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Abstract.

The motion of the fluid developed when one half of its bottcm was heated was
solved mathematically, and the solution was compared with schematic experiments
and also with observed data of sea breezes.

The schematic experiments were carried out with water in a tank. A vertical
temperature gradient, which corresponds to the gradient of the potential temperature
in the atmosphere, was given to the water. And then, the temperature of one half
of the bottom of the tank was raised a few degrees. In this way, a circulation of
elliptic paths was generated above the boundary of the warm and the cold halves.
The velocities of the water and the speed of growth of the circulation were measured.
The mathematical solution accords well with the results of the experiments, if a
suitable value is given to the diffusibility of temperature in a verical direction, which
the solution contains, and the effect of visccsity is taken into consideration.

In the case of sea breeze, the mathematical solution gives the relations cf the
rate of rising of the temperature on the earth’s surface by the solar radiation to the
wind velocities at various points and times, the height of the limit of the breeze
and the speed of extension inland of the regicn covered by the breeze.

(1) A short account of this work was published in “Beitrige zur Physik der freien

Atmosphire, Bd. 19, (1932) (Bjerknes-Festschrift) S. 17.”
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6 7. Kobayasi and T. Sasaki.

I. Tank Experiments.

The tank used in the experiments, which was 300 cm. long and 20
cm. wide, was filled with water to a depth of 30 cm. The bottom of the
tank was copper plate, which formed the upper sides of a pair of pipes of
flat rectangular section, as shown in Fig. 1. (Not in correct proportion)
Water of any temperature could be circulated through these pipes from
small reservoirs by means of circulating pumps. In this way, each
bottom half of the tank was heated or cooled to the desired tempera-
ture. In the experiments to be described, while the right half of the

bottom was gradually heated or cooled, a constant temperature was

Water of const. temp.- é Heating water

Fig. 1.

maintained in the left half. Very fine aluminium powder was dusted into
the water in order to render its motion visible. The vertical section of
the water about 1cm. thick and parallel to the length of the tank at
the middle of its breadth was illuminated from the upper surface of the
water by a parallel beam of light from an arc lamp. The motion of the
water was observed or photographed through the glass wall on the front
side of the tank. ,

Before each experiment, a vertical temperature gradient of from
0-1° to 0-5° per cm. was imparted to the water. That the water tem-
perature has a gradient corresponds to the fact that the potential tem-
perature of the free atmosphere increases with height. Although the
vertical temperature gradient does not alter the characteristic features
relating to motion of the water, the greater the gradient the smaller the

vertical scale of the fluid motion. If there were no temperature gradient
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in the water, the circuratory motion would reach the upper surface of
the water, whence it follows that the vertical gradient of the potential
temperature in the atmosphere is the most important factor in limitting
the height of a land or sea breeze.

After the vertical temperature gradient had been imparted to the
water, the latter was allowed to stand for two or three hours until all
movement of the water ceased.

The water in the reservoir was heated by an electric heater immersed
in it. Two or three minutes after the heating had begun, a small
(roughly circular) circulation started above the discontinuity of tempera-
ture at the bottom. At the same time, many small irregular vertical
convection currents of 2 or 3cm. height shot up from every part of the
heated bottom. The circulation developed with time, much in horizontal
scale, but little in vertical scale, so that it became elliptic. Photo 1
shows an elliptic circulation after it had fully developed.

In taking the photographs (Photo 1-7), the exposures lasted in all
5 seconds; exposed 3 seconds, interrupted 1 second and then exposed
1 second, so that each pair of a dot and dash gives the velocity of the

fluid, the sense of motion being in direction from dash to dot.

Cold bottom f Heated bottom |
Discontinuity 4_'—10 cm.

Photo 1.
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Photo 6.

Cold bo:tom | Heated bottom

Photo 7.

Photos 1—7 were printed after tracing with ink all the distinct dots
and dashes in the original photographs. Photos 2a and 3a are the

respective originals of Photos 2 and 3.

The irregular vertical convections in the region of the heated half,
where the ellipiic circulation’ had not yet reached, increased both in
velocity and size, the neighbouring ones coalescing. Their tops had

the exact form of cumulus clouds.
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Theoretical and Experimental Studies of Convectional Circulation 13

The stream lines of the elliptic circulation in the cold half were
very regular and perfectly elliptic, and the fluid began its motion so
gradually upon arrival of the van part of the circulation that the exact
limit of circulation could be defined only with difficulty. In contrastto
this, the front of the circulation on the heated half of the bottom was
very distinct, there being a steady horizontal flow in the region of
elliptical circulation, while in the region of vqrtical convection the flows
were very irregular, the vertical flows alone being conspicuous. The
shape of the front differed with the extent to which a vortical flow of
the same sense existing in the convectional region had been annexed.
At one time its head rose high, as seen in Photo 3, while at another
its head.hung low in wedge form, as shown in Photo 4.

The elliptic circulation developed much more quickly towards the
cold half than towards the heated half, as will be seen from Photo 7,
which shows the circulation at an early stage of development. As the
circulation grew towards the heated half, ‘the stream lines showed more
regular ellipses, as shown in Photo 1, and the center of the ellipses
shifted gradually (a few centimeters at the end of the experiment) towards
the heated half. .

The elliptic circulation had a horizontal calm layer at the height of
its major axis. Although this calm layer was always perfectly flat on
the cold half of the bottom, as shown in Photo 5, on the heated bottom,
especially when the heating was vigorous, many small vortical motions
were produced along the calm layer, as will be seen from Photo 6.

The development of these elliptic circulations were examined quan-
titatively. In one of the experiments the initial temperature gradient in
vertical direction was 0-111° per cm. and the rate of temperature rise
of the heating water passing through the pipe below the bottom was
0-33° per minute. Three photographs of the central part of the circula-
tion were taken at 6™ 458, 10™ 30° and 14™ 0° after the heating was begun.
One of those photographs is reproduced in Photo 8. In this case, four

exposures of 1 second each were given with intervals of I second each.
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14 T. Kobayasi and 1. Sasaki.

The velocities of flow at different heights in the néighbourhood of the
temperature discontinuity of the bottom were measured on those photo-
graphs.

~ The results are plotted in Fig. 2. The curves show the heights of
the calm layers at respective times, which are 3-73 cm., 4-37 cm., and
5.05 cm. The curves bend sharply in the lowest 1-1-5cm. and tend to
zero at the bottom—evidently caused by resistance of the bottom due

to viscosity of the fluid.
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Fig. 2.

In order to measure the temperature of the water at different points
and times, the experiments were repeated three times with conditions
the same as just described. As it was very difficult to produce a uniform
vertical temperature gradient of the required degree in the water, nonuni-
formities and inequalities to the extent of a few per cent. were una-

voidable, the mean value of the gradient being o-111 deg/cm. Thermo-
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Theoretical and Experimental Studies of Convectional Civculation 15

junctions made of very fine wires were held in support 1 mm. above the
bottom at —15cm., ocm., +15cm., +30cm., and +45 cm. towards the
right from the discontinuity at the bottom, and the temperatures were
measured a number of times in each experiment. As the temperatures
indicated by the thermo-junctions fluctuated owing to vorticities in the flow,
the results of the three experiments were plotted against the time by taking

the intial temperatures as zero, as shown in Fig. 3, from which probable

S X in cm.}

a 45
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g //0
:Ez; ~—1 ° -'—’_"’/_o——o-‘——— -15
R
0 5 10 15 20
Time in minutes ~ ) )
Fig. 3.
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0 15 30 45
Distance from the discontinuity in cm.

Fig. 4.
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16 T. Kobayasi and T. Sasaki.

curves showing the temperature variations at those five points were drawn.
Fig. 4, which was drawn from Fig. 3, shows the distributions of tem-
perature in g direction at 5™, 10™, and 15™ after the heating had begun.

. The positions of the circulation front were read off several times
during each experiment and plotted against the time measured from the
beginning of the heating, as shown in Fig. 5. The diagram shows that
the circulation front started 2-4 minutes after the heating was begun and

that its velocity of propagation was very nearly uniform, the value being
0-84 mm/sec.

S
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w
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L

in em,
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5 10 15 20

Time in minutes

Position of front easured from the discontinuity
1

=3

©f

Fig. 5.

The cooling, instead of heating, of one half of the bottom produced
a circulation of the reversed sense much”flatter than in the case of
heating, with the calm layer at 1-1-5cm. height. The limits of the
circulation on both halves of the bottom at any time were obscure,

because the fluid began its motion very gradually.

II. Mathematical Investigation of Convectional Circulation.

Let z be the distance measured from the discontinuity at the
bottom (the coast) and y the height measured from the bottom of the fluid.
Let @ be the temperature of the fluid at any point in the equilibrium
state and & the deviation of temperature from @ at any time. As the
variation in temperature is quite small in the persent problem, we may

write

p = po—poad ,

This document is provided by JAXA.



Theoretical and Experimental Studies of Convectional Circulation 1 7

where p is the density of the fluid, p, the same in the equilibrium state,
and a the coefficient of expansion of the fluid.

Put 30/3y = B; then B is the vertical gradient of initial temperature
in the case of tank experiment and the vertical gradient of potential
temperature in the equilibrium state in the case of land and sea breezes,
and we may assume B to be a positive constant.

