in other words, their all con-
necting rods are directly attached to one common crank pin. And

the object of the present paper is to study the inertia forces and couples

* For simplicity we will call hereaiter main connecting rod as main rod and auxiliary
connecting rods as auxiliary rods.
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248 Keikichi Tanaka.

and their balancing of the star type engines taking it into account that
they have double obliquity. This investigation consists of three parts ;
Part 1 the radial engine, Part II the rotary engine and Part III the
comparisons with other types of engnies.

The writer expresses his hearty thanks to Prof. T. Suhara for the
initiative suggestions on this subject and for many valuable aid and

encouragement throughout this investigation.

Part I Radial engine.

(1) The linear and angular accelerations.

(@) Acceleration of piston which has double obliquity.
To find in the first place,
the acceleration of piston which
has double obliquity, let us con-
sider for the sake of simplicity
the case of the V type engine.
The general arrangement of the
V type engine having an auxiliary
rod is shown in Fig. 1 and the
following notations are used
throughbut the investigation.
0X, OX....cylinder axes.

OB=v ......crank radius.
AB=1{......main rod.
CD=/...... auxiliary rod.
BC=a ......wrist pin radius.

/ X0Xi=@ . ..included angle

between  two

cylinder axes. Fig. 1
/ ABC=@....angle between wrist radius and main rod axis.
/ AOB=0.. . rotaion of crank from main rod cylinder axis at any

instant,
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[/ OAB=¢... angularity of main rod at the same instant.

249

ODC=¢'... . angularity of auxiliary rod at the same instant.
y y

v v a

—_—=S

l / s

The auxiliary rod CD is jointed to the main rod ABC swith wrist

pin C which has a fixed position in the latter with a fixed angle

[ ABC and radius BC, therefore its angular movement is controlled

by the latter.

Hence the motion of the auxiliary rod piston differs

from and more complicated than that of main rod piston, and is called,

as stated above, the motion of double obliquity.

In the above, we put the included angle

the wrist angle / ABC to make their strokes equal.®

/ XOX, to be equal to

Now let x be the displacement of the auxiliary rod piston from

the centre of crankshaft O, then

x=0D

=7 cos (0+@)+a cos ¢+ cos d'.. .. ...l
=7 cos (9+q))—}—(ﬂ/l——q2 sin?d 4+ vV 1—F# sin O+o) ...
=P S —2p50 COS @ ..

where

=¥ COs

where

a=tan-t 7 S0P

7 Cos @ —ag

(9+<p)+42/1m cos 21:94—[’2.4’2” cos 2n(f+o). .
. =L n=0
Ay=1—L g2 3 e 5 6
0 2 7 y 7 2567
A= __I_72+_I_74+_I§_q"+ ..
4 16 215
I 3
A, = —_—— =D S5
1 649 256/]
Ag= L s

(1)
(2)
(3)
-.(4)

* Ren® Devillers: Le mo‘eur i explosions, Tome I p. 346.
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Assuming that the crankshaft revolves with constant angular

velocity ®, as is the case of high speed multi-cylindered aero engine,

we get the acceleration as follows :

2 o
TE _ o [r cos (9+¢)+aZ‘Bgncos 210
n=1

+Z’ZB’M cos 272(9+o¢)] R (6)|
n=1

here /B, —0® + gt 4 15 g8
where(b,=¢9" + 7'+ —+ .. ..
4 128
B= —-Lop_ 3 0
* 1 49 169
no__ 9 6
bg= =g+
¢ 128]

4 128
I Ln&__ 3 LG—
4 16
9 k6+
128
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This is the expression of the acceleration of piston which has
double obliquity and if the relation /=/'+ a2 exists, the expression (6) will
also be applicable to that of the main rod piston. And in the actual
case, the above relation practically holds, the result of negligence of
the necessary correction upon it being almost of no effect, as will be
stated later ; and we may apply the expression (6) not oaly for the

auxiliary rod piston but also for the main rod piston.

(6) Angular acceleration of auxiliary rod.

We obtain the following expression in transforming (1) into (2) in
the preceding paragraph.

sin ¢'=4/ sin (04o)
Therefore

= SNClhu sin (224 1) (04T v (7)

n=0

where C,l___}v,_*_;k%_{_ __3_k5+ e
8 04

Cth= —L -3 s ..

) il 24 123

Cly= B
40

\
|

Assuming that the crankshaft revolves with constant angular velo-

city o as before, we get

247 e
dd?;':_mzzf)’mn sin (2241) (0+a).. ...l (8)
=0
whererD,l:lé_f__I)_/as_*__i/gﬁ_{_ ee e
8 04
Dy= -3 p—2Tps_
) 8 128
D= i}»"”-i-
128
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This is the expression of the angular acceleration of auxiliary rod
and is also applicable to that of the main rod as in the case of ex-
pression (6).

As shown in the expressions (3) and (4), £ and o are the function
of @, which is the included angle between the main and an auxiliary rod
cylinder axes. Therefore they have different values according to the
position of its cylinder. As an actual example, these values from the
320 HP. A, B, C. «“Dragonfly” engine, whose chief dimensions are
given in the appendix I, are shown in Table I and plotted in Fig. 1

in the appendix.

(2; The inertia force and couple of the radial engine.

The inertia force and couple of the radial engine may be divided
in two parts as follow :

(i) Inecrtia force of reciprocating parts.
(i) Inertia force and couple of revoloring parts.

Piston and its accessories, gudgeon pin and one part of connecting
rod etc. belong to the former and another part of connecting rod,
wrist pin and two ball bearings etc. belong to the latter.

In assuming the inertia of the connecting rod equivalent as those
at the small and big ends D and C in Fig. 1, when the mass of the
rod is supposed to be concentrated at the two ends with the inverse
ratio of their length from its centre of gravity, to its dynamical
equivalence we must consider a correcting couple as the correction.™

In this study of the inertia force and couple of the engine we may

consider the main rod as an auxiliary rod.

(3) The unbalanced inertia force of the
reciprocating parts.
The inertia force of the reciprocating parts is given immediately
by multiplying the expression of acceleration (6) by its mass and

changing the sign, i. €,

* Torenz : Technische Mechanik starrer Systeme. s. 339—:345.
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_W &

F= —
ar

o
S

7
=+ —” o’
r4

[r cos (6+<p)+a2vB’2n cos 2n0

n=1

+Z’Z‘B’2n cos 272(9+o¢)]
n=1

where K:mass of the reciprocating parts.
g

253

.-(9)

This is the expression of the reciprocating inertia force and as the

values of £ and o differ from the value of @ as stated above, the inertia

force of each cylinder also changes its value according to the position

of the corresponding cylinder, and as an actual example the difference

of its value of the main (@=0°) and the No. 4 (¢=160°) cylinders of

the “ Dragonfly ” engine is shown in Fig. 2 in the appendix.

