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On a Problem of Heat Convection with Special
Reference to the Theoretical Explana~
tion of Schmidt’'s Experiment.

By

Tatudird SasAk1, Rigakuhalkusi,

Member of the Institute.

I. Introduction.

It is a well known fact that when a current of cold fluid encounters
a warm fluid, it sinks down and rushes forward buoying up the adjacent
warm fluid. The mode of motion of the fluid in such a case was
investigated a long time ago by W. Schmidt®, in order to explain the
mechanism of line squall. Schmidt’s experiments were carried out in
a long rectangular vessel by making a colder and heavier fluid flow
under a warmer and lighter fluid. Beneath the warmer fluid the colder
fluid rushes forward, forming a sheet, the farthest end of which forms
not only a wedge like shape, but is also a little swollen up like a head.
It is evident by the observation of the motions of fluid particles that a
vortex is set up in this part of the fluid and mixing of cold and warm
fluids takes place.

An attempt is made here to examine how far the interesting results

obtained by Schmidt can be explained theoretically.

(1) W. Schmidt, Met. Zeitschr. 1911, S. 357.
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266 7. SasaZi,

II. Theoretical Investigation.

Instead of the cold fluid flows under the warm fluid, we consider
the cold fluid is at rest and the warm fluid flows over the cold one
with a mean velocity U opposite that of the cold fluid. In order to
avoid the complication of the problem, we limit it to two dimensions

and moreover neglect the viscosity of the fluid.

The equations of fluid motion are in the usual notation: —

Du _ 13 Dv _ . 13p

Dt p ox " Dt p Oz ’
where

2 = i+(U+u)L+vi .

Dt ot ox 9y

In these equations the density p is variable in consequence of
variable temperature and pressure, But, as was shown by Boussinesq
and justified by Lord Rayleigh®, in the case under consideration the
influence of pressure is not important and the variation with temperature
is small, so we neglect the variation of density, except in as far as

they modify the action of gravity.

Hence we can wright

p = po—poab ,

where 0 is the temperature reckoned from the initial temperature of
the warmer fluid, p, is the density at that temperature and « is the
expansion coefficient. If we consider 4, v and 4 are small, and neglect
the squares of small quantities, the equations of motion reduce to

U L grPu 1 3P ov 3v 1 9P

g 1P W g 18P,
ot 9 po 9w ot 9 po 3y

(2) Scientific Papers Vol. VI, p. 435.
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On a Problem of Heat Convection with Special Reference 267

where
P=p+gpy .

Since we treat the fluid as incompressible the equation of continuity

becomes

@l-‘-a—vzo.
dxr dy

The equation for the conduction of heat-becomes when @ is small

A2 2
@i_}- U_‘aﬁ E=S K(_a_H +,3_9 R
ot dx x® 9y’

in which « is the diffusibility for temperature.

For the sake of simplicity we now treat the problem in the following
way. A fluid of density py and the temperature @ flows from — oo in
the direction of positive gx-axis with a mean velocity U in a rectangular
vessel of depth h, the upper wall and left half of the bottom of which
are maintained at the temperature @, and the right half of the bottom
is maintained at the temperature §—6 . When the motion is steady
the equations of motion and the heat conduction reduce to

Sw _ 18P o 123P .,

dx po X~ 8w po By
2 2
oz ox? Yt

with the equation of continuity

where « stands for ga .
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268 T. Sasak:.

The boundary conditions to be satisfied are

PN

v=0 at y=o0 and yYy=h,
=0 at y=h,

0=F() at y=0, = { eeeeseencos (2)
where F(x) =o0 when z <o,

= —0® when 2 _>o0. °

The appropriate solution of the equation of heat conduction is

o=n"1(" (TF@eeensinhBE =) g5, ...
wjojm()e sinh Bh o (3)

where g= /ag +ila .
K

If we introduce the stream function +, we have from equations (1)

3 20
U_—ry=—y_—.
9 v v ox
From this relation we have, since v = —%— ,

Py = R r rF(/I)ef“(x‘”aw-dadz .
U 0 Y- sinh Bh’

The solution of this equation which satisfies the conditions (2) is

o= R r rFU)eMM,[sinha(h~y) __sinh B(h—y)]d wdd
aU? )y J_o sinh ah sinh Bh

The expression for 4 can be obtained from this equation, integrating

it with respect to x and changing the sign, as follows:—
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On a Problem of Heat Convection with Special Reference 269

&y (= (= e"“‘“‘“)[sinha(h—y) sinh B(h—y)]
A - dada .
So s o @ 10 sinh ah sinh Bh a4

III. Integration of the expression for 6.

In the first place we integrate the expression for §. For that sake

we first perform the integration with respect to a i.e.

sinh J @ +i%q (h—y)
ad da .

g = [
0 sinh~/a2+'££a-h

K

Let

da .