If the hydrodynamical pressure is denoted by p, the accelerational

potential at any point in the fluid @/p may be expressed thus:

("] =p+pgy—pgaj@dy. (o)

If we assume that the components of velocity u, v, and the dis-
turbance of the temperature ¢ are small, the equations of the fluid motion

and the heat conduction reduce to

a_uz_,l_.@, v =~_La_a’/+fy§, (1)
at’ Po ox ¢t Po 'ay
3 (32& "%
— 4+ By = i -+ , 2
at TP7 T 1 (2)

and the equation of continuity is

ou , ov __ (3)

where ¥ = ga, and ¢ stands for the diffusibility of temperature. We
will assume that the effect of pressure on the density of the fluid may
be neglected even in the case of land and sea breezes, and that po is
constant. (Boussinesq has shown that this assumption is regitimate®).
The boundary conditions to be satisfied are
v=0 and J=o0 at y=h, ]

(4)
v=0 and &=f(¢,x) at y=o0, ]

(1) Bouésinesq: Théorie Analytique de la Chaleur. t. I, p. 172, (1903). See also
“ Lord Rayleigh: Scientific Papers, Vol. VI, p. 436.”
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where f(t, x) is the function which represents the temperature distribu-
tion on the bottom, and h the height of the limit of the fluid which

takes part in the fluid motion considered.

If we introduce the stream function +» such as

u.—_‘_a_‘l_f_’ 'j}:—ﬂ_;,
oY ox

we get the differential equation for 4 from (1), (2) and (3) as follows:

92 9 ?°
Etypz\}"_xa‘p“p"*' B’Y'Zél;—:O- (5)

In order to gef the solution of this differential equation, put
¥ = ¢ sinax F(y),
then, we get from (5)

Fly) = ASnha@—h _ psinh ey —h)
sin ¢ihe sinh eh

where

_ o+ Vo' — 4ikaBya’
- b4
21k0

s o —V o' — 4ikoBya’
04 = Q" — . .
2o

In the tank experiment, the temperature of the metal bottom is
uniform in each half and has a jump at the boundary of both halves.
However, the temperature of the fluid just above the bottom shows no
discontinuity and have such distribution as shown in Fig. 4, owing to
the horizontal motion of the fluid. On the heating of the bottom, we
will assume, taking the case of land and sea breezes into account, that
the heating and cooling were done periodically. Then we may choose

a form of function as shown below for f(t, «) in the boundary condi-

tions (4):
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f(t,x)=£—sinot[tanh£+l]. (6)
2 2

Now, since

L[tanh!& + I] f f cosa(@—4A) =22 " dadi,
2 2 Jtete 1+e %

if we put as the appropriate solution of (5)

P = —’I:CIC'}’eidt*I‘* foofoo a sin a/(x_A) . 1
w
0 -—

1+¢ % vV o' — 4ikeBya’

sinh ei(y—h) __ sinh ex(y—h) ld 1,
x { sinh ¢1h sinheh  J ad (7)

6 = —Li frrz Pdx = CKG. ’Lﬂtf f COSQI(CU /1)
v ot ' Cite

I ' sinh ¢ (y—h)
E—a? !
x Vot — 4'5/:0'/87(12{( 1= @) sinh e h

we get -’

(2 __ 2 sinh ca(y—h) | da 8
(cz—a?) sinh ¢k Jda (8)

From this equation we see that § =0 at y = h, and

y 0 = ___?/Ce.wt 1 f f COS (L(:L‘ Z)dadl

1+e %

= —i et ann 224 |
2

at y = 0. Hence, if we denote the real part of 8 by &, we get

80 =-C sin at[tanhﬂ+ x]
2 2

which is the condition (6).
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As the expression for @ in (7) and that for § in (8) contain €™ as
a factor, we get

6 = —Liofpzwdx
Y

It is evident from this equation that — (%) corresponds to RE@) .
Hence, if we choose ¢ as the real part of 6, the stream function + is
to be chosen as the imaginary part of ¥ with negative sign before it.
We can easily prove from (7) that v =0 at y =0 and y=h.

From the foregoing considerations we see that —§(¥) and R(G) are
the required solutions of the differential equations (1), (2) and (3).
' Next, we must carry out the integrations which appear in the solu-
tions above.
In the rectangular region as shown in Fig. 6, we perform the con-

tour integral

f eia,z dZ
1 +e—bx ¢

This integral reduces to
fR eiaxdx
—bx
J, 1+e

on the real axis, and to

. 2% . 2a
'/"Rﬂ,T emzdz fR ewx e b dx

—bz —~bx
—R+i27“ 1+e¢ 1+e6
on the line parallel to the real axis at a distance of 1 2(:7-

On AB

2n
R+i7~ iaz ia(R+1y),
[ b e
A 1+e % g1+ MBI

2
— ,ie'[a.R f b e——aydy
s 1 + ¢ ety
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When R tends to infinity,

Ebi _ayd _Z2ra
lim y = f e Ydy = [1 —e ° ]
Re=d 1+ ¢ 1+ g PR gty

Similarly

2% . 2n .
. ~R+1 3 emzdz ... 5 e—w.Re—aydy _
Roed 1+¢ 0 oo o 1 + ePEe=bY

Hence, the integral on DC tends to 0 as R tends to infinity.

Therefore, when R— oo,

ye eiazdz _
—— =\1—e¢
1+e?

wz
27r'LRes( - >—°m
1+e %

Z=’L
-

2na

w.xdx ,LeiaR (I . e—
1+e - a

Hence
f > evdy _ ie"F g 7 I
1+e% a b a
sinh T

Using this result, we get

f°° f°° a sin a(x—A)da da
g 14+e¢ 2

:f""f @ sin ax cos aidada f”f” a cos ax sin adda di
J o J 1+¢% S 1+e

21

°° cos a > @ sin ax si
— __f 0 COS aT _—R_{___”sz'*_ da+f a sin @ sin G'Rda

v a b sinh—zbg- 0 @

= f cos a(R—x)da—fxwda .
v ¢  bsinh ™%
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Also, we get

f f cosa(r— ))dadl f“’cosamsin aRda+f°°7rsinaxda

1+e™ 0 @ ¢ bsinh ™%

b
_f°° sin ax cos a R da = f”sin a(R—x)da + * o sin axda
0 a 0 @ 0 bsinh l%a—

As shown above, if we perform the integration with respect to i,

the expressions for 4 and ¢ reduce from (7) and (8) to

wt : :
O ff cos a(R—2) [ sinh ei(y —h) _ sinhe(y—h) ]da,
b= Kry Vo' — 4ikaBya’ sinh ¢k sin c2h
__ (~amcosax 1 [sincl(y—h) __sin cz(y—h)] da
b sinh ™% Vo' — gikaBya’l sincih sinh ¢zh
b

(9)

Cko ;of (< sina(R—x)
g = R
T ¢ 1.[ aV o* — 4iraBya?

2 2 Sinh Cl(y"‘h) . _ Sinh Cz(y'—h) ]d
X [(C1 ) sinh ¢ih (—a) sinh ¢h a4

o0

7r sin A

0 bsinh Zbg,\/a"’——z}'i/caﬁryaz

+

F—a? sinh ¢;(y—h) o sinh c(y —h) ‘
[( @) sinh ¢ih —(G=a) sinh ¢z h Jda} , (x0)

[I] We first perform the integration

fooa, cos a€ {sinhcm __sinh e } da (11)
J ik ™% sinheth  sinh e:h J Vet — gikeBya?’

b
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which appears in the expression for .
Put

I = o*—4ikoBya?,

a=¢e *

2V ko By

2,

then we get
I=s'(1—72%,

o+ vV o' — 4ikaByal

¢ = a’— i
29k0

=~-;L[ 2 2B% (1 411/ 12 2]
z4wﬁv 2 = G+vi—z9)].

If we further put

m 2
—i o
e 't

2V ICO‘B_'YC ’

o =
we get
¢ = z2~—%§z(1 + 11— 2)
= —(1/1——_72- I +20—‘€V> (V1 —2*+1)

Let the points corresponding to the roots of the equations

V1—2’+1=0 and 1/1—z"—1+——2327=0

g

be 21 and 2z, respectively.

Now transform ¢-plane into z-plane by the relation ¢ = 1'1—2%. Then
the whole ¢-plane is represented conformally into the two sheeted Riemann
surface in the z-plane, with 2 =1 and 2z = —1 as its branch points. On

the upper sheet of the Riemann surface, the point z = 0 corresponds
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to ¢ = 1, and the point corresponding to z; lies on the negative y-axis,
because, as it is clear from the following numerical calculations, 28y/o
takes a value greater than 1. Similarly, on the lower sheet of the
Riemann surface, z = 0 corresponds to 2z;, and z; lies on the positive
y-axis.

Let X and Y be the absolute values of the real part and the ima-
ginary part respectively of the variable ¢, then the value of £ on the

two sheeted Riemann surface in the z-plane is shown in Fig. 7.

Upper sheet - ~ Lower sheet

|
|
X+iy ; X-iy

Fig. 7.