To obtain the resultant unbalanced inertic force of the

total

cylinders %, project the inertia force # on the fixed axes OX,; and

0V, and let the projections be X,, and Y, then

Xp=1F cos @y,
w

= +____w2
g

{—I—r[cos (6 +29,,) +cos 8
2

+acos qumZBchos 216 + ' cos g)mZ‘BlZn cos 272(0—}-06,,,)}
n=1

n=l

Y’m: + sz
rY

and { Lr[sin (0 + 29,,)—sin 0]
2

+a sin xpmz By,cos 2720+ I sin quZB’m sin 272(9-}-05,,,)}
n=1 n=1

/

- Hence the resultant projections of those of the total cylinders are

given as follow :
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h
2 Xy=+

m=1

, h
w w? {—I—rz [cos B+ 2¢,)+ cos 9]

S5 2 m=1

h [}
ta E'cos P - E"Bz,, cos 216
n=1

M=l

h -3
+Z’2 [cos P - ZB',,, cos 271(9+ocm)]}
m=1

m=1

Zh‘ Yy == +—IﬁK o’ {—I—-rzhj [sin 6+ 2p,,)—sin 9] :

me=l 4 2 o

h ©
+a E'sin D, - Z‘B’” cos 218

m=1 n=1
h w0
+l’2[sin P - ZB,“ cos 2n (t9+oc,,J]} )
ms=1 n=1 '
and as ¢1=—I—g02:.. ..:—I—zpn:—zz, i. ¢, as cach included angle
2 /2 V2 ‘

between adjacent two cylinders is equal (sece Fig. 2),

n ) .
Zcos (26 + ppn)=o0, Zsin (204 ppn)=0

m=1 m=1

where # and p are any positive integers except
when p is the multiple of 4. '

Therefore, many terms being balanced out they become as follow :

2X:+_ﬂ’ww{-‘_ cos a—sg[{w——g (2 + %%}
o 2
OS>

+—é—s“’gz+ . ] cos 20+-—I—s3g3[1 + . .]cos49+ . }
2
..(10)

o
S

by Y:—LV.(‘)Z;'/;-{-—I— sin 0—sg[{ I+—g—(p’+5292)}
2

——EI;~S292+ ] sin 29+—I—fgq3[1+ ] sis 40+ . }
2 /

These are the unbalauced inertia forces of the radial engine and

if we calculate these values by the “ Dragonfly ” engine, we obtain
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5X=+1,999.0 cos 0—[250.14.14 ..] cos 20
+[044..] cos 40+4.......
3Y=—1,099.0 sin 8+[250.1—.1+ ..] sin 20

—[o44..]sin 494 ........... . ... in kg
In the expression (10) the first, second, third......terms are the
primary, secondary, quaternary .......... unbalanced inertia forces

respectively.
In Fig. 3 let OB be the crank position at any instant, then the
primary appears at the same angular position as OB at the instant, 7. e.,

this becomes an unbalanced revolving inertia force revolving with the

This document is provided by JAXA.
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crank. Hence the primary can be balanced completely by a counter
weight attached at the opposite side of the crank.

The second harmonics is divided
into two parts as apparent in the above
expression and appears at the position
OB, and OB’y; the former becomes
an unbalanced revolving inertia force
always making advance to the crank
by 180° and revolving in the same
direction with twice the angular velocity

of the engine, and the latter also be-

comes an unbalanced inertia force
always making advance to the crank Fig. 3.

by 180° but revolving in the reverse direction with twice the angular
velocity of the engine. The latter is much smaller than the former
and may by neglected in the practical case as is apparent in the above
example.

This second harmonics makes up almost the entire part of the
unbalanced force of the radial engine.

The fourth harmonics will also be divided into two parts if we
take its higher order. At the present, however, its first part appears
only in the above expression. In Fig. 3 this appears at the position
OB, and becomes an unbalanced revolving inertia force revolving in
the same direction with the angular velocity four times as the crank.
This being much smaller than the former of the second harmonics may

be negligible in the practical case.

(4) The inertia force and couple of the revolving parts.
() Inertia force of revolving parts.

7 .
Let s be the total mass of the revolving parts at the crank pin

o
O

B, then it gives rise to a centrifugal force as follows :
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FB:—%wzr e (1)

o
S

This revolving inertia force is balanced completely by a counter
weight attached to the opposite side of the crank, as in the casc of
the primary inertia force of the reciprocating parts.

(6) Inertia couple of revolving parts.

In addition to the above (@) there is an inertia couple acting about
the crank pin B, which is produced by the revolving mass rotating
relatively to the pin about its centre of gravity 5. Let this inertia

couple be Cz, then

CB—"'— - []B + -E-v—ﬂz/&] d2¢—

P g7
= +[[B+__w_a%]m"’202n+1 sin (2n41)0............(12)
& n=0
where 7j....moment of inertia of the revolving part of the main

rod and of the two ball bearings rotating relatively

to the pin.
% ...crank side mass of the auxiliary rod.
S
D,=q +%gg+_%f75+ e
D= Ilzisq‘r’-l'

(¢) Correcting couple.
The correcting couple that has been stated in § (2) is given by

the following expression.®

Wy ap o a%!
== () L0
g ar’

* René Derillers: I.e moteur i explosions. Tome I p. 134-189.
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=200 (I —c) DDy, sin (224+1) (040) .. ......(13)
g n=0
where 2L mass of the connecting rod.
r4
6....distance between the gudgeon pin centre and

centre of gravity of the rod.
¢....length of the equivalent simple pendulum.
The correcting couple change its value according to the position
of its cylinder, and its unbalanced resultant couple will be shown later

as its resultant couple given on the engine frame.

(5) The unbalanced force due to unequalities of the moving
mass and wrist radius of each cylinder.

(@) for the unequality of moving mass of each cylinder.

In the above investigation the moving mass of each cylinder has
been assumed to be equal. In actual case, however, each mass is
unequal and differ from its mean value about one percent. Especially
in the star type engine, this unequality is predominant due to the effect
of main rod mass¥, and may result greater unbalanced force accordingly.

Now let us study this unbalenced force.

(i) Primary inertia force.

From the expresson (9) § (3) the primary inertia force is given

as follows :

Fi= +LV.. 0’7 ces (G417 )

O
w
and =M+m
o
S
where A/....mean mass.
m....deviation form mean mass.

then 2m=o0

* See Table III of appendix.
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h-1

o’ Zmn cos (04 27 @)
n=0

hence 2 X;= +- 1 Meotrhcos 64t

2 2
in which the first term is the unbalanced force due to the mean mass
and is the same as in the expression (10) § (3). Hence the unbalanced

force due to the unequality of mass 3X) is given by the following

expressin.
h-1
22Xy =1 W% 2 112, cos (0+2n @)
2 =0
et R ¢ 73 X
Similarly by Yl’-:—-;— W’y 2 2, sin (0+ 27 @)
=0

This is the unbalanced primary force and if we calculate this value
from our example,
22X/ =+419.6 cos (0—17°)
2V =+19.6 sin (0—17°) } in kg.
which corresponds to 8.29 of the unbalanced second harmonics § (3).
(i) Second harmonics.
Similarly from the expression (g9) the second harmonics is given
as follows :
Fy=(M+m) & [7p cos (20 + 2¢) — 27sq cos (20 + @) + ag*(1 + 5) cos 26]
and let Xy and V) express that due to the unequality of mass, then

-t -1

SX,=+ -1 w¥%p [2 712, cos (20 + 372 @) + 2 12, cos (20+n gD)]
2 N =0 n=0
h-1 h-1
— @ 7sq Z‘ 112,€08(260 + 21p) + wag*(1 + s)c052621zznc057z¢
=0 Nn=y (14)2
=1 -1
SY/= 4+ o¥p [2 12, sin (20 + 372 @) — Z‘ 1, sin (2047 cp)]
2 n=y w=0
-1 -1
—w’rsg Zmn sin(20 + 27 @) + ’ag*(1 + 5)sin26 Zmn sin 7
n=0 n=0

This is the unbalanced second harmonics and if we calculate from

our example we obtain
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22X, = +8.6 cos (20+17°)
Y, =—4.9 sin (20—20°) } in kg.

32X, corresponds to 3.69% and XV to 2.0% of the unbalanced
second harmonics § (3).

(6) for the unequality of wrist radius of each cylinder.

To keep the compression ratio of each cylinder equal, we must
correct the value of @ or s according to the position of its cylinder®
and the purpose of this paragraph is to study the unbalanced force
due to this correction.

In the primary inertia force the term including @ or s does not
appear and therefore the effect of this correction begins to appear with

the secondary.