- sinh~/a2——'£ga,(h —y)
L= j e—ia(z—2) K
0 sinh‘/az—iga-h
K

Since I and I are conjugate, if I; = X;+1Y;, then L, = X;—1Y;.

Therefore

L+Lh=2Xi=2RL....cc0cvuiiiiii... (6)

But since

sinh/ it +i 7 ah—y)
K

1‘2 — _I—zia(:c—l) _ da
: ¢ sinll~/a2+iga-h
K
sinh ~/ a2 +iTah—y)
= « da ,

__j eia(w—))
- sinh~/a2+i£a-h

K©
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270 7. Sasaki.

we have

sinh Ja2+iga(h—y)
X da .

L+L = s glaE=2) —
- sinh ~/a2+i—a-h
K

This integral can be performed as follows. Let a be a complex
quantity and carry out the contour integration in the complex a-plane

along the pathes shown in Fig. 1.

a = E+iq.

On the large semi-circle, the radius R of which tends to infinity

in the limit,

sinh J ot +i Y a(h—y)
K

—a \2n+1 —
lim ——7 = lim(hhy) = {I’ y ’h
R Sinh /\/az-*-i_a-h n-—>o0 O, O <y< ’
«
and

S‘ g2 g jﬂeiR(fc~)~) (cos ¢4 sin ¢)Riei¢d¢

0

_ {“6— R(xz—?) sin ¢ —¢R(x—?) cos ¢R1’ez¢d¢)

JO
< jw:e—R(gg—)\) sin éRd(f) — 5 j?Re—'R(m—).) sin ¢d¢
0 0
T —R@—)pL Rr ~Rz—)¢L|7
2\ Re dp = —2—— e
< L ¢ 2R(x —24) | 0

. [e—R(x——).)_I] ]
x— 4
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On a Problem of Heat Convection with Special Refevence 271

Hence when x—2 >0, o<y < h the integral along the large semi-
circle tends to zero as R tends to infinity . 'a, = 0 is a branch point of
the function to be integrated but it is not a pole. Therefore the integral
along the real axis is equal to 274 times the sum of the residues. So

we have

rew(x =) sinh B(h—y) 5,

-0 sinh 8h
7 o R ) _
o (27““/ h? +?)(”—)‘)sinnw———(k )
= omi Y (—)"i* h__.1m
S O =
n=1 +—
X 4
U ./nixt U2 '
. (o )
= 2m* \1 ne sinnmr 2 .
h? n=1 /\/'nz'ﬂ'z U? ~h
V' ke e ‘
From the relation (5) we have
?ijeia(x -3) sinh B(h —y) da
0 sinh Bh
U /2= U:
& (e e S
= .7 E ne _ ST T e v e iiee e (7)
h2 4 ~/'n2'rr’ U*
X P
when z—2 >0, o<y<h.
We now treat the case, in which z—2< o. In this case the

pathes of integration should be taken as shown in Fig. 2.

In the case xz—i < 0 the integral along the large semi-circle tends
to zero, as R tends to infinity, just as proved above in the case x—21_>o0.