The whole ¢-plane is represented conformally into the four sheeted
Riemann surface in the z-plane, with 2 = —1, 2 =1, 2 =12, and 2 = 22
as its branch points. The slit between z = —1 and z = 1 connects the
first sheet to the third sheet, and the slit between z = z; and z = 2,
connects the first sheet to the second sheet and the third sheet to the
fourth sheet. Every sheet of the Riemann surface in the z-plane is

shown in Fig. 8.

nar

The values ¢, = +

.1
that ¢y = e ‘2 /02
21 ko By

satisfy the equation sinh ¢;h = 0; and seeing

¢, we may write
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1st sheet 2nd sheet
o o
I 1]
<) 3
I\ 'S
-1 l +1 -1 l +1
. . > .
RE>0 RO<Q RH<Q " R&>0
A8<0 . Ja<o Ja>0 ) J89>0
........ T =0 e T J8=0
RE>0 RE<0 RE<Q RE>0
J&>0 i % J39>0 J8<0 742 J8<0
3rd sheet 4th sheet
. ' J
RE<0 RG>0 RE>0 RE<0
@ >0 % 3550 J5<0 % J@<0
----------- e e dO=0 e ] -8=0
Re<0 1 ®©>0 RE>0 RB<0
Jie<0 <0 J5>0 28>0
: Z,
_______ =) o _
-1 S +1
i

Fig. 8.

nar 2V ko 'Yei% — g N7 21/xameji%
1h a* h ot

(==

= +nMe 7 (say)

as the values which satisfy the equation sinh ¢ h=o0.

! 2 Z
Since we can write { = N/—(t-i-ﬂ?i) +(§Z— I) , We may put
(o g

£ =VA—t?,

where A =71 and ¢ =¢+57,

g (o

Therefore at £ = tnMe ' 4 , where the equation sinh ¢,k =o0 is

satisfied,
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: £t = A2+in2 M.

The points in the ¢’-plane corresponding to the roots of this equafion

are shown by marks ® in Fig. 9.

Upper sheet Lower sheet
| 0 i e
. ,’® : 7 ©
1 7 © z 7o
| ) ; @
e el
_A ' // oﬂe —A ! /// O‘QO
—-—— -— —_— —--—-
[0} /;/ l A [0} ,/’ A
O // 1 // H
o | (+n) o .~ [
(-—n) o // ' o) // .
e I G,’ l
O//’ ll O,/ i
o l o’ l

Fig. 9. t/-plane

The positions of these points on the first and third sheets of the
four sheeted Riemann surface in the z-plane are shown by the same

marks in Fig. 10.

1st Sheet 3rd Sheet
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2 L
If we put Ag=—2—¢ %, B = 287 and A;=TA,,
2V ko BY a® b
we may write
I = Apze4e % sinh AoV 22— B(1 + 171 — Zz)n.dz )

sinh A12v'1—2° sinh 4V 22—B(1 +v1—29)h

We now perform this integration on the
Riemann surface. We take the contour
PABA’CP (P and C are at an infinite
distance from A or A’) as shown in
Fig. 11 on the first sheet of the Riemann
surface. This contour integral is divided
as follows:

- 7T

(2

(1) On A’C, z=re 4 , hence

NS ] ! . .
Iac = f‘” AOTe: T 4 7 _ x sinh Agl//q,r‘z— B1+7Vv1 _Wz)ne%Tdr .
sinh7eTA;-V 1 — it sinh AV ir*— B(1 + vV 1—ir)h

0

o

(2) On PA, z= 'rez(7+“) and 1'1—1r% takes negative sign, hence
= o v
i . 2 % . . e o .
Agret 1 gide A1t » sinh AV ir* —B(1 —v 1—1r)7 %dr
sinhreiz AV 1 —ir* sinh AoV i —B(1 —V 1—ir9h

IpA=—

v

(3) On AB, z= —z and vV 1—2% = 1 1—2?, hence

1 . _
IAB = _f one““AO” x sinh Ao 1/992-—3(1 + 'I/I — x‘)'r)dx
J  sinh Ajv'1 — 2 sinh AoV 22— B(1 +17/1 — 29)h

(40 On BA’, 2= —x and /1—22 = —1 1—22, hence

1 ——————
Ipyr = — f Awwei4=  sinh AV o' — Ba— 1= g,
h Siﬂh A;.’l}. 'V/I_::c'?( Sinh Au'l/x'l__B(I __1/‘1_7)]%
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(5) Consider a circle, A as its center, where {= —1. Lett+1= t,

and put ¢t/ = 72, then

‘= / (t’ 2+2ny N/ ( 287) .

and :
¢ =1—8=Vi—({—1) =V =r2—7,
hence
de = 2(1—- )d
V22—

Therefore, if we carry out the integration in the r-plane, we get

sinh A Jz—ﬂgy«— 2.
I= Aoﬂ/z—T el Aotz —7 ’ a® T 2(1-—1'2)d-r
sinh 7v ' 2— T‘Al (1— 7) smhA%/z— 2)82'7 —72.7h V2~
g
= f Pdr. (say)
Since

. . ) — Ay Ui

P =1 [+1/2—-—-]=o,
lim rl” = Lim 4, n 17

A is not a pole of the function P. Hence we get

I=o0.

(6) Consider a circle, B as its center, where z = —1 and { = v 1—B.

Put z+1 = +2, then v'1—2¢ = 1/2—+%7, hence dz = 2vd+. If we carry

out the integration in the r-plane, we get

Ay(w2—1) o Aot smh AoV'1 — By f
I= x x 2rdr = d .
sinh (1*—1)4; 7V2—7* smh A1 —Bh rar Qdr (say)

Since

lim+Q = o,

T->0
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z = —1 is not a pole of the function Q. Hence we get
I=o0.

(7) We next carry out the integration along the semi-circle of infinite

redius. Let z = -1, then
2

= V11— B(1 +v2—1).
2 )

Hence, if 2’ is taken very close to 0, the integral can be written as

follows:
A
Ao’ sinh 2%
’ ’
fer = —f Y AOA o
inh—o'“ 1 h 1 %

Seeing that

. Awm
sinh o n\mit [ O when 7<h,
lim —————— = lim —) =
250 Ach  nre \ B l 1, when 7=~h,
sinh ~—
2
and
. I . Re?® i 1
lim —————— = lim e oy T Am =0,
220 p p Ao Ao B> sinh (RAq€'’) E>< A cosh (RA¢e*)
2’
except at 6 = %—}-L » When it is indeterminate, but not infinity, we

tAlJ z

have to consider the mtegralf dz in order to carry out the inte-

gration of ICP.

There are two cases,

@) €>=o and o) ¢<o.
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. 22 .
(a) The case where £ 20. Pute¢= — 25 . Then we get
2V 2kcBy
f eiAOE'z dz = I = ?:fT+nec(I + 2)r(ccs 6 + ¢ sin o)dﬁ
z

T

N

4

™
. s e . :
i f ecr[cos 6— sin 8+ 19(ccs 0 4 sin 6)]d0 .
T
Kl

Hence

III <f cr(ccs 8—sin 0) do

T .
=f4 cr;/uz_sin('j >d6—f —crV 2z sm&’de,
= [
4
Tc £ o7 s
— — . 2cV 2z7r
2 _ in ¢/ g V2T,
=2f g T 25| d9’<2f e = df
0 Q
- . [~—2l Zer ]
= —I].
01/27'

Therefore, when £ >0, i.e. when ¢_>0, we get

IimI=o,

>0

and when £ = 0, i.e. when ¢=0, we get

limI=2m.

r—>oo

Hence, when & >0, if we take a circular path as shown in Fig. 11

from 6 = —E« to 0=7r+—7i— , we get lim IcpP=o0.

rroo

(b) The case where £ {o. In this case we carry out the integra-

tion along a large semi-circle on the other side of CP. Then

This document is provided by JAXA.




Theovetical and _Expzrz’;;zmz_tg_l Studies oJf Convectional Circulation

L /el

w
—t

I = f QZAOEz dz = __,if‘4+2“ec(l+i)r(cos 6414 sin O)de
z

T
>t
4 +

. —ifT”(;"“(I“) 7(cos 0/ +4 sin 6/) gor

T

4

Hence
g
I/ L 62 201”“1 .
171 < 01/2'r[ , ]
Therefore, when £ <0, i.e, when ¢ <0, we get

limI' = o,

7>

and when &£ =0, i.e. when ¢ =0, we get

Iim7 = 27.

© r>o0 £

Hence, when & <0, if we take a large circular path from § = — -+

to 0=-§—+27r, we get lim ICp = 0.

r >0

In the above two cases, the value of the integral along the large
semi-circle becomes indeterminate when £=o0, n=h. From the
feregoing considerations, we see that the path of integration should be
chosen as shown in Fig. 12, when £>o0, and as shown in Fig. 13,
when £ < 0, except when £ =0, = h in both cases.

D is the branch point of the function to be integrated, but is not
the pole of that function. Hence the integration along a path twice
round D is null, and the function returns to the original leaf of the
Riemann surface after going twice round D; consequently, the integra-
tions along AD and DA cancel each other.