F, - wz[ﬂ'p cos (20 + 2¢) — 27sq cos (20 + @) + ag*(1 +5) cos 20]
g
and s=S+s
where S....mean value.
s ....deviation from mean value.
then Zs=o0

and the square of s may be neglected. If we express this effect by
X, and V), we get

n-1
2X) = — W rq Z s, c0s (20 + 212 @)
g 1=0
. h-1
+ I'g* (254 1) cos 20 D s, cos ng
g =0 ... (15)
h-1
SV, = Wy rq Z‘ S, sin (20427 @)
n=0

h-1

+— o* ['¢* (25+1) sin 20 Z‘ Sy 8in 2@

g n=0

S

This is the unbalanced second harmonics due to this effect and if

we calculate in our engine we get

* A paper on this subject was presented to the Japanese Society of Mechanical Engineers
by K. Nakagawa 54 (No. 70), and also refer to Table II of appendix.
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SX,)' =+ 3.2 cos 20
3V =+ 2.5 sin 20 } in kg.

3 X" corresponds to 1.39% and XV to 1.0% of the unbalanced
second harmonics § (3).

X/ SXY and 3X,7 of our “Dragonfly” are plotted on Fig. 3
and the effect of these resultant on the unbalanced inertia force § (3)
on Fig. 4 in the appendix. Namely the sum 3X,+2X,+3X;7 cor-
responds to 10.09% of the unbalanced second harmonics § (3)- The
projection on the y-axis is omitted, since it will have a similar effect

as that of the x-axis.

(6) The crank turning moment due to the inertia
force and couple.

(@) due to inertia force F.

Now let us consider the crank turning moment due to the inertia
forces and couples and its effect upon the engine torque curve. The
crank turning moment due to the inertia force F is given from energy
equation as follows, neglecting the frictional loss.*

M=F dx 1
atr o
__w &’x dr 1

g df . dt w

— —_ZZ w? {r cos (0+@)+a D By cos2n8 4 1! ZB’Mcos 2;1(9+oc)}
n=1 =1

S

X {if sin (0 +@)+a Z 21 Ay, sin 2720
n=9

+0 3 21 Ay sin 21 (6+oc)}.. ... (16)

n=0
And the resultant of the total cylinders Z is given by the following

expression.

* Other method of finding it from the condition of equilibrium of the main rod is given
in the Automobile Engineer by T. L. Sherman. 5 (No 1235) p. 105.
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+

st="Largoth[-Lpriedp1e . |sinot 5 STk Tsin 20

—_%])25292[1-1-..]Sin39+—l—-593[1+--]Sin40+'-}-'-"-(I7)
1 4 '

This is the resultant crank turning moment due to the inertia force
of the radial engine and if we calculate this value from the present

example, we get

SMy=—[11.384..]sin 6+[.02+..]sin 30
—[47+ ..]sindf + .. . .inm.kg.

(0) due to inertia couple Cp

In addition to the above, another crank turning moment is pro-
duced by the inertia couple Cz and may be given as the following

expression similar as the expression (16).

M,=—C, dp 1

dt o
=[5+ a4 e dp 1
g ar dt
=— r]BV-i-ﬂnzZ/z]coz 2 Epsinz 20 .. ..............(18)
: - & n=1
where Eq'—-iq? to . _}:qc +
E.= 27 g5
° 1289

and in our example we have

M,=—[3.83+..] sin 204+ [.114..] sin 240+ ......in mkg.
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In this expression as the moment of inertia /; is obtained by
approximation®, this is but approximate value. We may, however,
interpret the extent of its effect by the above expression.

If we add these two moments, we have

M+ My=[11.384..] sin —[3.73+..] sin 26
+[.02+..] sin 30—[.36+..] sin 40+ ......1n m. kg.

This is the resultant crank turning moment due to the inertia force
and couple of our “ Dragonfly” engine and is plotted in Fig. {6) in
the appendix.

(¢) Correction due to correcting couple ®;.

The crank turning moment due to the correcting couple ®, is given

as follows :

/
My=—d 2 1

dt o :
201 4
= X oprog LE ¥ 1
g dt dt
=—2 sr—0c) aﬁZE’M sin 2z (@+a) ............(19)
4 n=l
where ’E,Zz LI~ I — e
2 32
Bl IR TR Sy T
< £ 8
E/G: _2_7.Lﬁ+ ..
128

And the resultant of the total cylinders /% is given as follows;

,Z‘M%:.__?”_ b (I'—c) w’h {—I— s"’q"[1+2p2+ . ] sin 26
g 2

_[—I—s4q“+..]sin A9+ }(20)
4

* See appendix I c¢) N.'B.
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If we calculate from our example we have
IMy,=~—[.58+..]sin20+......in m. kg.

which corresponds to 4.49 of the above resultant of our “ Dragonfly ”

engine.

(7) The engine torque,

The mean value of engine torque may be calculated from the
HP. and its R. P. M. The variation of its torque with the crankshaft
rotation, . ¢., the torque curve, however, must be deduced from the
indicator card. And as it is generally difficult in a high speed aero
engine to draw the actual indicator card we must resort to the theoretical
indicator card under the appropriate assumption. |

Now, let 2 be the gas pressure acting on the piston, which is
obtained from the indicator card, then the engine torque Mg is given

similarly as the expression (16) § (6) as follows :

Mg=pP % L
di o

:P[r cos (0+@)+ 42 21 Agpsin 216

n=1

+Z’2275A2n’ sin 272 (0+oc)] e (21)

In this expression, as the pressure P is given from the card as a
function of piston displacement z, the engine torque is the function of
dx

~ Therefore if the card of each cylinder is assumed to be
¢

x and

equal, its mean torque will also be equal. Its torque curve, however,
will be different in its form according to its cylinder position.

The resultant torque curve of all cylinders can be obtained by
superposing each torque curve upon one another. But the change of

its form with the respective cylinders is not notable and it is trouble-
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some and moreover not being our object, to find the torque curve of
each cylinder, we assumed approximately that each torque curve is
equal to that of main cylinder and the resultant was obtained upon
this assumption. It is shown in Fig. 5 in the appendix.

The resultant torque curve thus obtained is affected by the crank
turning moments due to the inertia force and couple which was given
in §(6). This effect in our engine is shown in Fig. 6 in the appendix.
Though the resultant torque curve is not acculate as stated above, and
the effect of the inertia is thus obtained approximately, we can interpret
the extent of its effect by Fig. 6. It points out us that the effect is
not notable and if we compare with their max. value the effect comes
out to be 6.7 % of the resaltant torque and if we compare with the

mean value of the resultant torque the effect comszs out to be 8.6 %

of it.

(8) The couples on the engine frame due
to the inertia force and couple.

(@) due to inertia force F and couple Cy.

The couple on the engine frame due to the inertia force F is
equal in magnitude and opposite in direction to its crank turning mo-

ment. Namely

=M
W dx dr 1 i (22)
g d At w
and
XC,= I/Vzzl’qco"’/z{ipf[[ +—3—p"+ .. ] sin 0
g 2 3

Lsg’[1+..] sin 29+%p2527?[1 + .- Isin 30
I

-
32

——3—5,73[1+..]sin40+....}......................(23)
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The couple on the engine frame due to the inertia couple Cp,
however, is unequal to its crank turning moment and is give as

follows :

= [[B.;__I_/Kaz/z] w2{202"+1 sin (22+1) 6
&

n=1)

+Z‘E2nsinz726} e (24)

n=0

in which the second term is the reverse of its crank turning moment
and the first term is equal to the inertia couple Cj.

If we calculate its value from our example, we get
C,=[28.544....]sin 04[3.734 ..] sin 26
—[754+..]sin 30—[114+..]sing O+ ........ in m. kg.
and the sum of C, and XC; is as follows :
SC+Cr=[39.92+..]sin 0+[3.72+ ..] sin 20
—[.77+ ..]sin 804+[.36+..]sin 4 0+ ..in m. kg.

As apparent in the above example the couple on the engine frame
due to the inertia force F and couple Cp is much greater then their
crank turning moment and comes out to be 20.6 9 of the max. value
and 26.6 9§ of the mean value of the couple on the engine frame due
to gas pressure. These are shown in Fig 7 of appendix.

() Correction due to correcting couple P;.

