

Introduction

- Recently PowerFLOW has been extended to transonic flows
 - Lattice Boltzmann based solver
 - D3Q39 LBM
 - Cubic Volume Cells (Voxels)
 - Surface elements (Surfels)
 - Fully transient
 - Turbulence Model: LBM-VLES
 - Modified RNG k-ε model for unresolved scales
 - Swirl model
 - Extended wall model

2

Run summary

Cases for which PowerFLOW simulations were performed

	Re = 1.5M (buffet)	Re = 2.3M
Cp cuts	Mid span of main wing	Full wing/tail sections
Cp' cuts	Mid span of main wing	No
Cd/Cl/Cm	Yes	Yes
AoA simulated	4.87°, 5.92°	2.94°
Sting	No	Yes/No
Resolutions	C/M/F	F

König, Fares, Nölting, "Validation of a Transonic Lattice-Boltzmann Method on the NASA Common Research Model", AIAA Paper 2016-2023

© Exa Corporation

Results – High AoA

- Cp
 - At 5.92° shock position is upwind of exp.
 Exp. show significant Re dependence

High Angles Investigation

- Notes on inboard wing and shock position
 - This part of the wing has complex flow features in the wind tunnel at high AoA
 - Results from APC-1 also show CFD codes to be sensitive at high AoAs
 - Shock very close to trip

High Angles Investigation

 Results for high AoA match high Reynolds experiments better

Conclusions

- Sting effects were investigated
 Similar conclusions to the NASA CRM simulations
- Buffet simulations were successfully performed
- Results are in some regions closer to higher Reynolds numbers experiments
 - Sensitivity to the transition location was demonstrated

14

Questions?