We can carry out the integrations (5)—(7) in the same way on
the third sheet as on the first sheet. The integrations (1)—(4) on the
third sheet are carried out as follows:
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« T —
(8) On A’C, z=1re'? and v1—22 = —V/ 1—ir?, hence
T T
LN 2 v
Iac—= — Agréseide ' sinh AOVZT‘—B(I—I/I—’LTz)’? 4 g
¢ sinhre TA- l/l —ir® sinh AV ir*—B(1 —1/ 1—@7‘2)/@
T
(99 On AP, z= fre@(?“u‘—“) and ;/1—2% = 1/ 1—0r%, hence
,: 3 _
I o . . 5 R
IpA = Agretteidee 4 s sinh AOY/WZ— B +v1—wr)n i
PA = ; = =X . — "¢ "dr.
¢ sinh reitA;-V'1 — * sinh AV ir*— B( +v 1—1r)h
(10) On AB, z= —z and 1/1—2% = —1/1—x2, hence

5 sinhxA;- V1 —1? smhAol/x “BG—v I—x?)h,

(11) On A’B, z= —x and v/1—22 = v/1—a?, hence

IBA’ = fl Agwe™ 4% sinh AgV &*— B(1 +V'1 ——xz)nd

X
sinh24;- V1—2% sinh AoV 22— B(1 +V 1 —29)h

(12) If we add the integrals on the first sheet and those on the

third sheet together, we obtain

* Aoret 4t cos (Aeet TrE) [sinh AV irE— B+ 1—ird)n

2 ki — T o ; 0
J sinhreisAp-V'1 — i lsinh AeV ir* — B(1 + v 1—ird)h
smhA(ﬂ/W — B(1 —vV 1—ir) ) 14 dr . (12)

sinh AgV ir*— B(1 — V' 1—ir)h e

The paths of the integration should be chosen as shown in Fig. 12,
when £>>0, and as shown in Fig. 13, when £ < 0. The value of this
integral is equal to 27 times the sum of the residues within the contour.

We next calculate the residues.
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« T
As explained above, { = +nMe ' 4 are the poles of P;iirilh‘l;lv;i;z ,

with an ecception of n = 0, at which it is the branch point, but not a

pole.

1

(13) Let the points in the z-plane corresponding to { = +nMe ‘%
be expressed by z.,. Their positions in the z-plane are shown in Fig.
10, from which we see that, when £ >0, we have to consider gz, on

the first sheet, and z_, on the third sheet.

Let
) = — Aot sinh AV E = Bu V1= Py
. sinh Aiz- V1 —2° sinhAgV2# —B(1 +V1—22h

and again put

P(2) .
sinhAo‘/zz—B(I +v'1—2%)h

f&) =

Then, since

: £ nMe e _ . %
lim =2>———— = lim —
t>inMe” 4 sinh AoCh 220 sinhAoh (¢’ £nMe*7)
. I I
lim — = —
>0 Aoh cosh Agh(&' £ nMe*7)  Aoh cosh AchnMe v

= -—————I = (*I)n“—!— ’
th cosnm A(}h
we get
Res f) = e (1,
and since

sinh (A40%¢ +») = sinh [—_L- Ao’?M@-eh_i] = sinh [:F 'Ln'n'%]

= 4+ ’isin(nﬂ'l> ,
h
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we get

R 2) =t i U L S
z=ze:;f() l/l—zin ’I’L'T'h hsinhAlzin( )

’l:Ao Z-LnE ‘
e - . n z
sin ( £

., Therefore, when £ >0, the sum of the residues within the contours

on the first sheet and on the third sheet is

oo A 0 Z:nE 'I:Ao Z—ng -
;i S (—1)"sin ( nrl )[ e Zn e Zn J 1
( I n\nmw-- ’

n=l sinh A12, V1 —22  sinh A1z_,V 1—2%

where

teumy o |(i—£r) = J(%—x) + it M | it D2

(14) We next calculate the residues at the points where the equa-

tion sinh A;z = 0 is satisfied.

The equation
sinh A1z = sinh %Aoz = —isin (’iAo%z) =0
is satisfled at the points
iAo T2 = & mr.
b
Let these points be denoted by Z.,. Then we obtain

/ ] .

Ziqg = & LU .nb = =+ 2nby’ oy e v s = + nDe*7
;A T 'LAo 0'2

vy

(say).

Hence %, lie in the fourth quadrant and Z_, in the second quadrant.
Therefore, when &2>0, the contour encloses Z_, only, so we calculate

the residues of f(2) within this contour.
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Since
lim —#=%"_ _ Jim L = I .
Z2—>rz . me Z2—Z_ T mR T ™ n
™ sinh Ay—= * Ao— cosh Ag—<- Ao— cosh Ag— ==
5 0——CO ob ob.,OS ObiAo
I I n O
= ” = = (—]) " ,
ApT cosh T Ao cos nar e
b ) b
we get

ReS f(Z) = ( — I)n+1 bn De—l%e "‘iAEnDe—’I:T
Z:E—n + "/I + inzD?‘

,c Sinh Aol/—inZD?—B(I +1v'1 +ntD¥qy
sinh AoV —in?D*—~B(1+v'1 + mED?) h ’

where

Ap= — T % po2bVeBY  p_ 287
21/160',8')’ ’ o ’ a2

and, of the double sign, positive sign should be taken on the first sheet

and the negative sign on the third sheet. Therefore
AD = —ibeii consequently A,D? = —ib?,

hence

—intD?PAZ—AZB (1 V1 +iD?)

. 9 P]
= —n2bt+ 27 (Iﬂ:/l + in"’————‘j‘bxa‘BV)

2K0 o'

__nzbg__ O'Zi ]/0'4 + 4”:/(0'6')'%2()2 .
21K0
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[F8)
A
.o

Therefore, if we put

2+ Vot + 4’ucoB'Y’n2 b’

e% = — n2h—
21Kko
‘ &= —nhr—2 Vot + 4ma,8'm2b‘
2 =
21Ko
we may write
Res f(z) = i M(__ I)‘n+1 'nbe_'nbii -
2=Z—n n-1 'n-e"% Ve + 4’iK0'/3W2b2

% {sinh an '_sinh en 1
sinhesh  sinhexh f -

The signs of e; and e; are determined from Fig. 8.

(15) From (12) we get

Air=a, =25 d 7.
eir=a, irt=—, and 1——— = — |o'—4ixofva
ag

Hence we have

, f;o Aoréiicos (Akeiir) ) sinh AV ir*— B(1 +v 1—ir)n
¢ sinhrd," et -vV1—ar 21 sinh A¢Vir'— B(1 + V1 —irh
b

smhAoW ir'— B(1 F—1 11— )?7} i
éadr
sinh AoV ir*— B(1 —vV 1—ir)h

. -
© qeit2V koBY cos aﬁ;{sinh cim _ sinhem 1da

- S\ sinheth hl
¢ sinh 1:4/0'4—4%037&2 sinhcih  sinn e

Therefore, when £ >0, we obtain
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"’ a cos a¢ { sinhep _ sinhem | da
0 sinh ?1/0'4—4’?%0'3‘/0!2 sinheih  sinhesh /
x - © . iAoan
ar T . Z2n€

=7 >\ (— 1) mn(nvri)[ L S
ZI/IcO'Bry n=1 _ h / Lsinh A1z, -V 1—22

sinh A1z_, - V1—22,1h

" i, (—1)m+1 W’nbge‘.'"b"‘ {'sinh e _ sinhem ] .
n=1 V'e! + 41kaBYn?b%\ sinhesh  sinhesh J

(16) When ¢ <0, we have to take z_, on the first sheet and z,,

on the third sheet. Hence the sum of the residues in the region con-

sidered is

4 2 n

i ( ) n [ e?.Agz,nE 7 e'l:A 0 z,—-nE !
) — 1)"sin (nvr-) n — _w__}
71 h/\sinh Az, - V1—22 sinh A12n V1 —272,

where 2/, = —24, -
Similarly, in calculating the residues of f(z) at the points corre-
sponding to the roots of the equation sinh A;2 = 0, we have to choose

such roots, at which z =7, .

oo S, nbE
Z Res = "‘Z 2b1 IC:',S')'(__ I)n+1 nbe.
Z2=2n n=1  geis Vo' + 4ikeBYntt

N {sinh em _ sinhem }
sinheih  sinheh

When £ <0, since the path of integration is taken in the negative

sense, the contour integral is equal to —2#7 times the sum of the residues.

(17). Therefore, when E<6 , we obtain
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Fo N J & (22444

w

da

0 acosaé { sinh ¢/ __ sinhe? |

| i i J
¢ sinh %1/04—4“603’7&2 sinhcih  sinhch

oo —1Ag2nk
K = n+l n Zne o

= - e "g > (—1)""sin (n7r~—~>[ - —
. 2V xa Sy n=1 h /Lsinh A1z, - V1 —2%

_ Z~Jne—iAoZ—nE ]L
sinh Ayz_p V1 —22, 10

—mnbt

= be { sinhem __ sinhem |
+ —1 n+l n — .
E( ) Vol + 4ikcBynib? | sinheh  sinhegh J

[II] We next perform the integratio;l

1 f“" cos af [sinh ¢ sinh e ]da
Vo' — 4ixaBva’l sinheh  sinheh

which appears in the expression for

In this case, since £ = R—x is always positive, we perform the

&

integration

I = f eiAfE_ sinh AoV 22—B(1 +1ﬁ/1:éf)ndz
V1 —2* sinh 40V 2—B(1 +vV 1—29)h

in the same region as that in the case where £ >0, as described above.
In the same way as in the former case, we get the sum of the integrals
on the first sheet and on the third sheet thus:

zf? cosAoei%TE {sinh A(ﬂ'/’lllfr2 — B(1+vV'1 —ir)n
v'1—1r* lsinh 4Vir* — B +vV'1 — ird)h

_sinh oY/t — B~y T 09 5,
sinh AoV it — B(1—V'1 — ir®) b

o* f°° cosaé f sinhem  sinh ¢7) d
27 L N — a
Ao v &' —4ikaBYa? Usinheih  sinhesh )

0

— - _ Y+l __7’_ —
_27r”2=1( I) S‘n(nw.h)[\/l—ng 1/1—z2_,,]th.
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Hence

f°° cos a& [sinhei”  sinhe) da

5 Vi —4’L/ccr,8'7a2 | sinh clh sinh ¢;h J

o Ayt iAgznt
. ’)7 e 0<7 e [ n
—1)"*1sin <n7r—)[ — ] , (13)
1 h 1'/ -n

n= 1—22 Vi1—22

where £ = R—x and R is to be made infinitely great. When £->0, as
shown in Fig. 12, the real parts of both z,, (on the first sheet) and z_,
(on the third sheet) are negative, and the imaginary part of 2, (on the
first sheet) is negative when % is small and positive when 7 is large.