The couple on the engine frame due to corrceting couple @ is

given similarly as the expression (24) as follows:

c.mofir L]

w

:!K.b (/'—¢) coz[ZD’Zn+1 sin (2724 1)(0 + )

S =9

+ D Ely, sin 22 (6+a)] e (25)

=0
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and the resultant of the total cylinders Z is given as follows:

EC‘,,l:_Z w6 (I'—¢) lz{ sq [I +—I—/F+ . ] sin @
g 4

_|__I_ s*q* [1 +20°+ . ] sin 26
2

__;_SBQ’[I-{—..]sinj,H-{-..} e (26)

From our example we have
SCop,=[9.61 +..]sin 6+[.58+ ..]sin 20
—[o1+4..]sin304...... in m. kg.
which corresponds to 23.5 9% of the above resultant couple of our

“ Dragonfly.”

Part II Rotary engine.

(1) The radial and tangential accelerations.

The principal parts of rotary engine are shown in Fig. 4 and its
nomenclatures are
the same as given
in§ (1) Part I. In
this case the cylin-
ders rotate about
the crankshaft O
as a centre and the
pistons and con-
necting rods about
the crank pin B as
a centre, the crank
OB being fixed on

the engine frame.

Now let x be

the displacement of

piston from the
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centre of crankshaft O as before and the angle which the wrist radius BC
makes with the crank be ¢. Then the radial and tengential accelerations
at C and D are obtained by the following expressions, assuming that

the engine revolves with constant angular velocity o as before.

2
Radial acceleration at € :-a( dy )

at
. v (27)
Tangential acceleration at C=a ﬁdtl
. . dx
Radial acceleration at D= — —rw
ceee...(28)
. . ax
Tangential acceleration at D=2 7 ©
In Fig. 4 Yy=p+¢+0
where @ is constant and %9— is the constant angular velocity of
(3
engine o.
Therefore dy =w+ @b , dy _ d¢

dt at ds de*

and as a$ and % have been required in §(4) Part I, ( dy )-and
at dr at

dd?: are given as follow :
dr*
[l"y )2 zoc
— ) =w Focosn ... ... .. (2
(a’t NZ—O‘ s 7 9)
i;: :—wzg:Dganin(Zﬂ-i-I)G.................‘,,..(30)
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where =1 +qu +Lq& + Lg'q_ e
2 4 16
F— I s 3 g5
, 29 +— q e
4 64
Fz— —q" +0 ——:—[—gb
32
1 9
Fy= -—— =7
- ’ 64"
. Ll L
4 4 7 169
o 3 g
5 64_q
I 6
F(;——— _q +
32
\ .

2
x, ax and df have been obtained in §(1) Part I and have the

dt ar

following expressions.

X=7r cos (9+<;))+(ZZA2" cos 21 @
n=0

+Z’§;‘A’2nsin (9+a)} e B)
n=0
Z’; :—w{r sin (0+¢)+a§2n As, sin 272 6
+l’§272 Ay, sin 27 (6+oc)} ..(31)
) .
. iizi_:—m?{r cos (9+¢-)+a§‘b’m cos 21 0
ar n=1

|
+11 3By cos 21 (9-}-05)} et (6)

Consequently we can calculate the above radial and tangential

accelerations at € and D given by the expression, (27) and (28).

This document is provided by JAXA.



270 Keikichi Tanaka.

(2) The inertia of the piston.

Generally the centre of gravity of piston is not situated at the
small end D but a little higher position. In Fig. 4 let G be its centre
of gravity and the length of G D be e¢. Take B as origin, OB as
x-axis and its perpendicular line as y-axis. If the co-ordinates of the

Wy

small end D be expressed by x'” 3" and the mass of piston by , then

the force of accelecation of the piston may by given as follows :

. 2, o 2.1
f(22) Zrm 2 T s cos (0499

g at g df
wy\ 4 wy dy! .
W = - 0
Sd( g) di® g dar / sin (0+¢)
where fz;‘;lew’ e (32)

and its moment about the origin B may be given by

S e ]
g I dr a1 g0 ag dr

—f[y” cos (0+@)—z" sin (9+¢)]-ch

» - 2,17 2,11 -
where D= — ‘f; e[dd; sin (0+p)— a4 th/Z cos (9+¢)J
W, dx
=2 —20 W L e et e e e e
7 (33)

Therefore the inertia force of piston may be considered similar as
the sum of the inertia force at the small end and the constant force f# act-
ing along the cylinder axis, when the whole mass of piston is assumed
to be concentrated at this end. The latter force f is negligible as will
be stated later.

In considering its moment, a correcting couple ®, must be added
to the moments due to the two forces above mentioned. This couple

D, acting on the piston may be called the couple of busculement.
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(3) The inertia force and couple
of the rotary engine.
(@) Inertia force of rotary engine.

As in the case of radial engine, the inertia of connecting rod may
well be considered similar as those at the small and big ends D and
C, when the whole mass of the rod is assumed to be concentrated at
the two ends with the inverse ratio of their length from its centre of
gravity. And by the preceding paragraph the inertia of piston may
well be considered to be equal to that at the small end D when its
whole mass is assumed to be concentrated at the end.

The effect due to the correcting couple ®* ®, and the constant
force f may be considered separately later as the corrections.

Hence let the concentrated masses at the small and big ends be w

&
w .
and —— respectively, then
g
W___ Zl—b wy wWs w _ l’ wh
AN s i} , & =
g g g g I g
Wy .
where —2....mass of the connecting rod.
g
b .. ..distance between small end and the centre

of gravity of the rod.
Therefore the inertia force of rotary engine is given as the radial

and tangential inertia forces at the two ends C and D as follow :

(R,— w ,z( dy )2

g at
1 = e wZaZ‘Fn Cos 720 .. ... .(34)
g‘ n=)
\Tcz— 'ZUﬂfi'f‘_)’l-
. g dt-
:ﬂwzaZDg,m sin (2z+1) 6 ... . .. ... ..(35)
4 n=y

* Reler to the expression (13) § (4) Part 1.
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= W wz{zr cos (0+ @)

¢ +a [Z A.,cos2n0+ Z‘ B,, cos 22 6]
n=U n=1

+l/[§\;0 Al cos 27 (0+o¢)+Z:B’2n cos 27 (6+oc)]} ....(36)

:ziV_wz{r sin (0+@)+aD'2n Ay sin 27 6
g n=0

+2 3V2n Ay, sin 22 (0+oc)}......................(37)

n=0
In the case of radial engine its inertia force has been given by

W

2
g &

the expression (9) § (3) Part I, ¢, ¢, F= which is equal

to the first term of &K,. Namely in rotary engine the second term of
Ry and the expression 7, are introduced in addition to that in radial
engine,

The inertia force R, and 7, may rather be considered as the
couple 7gz rotating the main rod about the crank.pin B, as will be
stated latter.

(b) Inertia couple of rotary engine

In addition to the above there is inertia couple acting about the
crank pin B, which is produced by the revolving mass rotating about
its centre of gravity B. The revolving mass consists of one part of
the main rod and the rotating part of the ball bearings attached to
the rod. Let its moment of inertia be 7, then the inertia couple Cp’

is given as follows :
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d*y
Cyl=-1,
B B dtz

=+an2202n+1 sin (224+1) 0 ....................(38)
n=0

which is equal to the first term of the expression (12) §(4) Part L

(4) The unbalanced inertia force
of the rotary engine.

(@) Composition of inertia forces K, and 7.