A is a branch point of the function to be integrated, but it is not a
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272 7. Sasaki,

pole. Hence the integral twice round A is zero. The integral along
OA and AQ cancel each other, since we integrate the function twice
round the branch point 4 and return on the same leaf of the Riemann’s
surface. O is a branch point, but it is not a pole. Hence we have

when z—2 <o,

sinh Bh

( Tl )@

2K

_ ne .y
= h,z 2 T s1nn7rz ........ (8)

h2

SRS‘ ia(x —») sinh B(h — y)
0

We now perform the integration with respect to 4. Since F(x) = o
when z <0 and F(x) = —@ when x>0, we have

6= —R&[""gtaten sinhBE D) goqy
™ Vg Yo SlnhBh

When g <0, since 1 >0, we have always x—4_>0. But in the case
x >0, x—A is positive when 0<2<xz and x—A is negative when
2>z . Therefore when x <0, we take (8) and integrate it with

respect to 4 from O to o . In this case the expression for § becomes

-

6=—Q~ti ne__ - sinnrZ..... (9)
h? = £+ n2ar ‘ )~/'2'n" U" h
2k h? o 4k°
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On a Problem of Heat Convection with Special Reference 273

When g >0, we divide the region into two parts. i) When

o< 1<« , since g—a>o0, we take (7) and integrate it with respect

to A from o to . Hence we have

g)qs s la@—2) sinhBh =Y gada
0 0

sinh 8
x

o [([i“ T
e
2K

Slll nmw-—.

4

IC

ii)y When 22>, since g—a< 0, we take (8) and integrate it

with respect to 2 from x to = . In this case we have

ERS'”S gia@—2) sinh 8(h —v) dada
0

z sinh Bh

ot N P _ _sinnnl.

= *'h—z‘ /’nzqr“ []2 ),\/’I’LZWZ (]‘a h
n=1 V hZ 4

Hence when z >0 the expression for 6 becomes

(U W)x

2k h?

g = A_"ﬁi L — sin 7Y
G T WL
2k h?
................................... (10)
At y=0 we have
0= _8 gw chos a(x — )dadi = {O ’ ¢<0» ... (11)
7 Yo Yo —0, x >o0.
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274 T. Sasaki.

IV. Integration of the expressions for v and + .

The expression for v is as shown in (4)

— R * F za('c—))[smha(h y) _ sinh B(h — y)]d di .
WUJ j @) sinh o snhgh 40"

The second integral is the same as that which appeared in the
expression for §, and the first one can be obtained by only replacing

B by a in the second integral. Hence the expression for v becomes

w [ 7 (£—+/”,;”‘2+fi)x
— 6«7 E e h _ ne . |sin 27Y.
- wU? n R (U A/'nzw-2 U* )"/'nf'n-2 U? o’
—+ + + =
- 2 'V h? 418 h?:  44°
..................... eereereceneaeea.. (12)
when ¢ <0, and
U W
o _ (2—,‘_ T;Lz 2)‘”
v = @KVEG h+f ne sinnw,
'n-U2 n h2<£_~/ 471-2 U2 >~/ h
2k 4
....................................... (13)
when £ >o0.

v is continuous at x = 0. Hence it is continuous everywhere in
the field of flow.

The expression for 4 can be obtained by directly integrating (s5),
but it is easier to integrate (12) and (13) with respect to x and change

the sign. In this way we get

(_g //,ngn‘Z ﬂ)x
o iz 2K+’V he + 4x2
\P__@xfyg ~h—e b w ne
U L] wPn? k! <gv+~/ n'n Ud) /n
2k h? 4I€

x sm — + [y,
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when x <0 and
o _hmx (%_‘/ﬁkz + gcz )x
. _ Oy h ko ar ne
V=T A e (U i T o T
. n=1 _ + ) 5
2K h? 44 B 46
X sin n;:y + fa(y)

when z >o0.

The fuﬁctions fi(y) and fi(y) should be so chdsen that s =o0 at

X = —oo and {Jr is continuous at = 0.

Hence we get finally

i U
(‘2[—,{*‘}/7;; + 4K2)x

- sy
— _ BO«ky h ko ne
V= U? i U nin? | U*\ [nin®, U*
nel —+~/-——+—) Ry 2
2k h? 4/c2 h? 4x2
. nmry
) ¢ R (14)
h
when 2 <0, and
U /nx® U
oo il (;—V 72: +j47c;>x
w__@QE h o, b _m. ne -
= U? | ntn? L2 _l]‘_~/hz7z_2+-@)z~/n27rz+ 7
N2 ht 4 [P
2URY | . mmy
+ P (15)
wnie® h
when ¢ > o0.
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276 7. Sasali.