In any case, if we put z., = u+14v, pu—vp is negative. Hence

Ridoz, & = Ri

7 2
_ T (w+ 1 =__9 - .
2V lco',B)’e G ZV')E 2V KU[D"YE(M v <o

Therefore we get

lim ¢*A0zent

¥>o0

=O’a

and £ is infinity as long as x is finite. Hence the integral (13) vanishes.

[III] From the foregoing calculations, we obtain the expression for
+r as follows:

= §{ Cyeiot S — 1)t gtnbz 16nb
v ‘5{ v 'ngl( ) Vo' + 41k08ynib?

N [ sinh ey(h —y) __ sinh ex(h —y) ]

sinh e, h sinh esh

+C-T K—ye" SV (— 1) sm('nm- —Y

zh, ﬁ n=1
. [ . Zn e:F’l‘Aozﬁ,x . z—ne:F'LAoz-—'nx ] } (14)
sinh 412, -1 —2% sinh A1z V1 -

and, of the double signs, upper signs should be taken for x< 0, and
lower signs for x >0, and
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o2 . . Tr
A= ——_¢° = —A,
° Zl/xo-ﬂ)'e o A b ’

~/ 2B'Y[ ) ¢~/(m —1> +m2M?]——m2M2,

where

2V kaBY

M=T2V KIBT
h

— n2hP— 0'2+ 1/0' +4’blca';8fyn‘b‘

2kt

6=

(14)

2 h— @ — V o' + 4iko BN’
2kl

&= —

[IV] We next perform the integrations in the expression for &.

(1) In the first place, consider the integral

b sin ax

I=

0 slnh— vV a* — giceBYa?

f,2_asinhe(y—h) & —a?) sinh c;(y— h) ld
x l(c% @) sinh ¢1 A (e sinh ¢ h .

. (o2 f’w sin ax
2kt '

v sinh —'%(i Vol — qlikeBvat

" { sinh ey —h) _ sinhely —h) | 4,
sinh c1h sinh ¢;h

1 * sin ax { sinh ¢i(y— h) + sinh ¢y —h) ‘da

] a sinh ¢ h sinh ¢;h
2Kl0 b sinh 1 2

b

Let the first integral on the right hand side be H. Then
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oH _ [~ a cos ax

¢ sinh ’gl Vo' = 4icaBYa?

x { sinh e(y —h) __ sinhe)(y —h) ]da ’
sinh ¢1h sinhah )

which is equal to the integral (11). Hence

H=fdx b a cos ax
0 sin h——'l/o' —4'I,fca',3'Ya2

sinh ey — k) __ sinh eoy — h) }d +F
x { sinh ¢ih sinh ¢z h a+ )

We can evaluate H from the contour integral

e f g xsmh AV 22— —B(1 + 11 —22)77
sinh A1z V1 —2% sinh AV 2—B(1 +vV1 —zz)h

in the same region as in [I], and F(y) can be calculated from the contour
integral round a small circle about z = 0. In the case of [I], this contour
integral about z = 0 vanishes, but, in the latter case, it does not vanish
as proved in the following.

(2) Next perform the integration

==

sinax [ sinhe(y—h) _ sinhex(y— h) ]da,
sinh ¢k sinhesh |

. Ta
o sinh —=

For the sake of carrying out the above integration, we perform the

contour integral

I o erzc smhAOT/z _ B(1+1/1—z"’)nd
sinh A1z sinh A,V 2% — B1+vV'1—29h

in the same region as in the case of [I]. On the first sheet we get

Iarc = f i i sinh AV'irt —B(1 + V1 — i) )y crdr
Y sinhreit A, sinh A,Vir? —B(1 +vV1i—ird)h
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and

£ —1A eig— € . . —
IpA — _f ¢4’ T ginh AVirr —B(1 —V'1 — i)y

T
- - e idr
§ sinhre v Ay sinh AV 'ir? —B(1 —v'1 —ir*)k

and, on the third sheet we get

larc = f " _¢4o"ir sinh AVir' —B( —v/3 — ir) Neis dr
J sinhre'TA; sinh AV ir* —B(1 —V'1 — @) h

and

foa = — [T s A =BG+~ )92,
¢ sinh reit A, sinh AVirr—B(1 + V1 —u)h

We have also
First sheet Third sheet

—— e ——

IAB + IBar + IAB + IBA’ =oO.

I3

As in the case of [I], the region of the complex integration ‘when
£> o differs from that when £ <Co. It can be easily proved that the
complex integral along a small circle about B vanishes as in [I]. Hence

we obtain

First sheet Third sheet

————N——

r—./‘—ﬁ
Iarc+ IpA + IA/C + IPA

_ 2,L.f°° sin Aoe‘%’r‘E | sinh Ao"/'i’r'2 —B(1 +vV'1 — 1%y
J sihh Ayre s Usinh AV i —B(1 + V1 — i) h

i sinh AOT/z"r? — B(1—v'1 —1ir)n)\
sinh AgVir2 — BU—V'1 — ird)h

T
e rdr

20 (™ sinaé [ sinhem n sinh ¢ ]da

¢ sinh 7% | sinhéih sinheh J

b
= % 27 >\ Res f()+Iat z=o0,

This document is provided by JAXA.



T leoretical an
L reoreiical an

where positive sign should be taken when £2>0, and negative sign
when £ < 0. We can calculate the residues in the same way as in the

cases (13) and (14) in [I]. Iatz=o0 will be calculated afterwards.
From these calculations we obtain ’

¥ sinh & l/a' —47,/ca/8m

s o sinhely—h) 2 sinh ey — k) ]d
% {(cl @) sinh e;h @ a? sinhesh J .

& b
= + (___ 1 )neinbx -
nzﬂ Vo' + 4 tkaBY N2 b2

x I(nzb"'—re‘f) sinh. el(y —h) (n2bz+ez) sinh 62(?1 h) }
l sinh ek sinh exh

+ (Integral round a small semi-circle about 2z = 0)

€

h [ "2 ejr’iAoznac
—1)"*1sin (’n’n‘y——> — 4+ A2 ) I
) AN sinh 412,71 —22

n2a? eq:iAcz_nos ]
) 1,
( h? ‘ sinh A12_,V'1—22,)

by &
ho® n=

where the upper sign should be taken for £ < 0 and the lower sign for
£€220. When £< 0, we have to integrate twice round D, but the
integral vanishes. This integral corresponds to the case n = 0 in the
last term of the above expression.

(3) We have now to carry out the complex integration along a
small semi-circle around z =0. It is convenient to perform the integra-
tions in the cases (1) and (2) simultaneously.

Now integrate

I = [ oA [ a(1 +1/1—zz)] sinh AoV z2 B(1+ v/l—zz)ndz
sinh 41271 —2° 21K sinh A¢V 22 — B(1+v 1—29)h
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along a small semi-circle around z =0 on the first and third sheets.

On the first sheet we have

lim A2 [__a'(l +vV1 —22)]sinh AVZ—BG+vV1—2)q
v V1 — 22 21K sinh AV 22— Ba+vV1—2)h

_ _Lsinh ’I:AM/?E”_
ix sinhtAoV 2Bh -

. 2
d lim ———— =
an zl+0 sinh 4,2 A

Hence we get

. in Agv/ 2B: aa sin AoV 2B
I::: F d ,._I_Sln 0 __"”= F 0 _1’ ,
m’l:lc A1 SinAo'l/th KA1 sin Aol/ 2Bh

where negative sign is taken for £ >0 and positive sign for £ <L 0.

On the third sheet we have

im(i+y1—2)=o0.

z>U

Hence we get
I=o0.

(4) We next carry out the integration

I— j‘“’ sina(R—.x)

aV ot — 4ikoBYa’

x [(c%__a'g) sinh. C](y ‘—h) _(cg . ag) Slnl‘{ Cz(y —h) ]da
sinh ¢1h sinh ;b
In this case the calculation can be made in the same way as that in
the case [II]. The value of the integral tends to the same value as that
obtained by integrating along the semi-circle round A, when R tends

to infinity.
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Integrate

I'=

‘ eiAof:[ (1 +1/1—z2)]smhAo1/z2 —BG +V1—2)9,,
2V'1— 22 21K sinh AV 22—~B(1 +V'1 —22)h

along a small semi-circle around A, then, since £ is always positive in

this case, we get

J = _mo sin AoV'2By
K sin AoV?Bh )

Hence we obtain

[— —_T sin A0V 2 By
2iko sin Ag 2Bh

From the foregoing calculations we obtain the expression for ¢ as

follows :

ER{Ce'iat = — 1) etnbz Ko
"E'l( ) V o' + 4ikoBrnb?