The inertia force K, causes an equal force R, on the crankshaft

bearings O, together with a couple R, [Z L on the cylinder and
(4]
a couple —K, Z’: L on the engine frame. Similarly the inertia
(6]

force 7, causes an equal force 7, on the crankshaft bearings O,
together with a couple 7, » on the cylinder.
Project these forces R, and 7, at the crankshaft bearings O or
the revolving axes OX, and OV, in Fig. 4, then
X=Rj, cos ¢— T sin rp}
Y=R), sin ¢+ 7T, cos @

or

— sz{zr cos (04 2¢)+a cos ¢’[ZA2'2 cos 2n 0

8 n=1

o o©
+ E \ B,, cos 21 0]——2:1 sin @ E ‘21 A, sin 2120
n=1

n=0

+/ cos @ [Z‘ Ay, cos 272 (04 0) 4 ZB’gn cos 27 (0+oc)]
1=V

n=1

—2/" sin 902271 Ay, sin 272 (6+c¢)}- .

n=0
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Y:zmg{ 27 sin (84 2¢)+a sin q)[ZAz,l cos 0
g n=0

o - @
+ E \ By, cOs 212 0J + 22 cos @ E ‘21 Ay, sin 212 0

n=1 n=0

o

+ 7' sin ¢[2{1,2n cos 27 (04 a) + Eb”m cos 21 (0+oc)]

n=0 n=1i

+2/ cosp Ezzz Ay, sin 222 (04 cc)}

n=J

..(39)

and if we require the resultant projections of the total cylinders %, many

terms are balanced out and the following remain as the resultant un-

balanced force.

sx=" W o {[1 +,-§- (P +5°) + ] )

4 &

HI+—— (P*+5°¢° )}+—§—seq‘—'+ J cos 20

+—%qu2[1+..]€0549+.. }
Sy=—_L1 Km"’rsqlz{o
4 g

[{H— 3 (P4 57— sq+ ]sm 26

+~§—s’g2[1+..]sin4ﬂ+ }»
/

.. (40)

In Fig. 5 let OB be the fixed crank and O0X, and OV, be the

revolving axes at any instant, then the first term of this expression

(40) appears at the angular position OZF,, the former and the latter
parts of the second term at OF, and OF'; and the third term at

OFE,. OE, is the unbalanced zero harmonics, OF, and OF’,

the second

harmonics and OE, the fourth harmonics. The fourth harmonics will

also be divided into two parts as in the case of the second if we

take its higher order. The primary inertia force is balanced by itself.
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Now let us project the above unbalanced force (40) upon fixed

axes, taking the crank OB as r-axis and its parpendicular as y-axis, then

Sx=0 \

"

sy=t Datrsgn{[14+ 3450+ . ]
= gwqul 1+8(p+sq)+..sm9 (1)

—.%3292[1+..] sin 30+..}

and in Fig. 5 this first term appears at Oe and the second term at Oc,.

Consequently the resultant
unbalanced inertia force of ro-
tary engine acts always per-
pendicular to the fixed crank.

Referring to those of radial

engine, O¢; and Oe; correspond

to their second and fourth

harmonics, and in the magni-

tude Oe, corresponds to about

one half of and Oe; is nearly

Fig. 5. equal to them respectively. In

radial engine its unbalanced primary force has been balanced by

a counter weight attached at the opposite side of crank. In rotary

engine, however, its primary force is self-balanced as stated above.

In short the unbalanced inertia force of rotary engine is practically

equal to one half of that of radial engine and acts always perpendicular
to the fixed crank.

If we calculate the above expression (41) by an actual example

of 130 HP Clerget engine, whose chief dimensions are given in the

appendix II, we get

2xr=0
} ...in kg.

Sy=[73.1+..]sin §—~[24..]sin 36+ ..
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(6) Compositions of inertia forces R, and 7},

The inertia forces R, and 7}, give a couple 7, @ on the main rod
and act as eqnal forces R, and 7, on the erank pin B. Their resul-
tants of the total cylinders /% are apparently balanced out.

Let the above couple be C then |

Co=Toxaxh

=Y a2 D) Dypyysin (2n41) 0 .. ... ... ... (42)
g n=0

Referring to the expression (38) § (3)
CB:CIB+ C/,B

:[]B-}-ﬂm?/z]azZDz”H sin (2z41)6 ..............(43)
4

n=0_

which'is equal to the expression (12) § (4) Part 1.

(¢) Correction due to inertia force f.

The inertia force # which has been given by the expression (32)

Causes an equal force f on the crankshaft bearings O, together with

a couple /- Z: -;— on the cylinder and a couple —f%’:— -(ID— on the

engine frame. This resultant of the total cylinders %z is evidently ba-

lanced out.
The effects due to unequalities of the moving mass and wrist radius
of each cylinder on the unbalanced inertia force, which have been treated

in §(5) Part I in radial engine are omitted in our rotary engine.

() The engine turning moment due
to the inertia force and couple.

(@) due to inertia forces R, and 7T,

Now let us find the engine turning moment due to tie inertia forc e
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and. couple. The engine turning moment due to ‘the inertia forces

Ry and T, is_given as follows :

d-
My=Rp- — =+ To
W dxr [ dx 1

- “al ol

W oo < :
=— —wX7sin (0+p)+a E.'zn Ay, sin 212 0
o

S n=0

+Z’2 2n Aly, sin 27 (0+cx)} X {a[ZBm cos 27 0
n=0

n=y

—ZAZ,.L cos 27 6] +l’[25”2n cos 2n (0 +a)
n=0 n=1

_éA’mcos 271 (9+o¢)]} e (40)

=0

W a ar_ L is equal to that in

In which the first term—
g darf dt o

radial engine, and in our case there appears another additional term

ro. If we require the resultant of the total cylinders /4

we get as follows :

S M= ——”Z al’qw%{—l—pz[l + —3’—p“’+ . ] sin 6
g 2 8

*;9[(1 F2s+5) —— spi245)+ . .]sin 20
2 4
— 2 2 [1+..]sin 36

16

+716~q3[1+4s+..]sin40+..} a2 (48)

and from our example we get
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SMy=—[5.54+..]sin 0+[17.734 ..] sin 20
—[25+..]sin4f+................in m. kg.

Referring to the expression (17) § (6) Part I, the first term of the
above (45) is equal to that of the radial engine. The second term,
however, is unequal and much greater, and in our example the second
term corresponds to 3.2 times of the first. Therefore the engine turn-
ing moment due to the inertia force is much greater than that in the

radial engine.

(6) due to inertia couple Cjp.

In addition to the above, another engine turning moment is pro-

duced by the inertia couple Cp and it is given as follows :

= []B+ﬂ azlz]wz{ Z‘Dgn+1 sin (2nz+1) 0
g n=0

(]
+Zﬁgnsinzﬂﬂ} P ¢-16) ]
n=0

- This is equal to the couple on the engine frame due to this inertia
couple (' in the radial engine, and is much greater than its crank
turning moment. If we calculate the above value from our example, we
get

M;=[8.61+..]sin O4[1.27+ ..]sin 20
~[.284 ..]sin 30—[.04+ ..]sin 40+ .. ....in m. kg.

In this expession as the moment of inertia /; was obtained with
approximation this is but an approximate value. We may, however,
interpret the extent of its effect by the above expression.

Adding these two moments, we obtain

SM+ My=[3.07+ ..] sin §+[19.004 .. ] sin 29
~[.28+..]sin 30—[.21+ ..]sin40+ .. ....in m. kg.
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In our example the mean torque of engine becomes 87.6 m. kg. taking

its mechanical efficienty to be 85 9% and the greatest fluctuation due to

these moment corresponds to 24.2 9§ of the mean torque.

Therefore

the fluctuation of the torque curve due to these moment has much

greater values compared to that of the radial engine.

(¢) Corrections due to correcting couples @1, @,

and inertia force f.

(i) due to correctieg couple P,.