V. Numerical calculations.

In carrying out the numerical calculations it is necessary to know
the relative magnitudes of the unknown quantities «, U, h and @ . h
and @ can be determined immediately from the conditions of experiment,
but the value of x largely depends upon the condition of mixing of
fluids of different temperature and not upon the ordinary heat conduction
when the fluid is at rest. The relation between U and @ seems to us
a little obscure in Schmidt’s experiment, and there is no datum to
determine the value of ¢ . Hence in the following numerical calcula-
tions I derermined the value of %, x and U arbitrarily and from the
map of « (the relative values of + at all points in the field can be
calculated from the formulae of 4, but the absolute values are not
determined because the value of @ is still unknown) calculated, we
determine the value of @ in such a way that when the stream function,
which represents the uniform flow of velocity U, is superimposed on the
above map of «, the head of the sheet of cold fluid nearly coincides
the centre of the vortex, which is the case in experiment.

We consider the fluid is water, and determine x = 60'crn.2/sec. SO
that the mode of fluid motion resembles as nearly as that of the experi-
ment. For the value of U we took 1-8cm./sec. calculating from the
velocity of fluid particles shown in the figure in Schmidt's paper. We
also determined A4 = 31cm. and ¢ = 0-17 cm./sec. .

The values of /@ calculated from (13) and (14) using above values
of ¥, U, ¥ and h are shown in Table I.

TasLE 1.

N 3 cm. 6 cm. 9 cm. 12 cm. { 15 cm.
o-1h —2.23 —2.01 —1-98 —2.02 —2.10
o-2h —3.82 —3-33 —3:35 —3-40 —3-51
o-3h —4-48 —3-92 —4-04 —4-07 —4-20
0-4h —4-40 —3-74 —3-76 —414 —4:35
o-5h —4-20 —3-68 —3-90 —4-16 —4-09
0-6h —368 —3-10 —335 —3'59 —357
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On a Problem of Heat Convection with Special Reference 277

TaBLE I.—(Continued)

N o cm. —3 cm. . —6 cm. —9cm.
o-1h —2.79 —1-74 ~1-24 —0-89
o-2h — 411 —2.81 —1-82 ~1-52
o3h —4-69 —3-38 —2-69 —1-96
o4h —4-39 —3-63 —2-87 —2-19
os5h —4-15 —3-40 —2.75 —2-16
0-6h —3-45 —2-95 —2-37 —1.94
The stream lines corresponding to this case are shown in Fig. 3,

and those in the case where the velocity U is superimposed are shown

in Fig. 4.

the sheet of cold water.

In Fig. 3 we see clearly a vortex is formed at the head of

The value of @ calculated in such a way as written above is 2-7°C.

15 cm
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The values of @ (C°) calculated from (8) and (g9) are shown in

3 6

Fig. 4.

15 cm.

Table II.

TaBLE II.

N 3 cm. 6 cm 9 cm. Iz cm. 15 cm.
o-1h —1.67 —1.96 —2.08 —2-14 —2.22
o-zh —1-42 —1-66 —1-84 —1-95 —2.07
o3h —117 —1:35 —1-53 —1-63 — 179
0-4h —0-82 —0-94 —1-09 —1-19 —1-36
o-5h —o0-68 —0-73 —0-86 — 097 —1-13
0-6h —0-51 —o0-55§ —0-59 —0-71 —0-85
T ¥ 0 cm. —3cm —6 cm. — 9 cm.

Yy \
o-1h —1-07 —0-49 ~ 023 —o0-13
o-zh —0-99 —o0-58 —0-34 —0-22
o-3h —0-86 —o0-58 —o0-38 _ —o0-26
o-4h —0-72 —0 54 - 037 —o0-26
osh —0-57 —0-46 —0-34 —o0-25
0-6 h —0-44 —0-37 —0-28 —0-21
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Lines of equal values of @ are shown in Fig. 5, which show the

temper‘ature distribution in the water.

om./

18

15

12

9

)/ 16>
a8’l
6
Q
20

3 /
0

-9 -6 -3 0 3 6 Q 12 5 cm.

Fig. s.

V1. Conclusion.

Although rough assumptions are made in deriving differential
equations of fluid motion and the equation of continuity, they are
sufficient in making rough calculation of the problem of heat convection
as in the present case. If the experiment is made more precisely and
the relations between unknown quantities are determined, we are able
to see whether or not the present theoretical investigation agree with

the experiment and afford a theoretical explanation of the experiment.
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