22 1 ¢?) sinh ej(h — 1) 2p2 sinh ex(h— y)]
[(n v sinh e h — @+ sinh é2h

_C e,o,sm AW 2Bh— y)} 1 C C wtsm AW 2B(h —v)
27 sin AoV 2B h 27 sin AgV'2Bh

CIC'Y 10t n+l —y
mkazenzi( 1) sm( )

A2 2\ :F'I:Aoznw
x
[( h? 0% "/ sinh Az, vVi1—22

nea? - ) e—"FiAoz-nx ]
— —A¢r ) 1
( h? 0 sinh A12_,v/ 1—2%, (15)

where the upper sign should be taken when x < 0, and the lower sign
when 2 =>o0.
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[V] We will assume the numerical values of the constants as fol-

lows, which are reasonable values in the case of land and sea breezes:

K =45x10", B=35X10°, o=73%x10°,
: Y= 36, b=107°%, ‘ h=9x10°.

Then, in the expression (14),

Ky ¢ 1 &Y
—L = 2-52x10° and ——N/—M——-z-z .
o 5 'Y of 7

When 7 is small,

zin:%V:§=i3-35x107,

g
Hence
. —-X'N/E
'eonznxl ~e 2 o _ e—l-g6>< 103 ’
Z .
—-%—— =1,
V1—2%,
.7
and A2y =436 x108xe" 7 = (14+1) x 3-08 x 108
Hence '
p— - . A;
Ie Alan: o 3-08 X 10 )
Therefore,
o e e ]
2h Y ofB lsinh Azn- V'1—22 sinhAjz_n-vV 1—22,

is a quantity of the order 3-57xe'3'°8><106>< g~ 190X 107 , while

ywinb - e [ sinh ex(h —y) __ sinh ex(h —y) ]
Vo' + 4ikcBYn?L  sinheh sinh exh
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— 10— %ny

. —5 .
is of the order 1-8x 18x¢'® ¥x ¢ Hence, the latter is far

greater than the former in numerical value. Consequently, the expres-

-

sion (14) for + reduces to

— C\'[C 16t = — 1\ntl pxnbx IC’L"IZb
.‘P Y1 7? Z:l( DTe Vo' + 4ikaBYn2b?

x [ sinh ei(h —y) __ sinh ex(h —y) ]} (16)
sinh e; h sinh esh

where, of the double sign, positive sign should be taken for z <o,
negative sign for x =0, and for ¢; and e, see (14').

Similarly, the expression (15) for # reduces to

19=:i:§R(Cei°‘m e q)rgimbs__ KO
\ ”ZJ;(, )"e Vo ainoByn’l
2b2+2w_ éb%.M]
* [(n ‘0 sinh e h (n ) sinh e;h
) - (17)

where, when x <o, positive sign should be taken and F'(y, t) = 0;

when x >0, negative sign and

sin {"/Ee""}(h —y }
Fly, t) = iCet 26 :
sin {N/zie“ﬂ'%h }

To calculate the velocity of the fluid % and v, the series diverges.
So we must first calculate the values of 4 at different points in the
fluid at any fixed instant, and calculate the values of 9yr/dy and 9+/3x

numerically.
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III. Application of the Mathematical Solution
to the Tank Experiment.

To repeat the meanings of the symboles used, y is the height
measured from the bottom of the tank ; « the horizontal distance measured
from the discontinuity at the bottom, the heated half being taken as
positive. @ is the te'mperatxire at any point in the initial state; ¢ the
deviation of temperature from @ after the heating had started. The
temperatures in the lowest layer of the fluid are given by the expression

(6) in the preceeding Chapter, or by

Py = 1% sin at [tanh—bi—}- I] . ((n)
2 2
Although the heating was not done periodically in the experiments
described in Chapter I, the foregoing expression approximately represents
the conditions of the experiments. The temperature distributions giveﬁ
~ by the three curves in Fig. 4 are expressed by ((1)) by putting b = o-1.
C and & should be determined from the inclinations of the curves in
Fig. 3. If we put ¢ = 1-75 x 1073 (assuming the period of heating and
cooling arbitrarily to be one hour), C becomes 1-0 deg. In Fig. 4 we
see that the center (x = 0) of the ‘tanh’ curve moves to right gradually
with time. This is consistent with that the center of the elliptic stream
lines shifts towards the heated half. As the coefficient of expansion of
water ¢ is about I-75x 107 in the range of temperature used in the
experiments, y = ga = 0-17. In the experiments described in Chapter I,

the initial temperature gradient in vertical direction 3 was O-111 deg/cm.

Since the calculated height of the calm layer at which the hori-
zontal velocity u becomes null varies greatly with the assumed value of
the diffusibility of temperature in vertical direction «, it seems plausible
to determine the value of x as the calculated height of the calm layer
to coincide with the height observed in the experiment. Such value of

« in the present case is 23-8, which value is very much greater than
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that measured in still water, and which is only natural, seeing that the
superposed vertical convectional currents convey heat.
As ¢, and e, given in (14) in the preceeding Chapter are complex

quantities, they are separated into real and imaginary parts, namely
e =m+h, €= p—in ((2))

Since y/h is sufficiently small compared to unity in the case when
the lowest elliptical circulation alone is considered (k is the depth of
the water), the following simplified expression of the stream function +-

may be used in place of expression (16):

i —F S —_ n+1[‘—' : ™
Vi = C/ . nz_l( 1) le "1¥ sin (a-t—i— 2 ny

— e "% sin (ot +-Z— + wy)}e“’b” ((3)

where n is a positive integer 1,2, 3, ..:..., and, of the double sign,
the positive sign should be taken for 2 < 0 and the negative for x > 0.

Evaluating e, and e¢,, we get those shown in Table I.

Table I. ¢, and e,

n Uy ! g Vo

I 0-0926 0-257 0-222 0-107
2 0-123 0-388 0-287 0-1€6
3 0-142 0503 0-320 0-223
4 0-155 0-612 0-334 0-285
5 0-166 0-718 0:336 0:354

As 3/3y does not converge for a small value of y, it is impossible
to calculate it directly. To find the velocities of the fluid, the values
of 4 for different values of y must first be calculated, after which 9vy-/0y

can be found as the inclination of a -y curve.
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un
O

In this way, the values of 3yr/dy at different heights at x = o at the
times ot = 80° (1.e. t = 13™ 205) and ot = 120° (i.e. £ = 20™ O°) were
calculated and plotted in Fig. 14. These curves are quite similar to the
observed y-y curves at 10™ 30% and I14™ o® shown in Fig. 2, except in
the lowest 1-5cm., where the observed curves are strongly bent by
frictional resistance of the bottom. The scale of the velocity, however,

greatly exceeds the calculated curves. This discrepancy is clearly due

(o3

6 \ .
<o,
s 9
2

-+

Height in cm,

n
I

0 \
—50 0 50 100
Velocity in mm/sec

Fig. 14.

to resistance induced by the viscosity of the fluid constantly acting to
retard the development of circulation, so that the actual velocities of
the fluid are obtained by multiplying the calculated values with a factor

F; F = 0.062 in the present case.

Factor F, however, may vary to some extent with the development
of the circulation. We shall at all events assume it to be constant here,
and multiply the right side of the expression ((3)) with this factor F' in
order to have it express the actual motion of the fluid in the experiment.

Table II shows some of the values of 4 x F' calculated by ((3)) using
the values of yx and v given in Table I and using the constants, F'=0,062,
C =10, g =238, y =017, B=0-111, 0 = 1-75 x 10°%, and b = O-10.

This document is provided by JAXA.



7 L. 1 4 ry 4 . s T Cu ¥yt L PP SN N Ny S S -
1 rneovelical ana Lxpevimenial Stuaies of Convecltioral Civcuialion 51
|
6t=0 TasLe II. - x F.
X in cm.
. o 10 20 30 40
y n cm.
2 —o0-642 —0-451 —0-216 —0-089 —0-038
5 —1-372 —0:974 —0.451 —o0-184 —0:070
10 —1.613 —1.088 —0-419 -~ 0.159 —0-057
15 +0-153 40044 —0-019 —0-013 ~0-006
o 10 20 30 40
‘2 +0-286 +0-165 +0-076 +0-025 +0-006
5 +0-248 ~+0-134 + 0.006 — 0-006 —0-004
10 —1-080 —0-722 —o0-311 —o0.121 —0-044
15 —0 775 —0-476 —0-153 —0-051 —0-019
: o 10 20 .30 40
!
2 +1.023 +0-750 +0-337 +0-140 +0-051
5 +1-360 +0-930 +0-382 +0-153 -+0-057
10 I 40-063 +0-038 -+ o0-019 +o0-013 --0-006
15 ' —0-706 —0-464 —o0-165 —0-057 -—0-091
|
i
o 10 20 30 40
2 +1.212 +0-852 +0-394 +0-159 +0-063
5 =+1-905 +1-340 +0-591 +0-235 +0-089
10 +1.245 -+0-800 +0-286 -+ 0-095 +0-038
15 —0-273 —0.165 —0.083 —0-032 --0.013
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The values of 4 x F' at different phases are shown graphically in
Fig. 15, 16, 17, and 18. At ot = 0, the circulation that had developed
during the period in which the right hand side half of the bottom was
cooled retains its activity. At of = 7/4, we see that a small circulation
has already started as the result of the heating of the right half
of the bottom. This circulation, which grows energitic with time,

attains its maximum velocity at

8 : ' : a time between of = 7#/2 and

: ' ' /\ ot = 3m/4. The height of the
6 * a circulation (or the height of the

calm layer) increases with time,

even after ot = 7.