— d¢’
@y 11+ 2

= (=) w2[2 D'tnay sin (2n4+1) (0+0)
g n=y

+$‘E’z,,sinzn(0+oc)]

n=9

and  SMy, =L b (I'—) wz/z{sq[l +- Lt ] sin 0
¢ 4

O

+Ls2g‘-’[1+zpz+..]sin 29
2

—-2— s[4 ..]sin 30+ .. }
(ii) due to correcting couple @,

w dx
My, =Py=—2"2r0

N g at

W, wz[,, sin (g+¢)+42271 A,, sin 270
o n=0

S

+ 1'2 2n Ay, sin 27 (0 {-oc)]

n=0

and EM(M:—F& eawzlz{q?[r +5 +_I—q2+ . ] sin 20
g 4

L]

__;_g‘[x+..]sin40+..}

.. (47)

... (48)

..(49)

..(50)
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(iii) due to inertia force f.

dr 1 w. dx 1
M:_ . 2 :—-—M e v s ee e s e e s
d fdt o T 2 (51)
I W, 2 2 I .
and Z2IM=—— eaw/z{q [14+s+— ¢*+..]sin 20
2 g 4
———é—-g*[l—}-....]sind,@-i—..}..._ ................. (52)

If we calculate the sum of these corrections from our example,

we get
SMy +2ZMy, + EM;=[1.97+ ..]sin 0+[.67+ ..] sin 26

—[.03+ --]Isin30—[.01+ ..]singf+........in m. kg.
and the effect due to these corrections corresponds to '8 9% of the

resultant moment due to the inertia force and couple ZM;+ M.

(6) The couple on the engine frame due
to the inertia force and couple.

(@) due to intertia forces R, and 7.

The couple on the engine frame due to ths inertia forces R, and

7, is given as follows :

dx 1
C,=—R Sl
d w7 )
W dx [ AZ I | ]
= — — - ]
g at ar o
:_?wﬂ{r sin (04 @) +a2 2n A,y sin 2120
S n=0

+Z’Z‘27z Ay, sin 27 (0+a)} X {zr cos (0+9)
n=0

+a[282” cos 270 + Z‘Az,, cos 2720]

n=0 n=(

+l’[§:‘Bnncos 2n (0+ o)+ i‘A’,n cos 27 (9+o¢)]} .. ..(53)
n=0

n=1
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2
in which the first termLV i’; dx 1 is equal to thatin the
g ar dt 1)
radial engine, and in our case there appears another additional term

_W

g a

r. If we compare with its crank turning moment (44),

the first term is reverse and the second term is equal to that of the

expression (44) respectively. And the resultant of the total cylinders
/2 becomes as follows :

w 0 9 9 .
EC,:_;a[’gw-/z{ —;—p‘[l +—-§—p'+ . ] sin 0

S

+%§'[(I +53+52)—~I—sq‘l(z+s+ . .)] sin 20
4

-9 P's°¢* [14 ..] sin 30
16

——118-93[1+4s+..]sin40+..}....................(54)

which is equal to the expression (45) in the preceding paragraph
except that the sign of its first and third terms are opposite.
(6) due to inertia couple Cp.

The couple on the engine frame due to inertia couple Cj is given

as follows :

__ dd 1
Ci==0Cs at w

:—[134—’—"5-(:%](02253" sin2z0.............. .....(55)

S n=0
This is equal to its crank turning moment in the radial engine and
much less than its crank turning moment in our case. And from our
example we get .
Cr=—[1.274+..]sin 20+ [.04+ ..]sinaf+ ........in m. kg.

Adding these two couples in our example, we obtain
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SC+Cr=[5.54+..1sin 0+4+[16.46+ ..] sin 20
—[214..)sin40+ ... ................inm kg

Notwithstanding the smaller value of C, compared with A7, the
sum 2C;+C; has as nearly equal effect on the engine frame as the
sum =M;+ M; has on the engine torque, and its maximum fluctuation
corresponds to 23.3 9 of the mean couple due to gas pressure, which

is nearly equal to that in the case of radial engine.

(¢) Corrections due to correcting couples

®,, ®, and inertia force f.

(i) due to correcting couple ®;.

dp' 1
Co =—D —
*1 7] ©

=%b(1'—c) mZZ‘E"nsi11 2n (f+e)................(56)

and EC%—_—:-L& (I'=¢) wz{—%-ﬁgz [1+42p%..]sin 204 .. } N 1))
o
S

(i) due to correcting couple ®,.
Cszo

(iii) due to inertia force f.

dr 1
C,=f—~— —
ffdt

@

2&“02{7 sin (9+¢)+422” Ay, sin 272 0
n=0

&
+l’227z‘4'2nsin27z(0+a)}........................(58)
n=0
and  3C,=- w’—’ew‘-’{ g[1+5+¢+..]sin 26
2 g
——;—q"[l+.,]sin49+..}........................(59)
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Calculating these values for our example we get
SCp43Co=[71+ ..]sin 20—[01 + ..]sinaf+ .. ..in m. kg.

Hence the effect due to these corrcetions corresponds to 3.3 %

of the couple on the engine frame due to the inertia force and couple

3C+Ch

Part III Comparison with other
types of engine.
v We have thus obtained the unbalanced inertia forces and couples
of the star type engines. Now let us compare these unbalanced forces
with those of types which are :
commonly used in the aeroplane

engine.

(1) 8 cylinder 90° V type.

(a) Single obliquity.

In the first place let us con- -
sider the 8 cylinder go° V type \

engine. In Fig. 6 (a), let OB be Fig. 6. ()
the crank position, then the :
unbalanced inertia forces of
two rows, each of which has
4 cylinders having the crank

angle 180° are given as

follows :
3 W . 5
SAH=-""w 42 B,, cos 210 §7 A
g n=1 i - Y
. \ :
3 F, = I/—sz Ia 2(— 1)" B,,cos2nl Fig. 6. (b
g n=1 B

where B, has been given in § (1) Part I. And the resultant projections

on the horizontal and vertical axes are expressed as follows :
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oo W I 1
SX= 8—~—[ e ] 5
gwr e l I+4q+ cos 20

__9_8.95[1+. ]c0566+..}

?.
2Y=_I/Km278.~1_—{ ———I—gg[l +..]Jcos46 + .. }
g V2 4

(6) Double obliquity.

..(60)

In the case of double obliquity of the second row (Fig. 6 (2)),

we get

2F, _EleA,ZBm cos 2712 0

O n=1
2F,= w w 4{(12 By, cos 212 6 \
O

+Z’ZB’2,, cos 27 (0+ o&)}

n=1
where B’;, and o have been given in § (1) Part I.
And
w

o
S

ZX=
+5q[1 —l-——I——qZ(I +2s+25%)+ . ] sin 29———1—593[1
A 2

—s—5 4. ]cos40+ sq*[1+2s+ ]91n49+ I»

ZY:_W_w"'rS.-I_—{—,—I—sgg[I +2s5s+..] cos 20
g vzt 4
+59[1 4+ (142525 +. ] sin 26
4 |
__I_g“[l +2s (1—s—s*)+..] cos 40
4
+-I-—sq3 [1+2s+..]sin404 .. }
2

wer.—I_-_{ —g[l +_I__gg(1 +s5425%)+. ] cos 20)
V2t 4 :

e .. (61)
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(2) 12 cylinder 60° W type.
~ (a) Single obliquity.

285

In Fig. 7 (a) let OB be the crank position, then the unbalanced

inertia forces of three rows, each of which has 4-cylinders similarly as

(1), are given as follow :

Fig. 7. (b)
W ., <
SF=—"w [4.2 B, cos 2n (—60°)
4 n=1
2F2=Ew21425’2n cos 21 6 \
8 n=1

SF,= _I_/_V_w‘—’l4 ZBM cos 27 (04 60°)
&

n=1
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SX= LV—w”r 12.—1—-{ —q[I +qu+ ) ] sin 26
g 2 4

——i—g3[1+ ..] sin 40+ . }

Ey____l/zvjr 12__1_{ 9[1 +__I..g2+b. ] cos 20
g 2 4

__;_g"[l+..]cos 49-}-..} /

(0) Double obliquity.

(... (62)

In this case let the middle row be the row of the main rod

cylinder, then :—

and

Z‘Fl:—V—V—w24{aZBZn cos 272 6+Z’Z‘B’2n cos 272 (6 —ot)

g n=1 n=1

2F2-_—LV-w24lZ B,, cos 272 0

S fn=1

2F3:_V_V_m‘-’4{a2£’2n cos 27 f)—}—Z’Z‘B’g,L cos 27 (0 +¢)
g n=1

n=1

w

SX="o%% 12.%{ —q[(l —s)+—i—-q2(1 —s)+ . ] sin 26 \

g
__;T.g?‘[l +s(z2—4s+sH)+. ] sin 460 + . }

Z‘Y:—Izw'-’r IZ.—I-{ —q[(l —s)+igz{ 1—s5(2+45+5%)
g 2 4

+ .. }] cos 29—-411_93[1 —s(7—75s+5)

+..]cos40+..}

(8) 6 cylinder vertical type.

;

}

\..(63)

In this case all cylinders are arranged on the vertical axis having
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the crank angle 120°. Hence the unbalanced inertia force appears

only on the y-axis. Namely
2X=o0

sy=" .z, 6.{-9_95[1+..]cos69+..}} (64)
g 128

(4) 12 cylinder 60° V type.

(@) Single obliquity.

This type has two rows of the above 6 cylinders having the crank

angle 120° aud being arranged in 60° V. Hence

;‘f["lz_I/—V-a)zl 6 ZBG“ cos 61 0
g n=1

.YFZ:E/:w?l 6 ZBG" cos 6712 0
g n=1

and

XX=o0

sv= W, 12-.\/_3{—9—95[[-{-..] cos 69-{—..} } (65)
g 2 (128

(6) Double obliquity.

In this case if we take the second row to be double obliquity,

we get
W .
Sh="w 1625’6,z cos 612 0
g n=1
EFQ:Kw'-%{aZBGn cos 61 0 .
g n=1

+Z’§B’cn cos 672 (0+o¢)l~

n=1
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and Z‘X:Kw‘lz. ! { 9 aq [3 A5 s 205t ,.]coséﬂ
g 2 1128 2
9]/83 aq® [3-}— 15 s+ Jsi1169+..}
2Y=— w1°'/3{ q[r(1+ V+ag(3——2s
g 2 128 2

—205°+ . )] cos 660

'3

aq[3+ S+ ]cos69+ }

(5) Star type.
(2) Radial engine.

.. (66)

In this case we have obtained in § (3) Part I, taking its double

obliquity into account, as follows :

(Fig. 8 (a))
Z‘X_—_K w2y }z{sq[l +.3_(p2+5292)+L3292, . +]cos 20
g 8 8

—._I_ S’¢*[14..]cos 40+ }

2

{—sg[l + =2 (PP + %Y — s 7"+ . ]sin 260

g

+i5393[1+..]sin49+..}
2 .

.. (10)

| 9~
8
o 0
. X~
o
Fig. 8. (a) Fig. 8. (b)
4
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In this engine if we assume it to be of single obliquity, the

resultant may be balanced until (%£—2)" harmonics.

(&) Rotary engine.

In the rotary engine we have obtained in § (4) Part II as
follows :

o
S

W I .
SX=" oyl L Bt + ..
w;fz{ 2 sq[1+ 5 (P*+5*9") + ]sm@ l
oo (41

+-2 %1+ ..]sin 36+ . }
16
2Y:O

In this case the resultant may be balanced until (Z—2)"
harmonies if we assume it to be single obliquity. (similarly as in the
radial eugine)

Now let us compare these resultant unbalanced inertia forces of
all types by an actual example. Let ¢g=.297 s=.217 anp p=.361
taking the example of 120 7P Clerget rotary engine, then we have

(1) (a) ZA’:K(«)ZVS-(—.ZIS cos 26 —.000 cos 60+ }
g
XY= »» 1—-005 cos 40+ }
(%) sx=W 23] —.216 cos 20+ .047 sin 26
&

—.002 cos 40+ .003 sin 40+ .. }

Y=, {—.oox cos 20+ .047 sin 26

—.006 cos 40+ .003 sin 40+ .. }
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(2) (@) sx=W itz
g
Y=,
@) sx="arrizl

V=, { +.039 cos 26 —.001 cos 48+

YX=o0

(3)
ZY:KQ)ZI’ 6
(4) (@) 2X=o0
Y= w12l
&) sx=otrrz
g
ZYZ ”»
w
(5) () =
SY: )
174
)
g
2Y:O

1 4.051 cos 26— .001 cos 40+

1.000 cos 60+ ...

{—.067 sin 20+ .000 cos 464 . }

I X="0w’r /z{ —.034 sin 8+ .000 sin 36+ .. .. }

1 —.152 sin 20 —.004 sin 40+

i
)

—.120 sin 20— .004 sin 40+

{.ooo N TR

000 Ccos 60+ .. ...l

}
]

000 cos68+ .. ..

S X=""o% /z{ +.067 cos 20— .000 cos 40+ .. } )

W

291

In these expressions, taking the mass, angular velocity o and crank

radius 7 to be eqal, the resultant unbalanced inertia force per cylinder

of each type is plotted in Fig. 9 with no dimension, in which the

above (3), (4)(@), and (4)(5) do not appear as their resultant unbalanced

forces are much less than t

hose of other types.
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In 8 cylinder V type the resultant appears practically on the
horizontal axis .only and its magnitude is much greater than any other
type. With its double obliquity the resulant has vertical component
corresponding to 22 9 of its horizontal. Thus it has nearly a elliptic
form having the major axis in the horizontal direction.

In 12 cylinder W type it has more regular.elliptic form also
having its major axis in the horizontal direction and in its maximum
it corresponds to 71 9% of that of the 8 cylinder V type. In its
double obliquity its magnitude is less than that of single obliquity
having the similar elliptic form and corresponds to 56 9% of that of
the 8 cylinder V type. This is remarkable and we may be able to
minimize it by adoption of the double obliquity or offsetting the auxiliary
rod cylinder axes.

In the radial engine it assumes practically circular form and
corresponds to 31 % of that of the 8 cylinder V type and in the rotary
engine it appears only on the horizontal axis and corresponds to 16 %

of that of the 8 cylinder V type in our example.

Summary.

The above is one of the methods of treating the inertia forces and
-couples and their balancings of the star type engines and from the
investigation we may arrive at the following remarks :

(1) If we assume that they have single obliquity, the resultant
inertia forces will be balanced out until (Z—2)" harmonics, 7. e
they will be balanced out almost completely in both cases. But as
the effect of their double obliquity there remains such unbalanced
inertia forces as shown in the expression (10)' in the radial engine
and as shown in the expression (41) in the rotary engine. The former
draws a circular locus as shown in Fig. g and the latter appears only
on the horizontal axis and in its magnitudé corresponds practically
to one half of the former. These resultants per cylinder are smaller

compared with those of 8 cylinder go® V type and 12 cylinder 60°
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W type engines, but much greater than those of 6 cylinder vertical
and 12 cylinder 60° V type engines. The method of reducing these
unbalanced forces is to take the value of s or @ as small as their main
rod construction will permit, or in other words to bring the double
obliquity as near as possible to the single obliquity.

(2) The effect on the unbalanced inertia force due to the un-
equalities of mass and s is considerable as shown in §(5) Part I in
the case of the radial engine. In the former it is chiefly caused by the
unequalness of the reciprocating mass of main rod to that of auxiliay rod.
Hence it is necessary to equalize these masses as much as the strength
of the main rod will permit. In the latter the unequality of s will be
unavoidable and its effect will be smaller than that of the former.

(3) The resultant engine turning moments due to the inertia forces
and couples will also be balanced out almost completely if we assume
them to be single obliquity. But in consequence of their double ob-
liquity there remains such resultant moments as shown in the expressions
(17) and (18) in the radial engine and (45) and (46) in the rotary engine.
In the latter this resultant moment gives much greater effect on the
engine torque curve than in the former and in its magnitude may cor-
respond to three times of the former. In the latter, however, the
revolving cylinders and crankcase act the part of flywheel which is dis-
penced with in the radial engine and may reduce its greater fluctuation
of the torque curve.