4 —

: / S i We shall consider next the
| 12 L rate of extension of the elliptic
i / ?,:zQGQ 1 circulation to both positive and

i / negative directions of x. Fig. 19
| shows the variations with time
3

Veloaty 1n mmy/sec

/ i in the calculated velocities of the

fluid in the lowest layer at points

r=o0, r=10cm., and x=20cm.

© gt ¥ 90 128 %" As the distance at which the

Fig. 14. curves for x = oand x = 10cm.
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intersect with the time-axis is about 3°, or 30 seconds of time, the
mean velocity of extension of the circulation in g-direction between
¢ = 0 and x = 10cm. is 3-3 mm/sec. This velocity increases rapidly with

development of circulation.

The velocity of extension of the circulation just given, is much
greater than the observed propagational velocity of the circulation-front
on the heated half of the bottom, which latter is 0-84 mm/sec. This
can be interpreted to mean that, on the heated half of the bottom the
elliptical circulation must force its way through the vertical convectional
currents present in order to extend its domain, with result that a certain
finite amount of dynamical pressure is necessary for the advancement of
its front. It will be seen from Fig. 19 that the propagational velocity
of the phase of u = 2-2 mm/sec. is about 0-84 mm/sec., so that it is
possible to estimate the dynamical pressure necessary at the front to be
of the order corresponding to this velocity, namely, 2-2 mm/sec. The
velocity of the 2-2 mm/sec. is approximately in agreement with the

observed velocity of fluid in the neighbourhood of the front.

The mathematical solution illustrates well the motion of the fluid
on the cold half of the bottom when the other half of the bottom was
heated, and on both halves of the bottom when half of the bottom was

cooled. .

IV. Application of the Mathematical Solution to
Problems of Land and Sea breezes.

The wind conditions at various heights were measured on July 15,
1930, by means of pilot-baloons at the former site of the Aeronautical
Research Institute in Ettylizima that lies on the coast of the city of
Tokyo. The baloons were observed at two stations 679 m. apart. It
was a very fine and sunny day; the gradient wind was low, except for
an abnormal lull and blow that occurred during the period from 14" to

20", (See Fig. 28) caused probably by a small passing depression. A
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mild easterly wind that prevailed in the morning died out by 14". Above
1500 m., a strong NE wind blew all day.

The paths of the three baloons, that were released at 11P, 13%, and
150, are shown in Fig. 20. The components of the wind perpendicular

to the coast line, found from Fig. 20, vary with height as shown in

abm. ®
Substation

Fig. 20. Black circle shows the position of the ballon at the end
of each minute; the height is marked thereby.
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Fig. 21.
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in Fig. 21. Of the three, the result for 13" will now be compared with
the mathematical solution.

Since y/h in the case of land and sea breezes is also sufficiently
small compared with unity (& is the height of the homogeneous atmo-
sl;here in this case), the expression for the stream-function « may be
used in the simplified form written below, the same és ((3)) in the

preceding Chapter.

o

v = CN/ 2 =1(_' I)"“{e‘"‘ly sin (at-{-—}—vly)

280
n

—e™2¥ sin (ot +7 4 wy)le*f’b” (3)
4 J
where z is the distance from the coast line, the direction: inland being
positive, and y the vertical height above the earth’s surface. B is the
vertical gradient of the potential temperature,:\vhich may be assumed to
be 3-5x 1075 deg/cm., while  stands for ga(g being the acceleration
of gravity and « the thermal expansion coefficient of air), whence
v = 980/273 = 3-59. For u and » see ((2)) in Chapter 3 and (14’) in
Chapter 2. C, ¢ and b are to be determined from expression ((1),
which gives the distribution and variation in temperature ¢ on the

earth’s surface, or

Fy-0 = £~ sin of [tanh@—k I] . (1)

2 2
As the period of variation in temperature is 24 hours, o = 7:28x 107°.
We see from the temperature record in Fig. 22 that the mean tempera-
ture, which was 28-8°, occurred at 8", and the maximum temperature,

which was 32-2°, was attained at 14" Therefore we have C = 6-8 deg.,

and ¢ should be measured from 8k,
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Fig. 23 shows the mean diurnal veriation of temperature of all fine
days in July during the period from 1926 to 1930, according to which
diagram, we have C = 7.0, deg., and 8" 30™ as { =O.
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Fig. 23. Mean temperature of 25 fine days in July, 1926—1930.

There being no meteorological observatory at a convenient distance
from the Institute, we lack the datum for determining b. We shall

therefore assume that the sea has practically no daily influence on the

atmospheric temperature at 40km. from the coast, or tanh %~y at
2

% = 40 km. We then have b = 1076,

At Kumagaya observatory, 65-5 km. from the Institute in which
direction the sea-breezes usually blow, the temperature at 14" on the
same day was 34-5°, which is 2-3° higher than the temperature at the
same time at the Institute. Substituting this value in ((1)), we get

b = 2.5x 1077, which value, however, is evidently too small, seeing that
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on this assumption the effect of the sea-breeze will be felt 150 km.
inland.

Another constant ¢, the diffusibility of temperature in vertical direc-
tion, should be determined, as in the preceeding Chapter, as the calcu-
lated height of the calm layer to coincide with the observed height,
which is about 800 m. at 13" (see Fig. 21). The procedure, however,
is laborious, because a suitable value of & can be found only after repeated
calculations of the height at which +» becomes maximum for each value
of « tentatively adopted. In the present case, maximum of 4 at 13k
works out to 800 m. (792 m. to be exact) when the assumed ¢ = 4-5 x 107,
This value of x greatly exceeds that found by G.I. Taylor, which,
however, is not surprising, seeing that in the case of convectional
circulation, the superposed vertical convectional currents play a much
more important rdole in carrying heat in a vertical direction than the
mixing of air as the result of eddy motion.

Table III shows the values of e; or u;+4y; and e; or us—iys for each
n, calculated by assuming that x = 4-5x 107 and b = 107¢.

.

TasLe III.
n ey X 10° ' €y X 10
1 0-53684+ 1 1-2973 1.2885— 1 0-53424
2 0-75541+ 2 1-8386 1.8183— 72 0-75937
3 0:92208+ ¢ 2-2571 2.2216— 7 0-93321
4 1.061614 7 2-6127 2 5588 — 7 1-0808
5 4 1.1836 + 12-9283 2.8535— ¢ 1-2118
6 1-2932 -+ ¢ 3-2158 3-1178 - ¢ 1.3312
7 1-3931 -+ 1 3-4820 3:3589— 1 1-4418
8 1-4855 4 437317 3-5815— 7 1-5455
9 1.5716 - 7 3-9678 | 3-7888— 1 1:6437
10 1-6524 + 741927 ; 3-9833— 1 1-7373
1I 1-7287 + 2 4-4081 ; 4-1666 — ¢ 1-8270
12 1-8011 -} 74-6154 , 4-3404 — 1 1-9134
13 1-8701 + ¢ 4-8156 i 4-5056— 1 1-9969
14 1-9359 -+ % 5-0095 ’ 4-6632—72.0779
Is 1.9989 - 75-1979 | 4-8139—1 2-1567
|
|
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Table IV shows the values of J at 13" or ¢f = 75° at various
heights at x = 0, calculated by means of expression ((3)) by using the
values of y and » givea in Table III, and the values of 8y/3y, (which

give the wind velocities in cm/sec.) obtained by measuring the inclina-
tions of the -y curve.

TaBLE IV. + and 3y/3y at ot = 75° and at x = 0.

Height in m. ¢ X 108 l ov/oy
o o { 7170
100 667 ! 6060
|

200 1233 ' 5030
300 1694 ! 4040
400 2034 ; 3060
500 2280 ! 2200
600 2455 : 1395
700 2558 ; €55
800 2588 | — 55
900 2548 : : — 705
1000 2446 ‘ ! : —1310
1100 2292 | —1820
1200 2086 i \ —2280
1300 1839 } —2655
1400 1558 ‘ —2945
1500 1253 ; — 3150

The wind velocities 9y/3y in the above table are much greater than
those actually observed, which, as mentioned in the preceeding Chapter,
is evidently the result of the assumption that the fluid is inviscid. They
are the volocities of a circulation developed without any resistance.
Since, however, circulation in ordinary f{luid grows under unceassing
resistance due to viscosity, the velocities of the actual winds can readily
be obtained by multiplying the values of 3y-/3y in Table IV with a

certain factor. Since the wind in the lowest layer is subdued by the
resistance of the eath’s surface, we shall assume that the wind attains

the necessary velocity for circulation at a height of 300 m. As the
observed wind velocity at 300 m. was 5-73 m/sec. (See Fig. 21), the
factor to be multiplied with 3y-/3y is
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F1 = 573/4040 = 0-1418..