(4) The resultant couples on the engine frame are given in the
expressions (23) and (24) in the radial engine and (54) and (55) in the
rotary engine, which will also be balanced out if assumed to be single
obliquity. The couples have almost equal effects on the engine frame
torque curves in both cases and may be comparable in their magnitude

to that of the engine turning moment in the rotary engine.
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Appendix I Radial engine.

(@) Chief dimensions of 320 HP A,B,C.“Dragonfly” aircooled engine.

No. of cylinders Z..................9

Rated AP. ........................320

Normal R. P. AL, ..................1650

Compression ratio ..................442: 1

Bore x Stroke 5—1— in x 6—— in
2 2

(6) Lengths of its principal parts.

(Crank radius7............................ 82.5 mm.
Main rod Lo .o ... ...... 3107 mm.
Auxiliaryrod .. ........................ 254.5 mm.
Wrist pin radius @ (mean value)............ 57.5 mm.
Jp:r/l’ 324
g=r[l i ... 266
s=alll oo .. 226
Length between the small end and the centre

of gravity of rod & .................... 107.1 mm.

Length of equivalent simple pendulum of rod ¢ 195.2 mm.
(¢) Weights of its principal parts.
Weight of reciprocating part of one

cylinder W (mean) .................... 1,770.4 gr.
Weight of one auxiliary rod w,; (mean) ...... 894.3 gr.
Weight concentrated at the wrist pin C w (mean) 506.9 gr.
( Total weight of revolving parts Wy ...... 10,056.2 gr.
Total weight of revolving parts rotating

relatively to the crank pin (approximate) ..6,530.2 gr.

Moment of inertia of revolving parts Iy

(approximate) .................... 2,027.4 mm. gr.

N. B. The revolving parts rotating relatively to the crank pin consists

of the crank side of main rod and one pért of the two ball bearings
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and their accessories, and the moment of inertia I, is obtained assuming
that the revolving mass has the forms of several concentric rings having
their centres at the crank pin.

(@) Values of £ and o.

Table 1
? & 2 o o o—9 o' —p
o° .264 265 o o o] o
20° .268 .26% 24" 25’ 24° 19 4° 25’ 4° 19’
40° .281 .282 47° 56' 47° 53' 7° 56 7°53'
60° .299 .299 70° 2 70° o' 10° 2' 10° 9
80° .319 .319 90° 40’ 90° 58’ 10° 40’ 10° 58’
100° .340 .340 110° 2’ 110° 17’ 10° 2’ 10° 17
120° .358 .358 128° 22' 128° 26’ 8° 22’ 8° 26’
140° 372 372 145° 58’ 145° 55’ 5° 58’ 5° 55’
160° .381 .380 163° 6 163° 1’ 3° 6 3* 1
180° 384 .383 180° o' 180° o o’ o°

The values of £’ and o’ are those when @ or s are corrected to

keep the compression ratio of each cylinder equal.

(¢) Measurement and calculation of the corrected values of @ and s.

Table 1I
@ Deviation
Cylinder No. | a. Measured | a. Calculated s=— 'from 94 Deviation
mean value
Main 56.2mm, 56.2mm, 221 —.0053 —2.35
1or8 57.2 ’ 57.2 .225 —.0013 —o0.58
2,7 59.0 59.0 .232 +.0057 +2.51
3,6 53.1 58.2 .229 +.0026 +L.15
4 . 5 56.3 56.4 222 —.0043 —1.90
Mean value 57.5 .226
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(/) Measurement of the reciprocating weight of each cylinder.
Table TII
Cylinder Pistoixiswith Gu dgeon Pisto(ixf side Sum Def\l/-ioz;tjon o
No. accesories pmn con. rod, mean value Deviation
Main 1,217.64r. 236.3¢r. 423.4¢r, 1,867.3gr. +96.9¢r, +5.48
1 1,246.2 226.8 302.6 1,775.6 + 5.2 + .29
2 1.212.4 226.6 298.5 1,737.5 +32.9 —1.86
3 1,241.4 226.7 298.1 1,766.2 — 4.2 — .24
4 1,241.3 225.6 300.6 1,767.5 — 29 — .16
5 1,244.7 220.9 291.9 1,757.5 —129 - 71
6 1,209.7 226.0 292.2 1,727.9 —42.5 —2.40
7 1,236.3 225.1 209.4 1,760.8 — 9.6 — .54
1,248.1 225.6 299.2 1,772.9 + 2.6 + .14
Mean, 1,233.1 225.5 3118 1,770.4
(9) Figures.
Fig. 1
Values of 2=V 7 +5°¢°—2psq cos ¢ and o.—@ tan~'__ %" P
l—aces @.
.39
K =rf_(.‘—'=""384
=
.37 /,/ 2
» ’.:-V:-\\\\\ / ]
.85 Y >\ —tio
z / X
2 > N
= 33 8
s / /
-3
|
al / // \ 6+
29 Y, // \ a
.27 C —; /k// \ 2
25 9
[¢] 20 &0 60 80 100 120 140 160 180

Angle @ in cegrees |
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Fig. 2

Inertia forces of main and No. 4 cylinders.
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Unbalanced inertia forces due to unequalilies of mass and s
projected on x-axis.

(1) Primary unbalanced inertia force due to unequality of the
reciprocating mass. '

(2) Secondary unbalanced inertra force due to unequality of the
reiprocating mass.

(3) Unbalanced inertia force due to unequality of the length s.
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Fig. 4

The effect on the usual unbalanced inertia force due to
unequalities of mass and s projected on z-axis.
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Fig. 5
Torque Curve of A, B, C. “Dragonfly ” engine ().
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Torque Curue of A4, B, C. “Dragonfly ” engine (2).
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Fig. 7
Engine frame torque curve of A4, B, C. “ Dragonfly ”’ engine
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Appendix II Rotary engine.

() Chief dimensions of 130 HP. Clerget rotary engine

No. of cylinders Z.................. ¢
Rated HP.................... 130
<Normal R. P. M. ............ ...1250
Compression ratio .. . . 411

Bore x Stroke .. 120 mm. X 160mm.

(&) Lengths of its principal parts.

(Crank radius #

80.0 mm.
Main rod l 269.5 mm.
Auxiliary rod / 221.5 mm.

Wrist radius ¢ .................... 48.0 mm.
p=rll .361
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g=rll .297
s=ajll oo 217
Length DG ¢ .................... 144 mm.

Length between the small end and the
centre of gravity of rod 6 ........ 750 mm.

Length of equivalent simple pendulum

ofrod ¢ ........................ 104.5 mm.

(¢) Weights of its principal parts.

Weight of piston and its accessories

wp(mean) .. ............uuuee.......1,123.8 gr.
Weight concentrated at the small end

D W (mean) ......................1,714.0 gr.
Weight of connecting rod and gudgeon

pin 7y (mean) ........................935.6 gr.
Weight concentrated at wrist pin C

w (Mean).. .. ..o.ovuvrveuennnennn.....430.1 gr.
Weight of revolving mass concentrated

at crank pin B (approximate)........2,558.7 gr.
Momont of inertia of the revolping mass

Iy (approximate) ..............720.67 mm. gr.

N. B. The revolving part concentrated at the crank pin B consists
of the crank side weight of main rod and 46 9% of two ball bearings’
weight approximately, and its moment of inertia is obtained assuming
that the revolving mass has the forms of two rings the inner and

outer radius being 43 mm. and 61 mm. respectively and their thickness

to be 28 mm.
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(d) Values of £ and o.

» % o -9
o .297 o’ o°
20 .302 24° ' 4 5
40 315 47> 25’ 7° 25’
60 -334 69° 30’ 9° 30’
8o .356 90° 10’ 10° 10’
Ioo 377 109° 35 9° 35
120 .397 128° 35’ 8 g
140 412 145° 45 5% 45°
160 422 163° o' 3% o
180 425 180° o’
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