The wind velocities at various heights obtained by multiplying 38+/3y '
with F; are plotted in Fig. 21 with a dotted line,

If we assume b = 2-§ x 1077, taking into account the temperature at
Kumagaya, the value of x, which makes the calculated height of the
calm layer 80om. at 13h, becomes x = 3x 105, The values of 3+v/3y
come out much smaller (nearer to the actual wind velocities) than the
corresponding values in Table IV ; for example 1730 cm/fsec. at y=o0.
However, since assuming b to be smaller would mean estimating the
gradient of the temperature on the earth’s surface to be smaller, it is
obvious that the smaller the-resulting value of b, the slower the develop-
ment of convectional circulation. In fact, b = 107% would be better.

It will be seen from Fig. 21 that the wind velocity curves are bend
towards the smaller velocity value in the lowest 300 or 400 m., which
obviously is owing to frictional resistance of the surface of the earth or
the sea. Therefore, in order to find the wind velocity in the lowest
layer, the calculated wind velocity or (3y-/d3y) x F; must be multiplied
by another factor F,. As the measured wind velocity on the earth’s
surface at 13" was 4.55 m/sec., we get

Fo= 455 = 0.448.
7170 X 0-1418

This is somewhat smaller than the ratio of actual wind on the earth’s
surface to the calculated velocity of the gradient wind, which is 0.5—0-6
on a flat land surface. There is no doubt that F} is still smaller inland.

The factor Fy, the ratio of the circulations developed with and
without resistance, may vary to some extent with the stage of develop-
ment of the circulation. In the following discussions, however, both F}
and F, are assumed to be constant.

Table V shows some values of « at different heights and at different
distances from the coast at 8, 11P, 14", and 1P, calculated by assuming
K =45x107, b =108, y =359, B=35%107°, o =7-28x 1075, and
C =638,
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Table V. +rx1075

" S

aA

ct=o0
Yy in m. % =0 2 km. 5 km. 10 km. 20 km.
500 — 1701 —1584 —1382 — 1201 —488
1000 — 3105 —2842 —2427 —1763 —796
1500 —3870 —3455 —2851 —1973 —834
2000 —3781 —3250 —2553 —1655 —644
of = i
4
|
y in m. x=0 % 2 km. 5 km. 10 km. 20 km. i
|;
= | | |
500 + 787 |+ 699 + 568 + 389 + 157 ‘
1000 + 170 ‘l + 84 — 13 — o4 — 8
i 1500 — 1100 — 1071 — 977 — 765 — 368 !
I 2000 —2217 —2009 — 1682 —1176 — 497
| i
ot = l
4
Yy in m. X =0 2 km. 5 km. 10 km. 20 km.
500 + 2788 +2570 +4-2186 + 1585 +713
1000 +3342 + 2957 -+ 2406 + 1632 +673
1500 +2330 + 1951 + 1469 + 838 +314
2000 + 396 + 156 — 29 — 150 — 121
Gt = '”é* + - 1
Y in m. X =0 2 km. 5 km. 10 km. 20 km,
500 + 3226 i +2g00 + 2510 +1856 + 849
1000 +-4562 i + 4108 +3417 +2403 +1039
1500 +4372 +3789 + 3061 + 2022 + 810
2000 -+ 3063 +2552 + 1917 + 1161 + 415
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The variations in + with height at x =0 at different phases are
plotted in Fig. 24. Measuring the inclinations of these curves, we

obtain 9y/dy, some of which are shown in Table VL

axer praT= G
/—
2X 108 / \\

Ot~
\7/74
o K-
.
.
.
—2X 108 e
\~\\>\~\o \/
—4x 108 i SRS, il
o 500 100D 1500 2000 2500
Height in m. .
Fig. 24.

TasLe VI. Wind velocity (calculated) in m/sec. at x =0,

or (B‘P)G_o x Fy = 100

9y
“ Height in m. ot = 0 ot = m/4 ot = /2 ! ot = 3n/4
$ i
o —5-09 +4-86 4-11-89 +12-17
250 —4-86 +2-12 + 834 + 9:37 i
500 —449 0-00 + 4-95 + 6:59 I
750 . —3-96 —1-78 + 79 + 3-97
1000 —3-22 —3-12 — I1-10 + 1.56
1250 —2-24 —3-71 — 333 — 0-67
1500 —0-97 —3-73 — 4-88 — 2-51
1750 +0-38 —3-18 — 541 — 395
2000 +1-68 —2.26 — 5-0I -— 4-91
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The variation in the calculated wind velocity with height on the
coast line are plotted in Fig. 25. It will be seen from this diagram how
the height of the calm layer increases with development of circulation.

At a point away from coast, the wind varies with height and with time
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Fig. 25.

in nearly the same way as on the coast, but both wind velocity and
The heights of the
calm layer at x =0 and x = 10 km. change with time as shown in

Table VII.

vertical scale are smaller than those at the coast.

TasLe VII. Height of calm layer (calculated) in m.
|
ot = x/4 ot = w2 ot = 3n/4 ol=m |
r=o0 500 goo 1170 1675
x = 10 km. 420 760 1000 1410

The wind velocities in the lowest layer at different phases of develop-
ment and at varying distances from the coast are given in Table VIIL.
To calculate 3¢/3y at y = 0, the values of + at heights 100, 200, 300,
400, and 500 m. were calculated, the algebraical relation 4 = ay+by?+ cy?
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being then assumed, and coefficient ¢ was found by the method of least

squares.
TasLe VIII. Wind velocity (calculated) on the
earth’s surface in m/sec.,
8 N
or ( "’\y=g x Fy x Fy + 100
3y /
at r=o0 2 km. 5 km. 10 km. 20 km.
o° —2.28 —2-16 —1-89 —1-40 —o0-65
30° -+0.81 +0-71 +0-63 +o0-47 +0-21
€o° 357 3-24 2-83 219 1-07
90° 5:32 5-02 440 3:30 1-59
120° 5-77 5:37 4-€9 3-59 1-69
150° 4-61 4-32 374 2.86 1-38

The results given in Table VIII are plotted in Fig. 26.

The variation in the calculated veloci.ty’ on the coast with time will

now be compared with the observed results of the actual wind. As will
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Fig. z6.

be seen from the record reproduced in Fig. 27, the wind veered from

land to sea during the lull from 10" to 10" 20m. The variations in the
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_observed wind velocities are shown in Fig. 28. The plain circles are

the mean velocities of the wind for 20 minutes each on July 15, 1930, as

i
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Fig. 28.

measured by the Robinson anemometer installed on the roof of the

Institute, the values before 10t being taken as negative and after 10P
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+ o

. 20™ as positive. The black circles show the average of similar velocities
of 22 selected days—all fine days with small gradient winds in June and
July during the period from 1926 to 1930. The signs were determined
with reference to the records of wind direction of the corresponding
.days. Except in the neighbourhood of the point where the curve cut
the time-axis, both curves are quite consistent with the calculated curve.
The values of actual wind velocities greater (absolute) than the calculated
values in that part are partly caused by superposition of the prevailing
wind in a direction with the component parallel to the coast line,
although it is quite evident that reversal in direction of the wind is
much more abrupt than what the calculation shows, which is to be
expected from our experience with the tank experiment. If the points
at which the calculated velocity-time curve of the surface-wind shown
in Fig. 26 cut the time-axis are found, the velocity of propagation of
the phase (3y-/3y)y-0 = O from the coast in directions both inland and
out to sea can be determined. The curves between ot = 15° and 35°
were very accurately drawn by calculating the values of 84r/0y for small
intervals. As the result of which it was found that the curves for £ = o,
x =5 km., xt =10 km., and £ = 20 km. cut the time-axis at ot = 22°
3/, 22° 20/, 22° 2¢9’, and 22° 44’ respectively. We therefore obtain
735,.139, and 167 m/sec. as the mean velocities of propagation between
2 =0 and 5km., 5km. and 10km., and 10 km. and 20 km. respectively.
If the propagating velocity of the boundary of the circulation are so
great, the breeze will cover the entire area over which it blows within
a few minutes from its start from the coast. This seems to be nearly
the truth in the case of land breezes and on the sea in the case of sea
breezes, although the velocity of propagation inland in the case of sea
breezes is much smaller. It is known that sea breezes start at a point
on the sea a few kilometers off the coast nearly simultaneously with that
on the coast. Photo 7 shows that the circulation extends much quicker
on a cold than on a heated bottom. As mentioned in the preceeding

Chapter, we may assume that a certain finite amount of dynamical
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pressure is necessary to convectional circulation in order that its boundary
shall be extended through space which is full of vertical convectional
currents. Fig. 28 shows that starting of the sea breezes on the coast
lags about 40 minutes from the time as shown by calculation and springs
up abruptly with a velocity of from 1 to 2 m/sec. By assuming the
velocity of the sea breezes in the neighbourhood of its front (or the
velocity immediately after it has begun to blow), we can estimate from
Fig. 26 the time-lag in its starting and its velocity of propagation, as
shown in Table IX. '

Table IX
Assumed wind f Atz=o, Mean propagational velocity of front
‘ in the range g =
velocity ‘ sea-breeze
on front : starts at o—5 km, skm.—10km. | 10km.—20km.
o ' gh 28m 735 m/sec. 139 m/sec. 167 m/sec.
1 m/sec. 10h gm 9-05 3-8 2.03
2 m/sec. : 10h 52m 434 0-86 ,, —

Seeing from the results, assumption of I m/sec. seems to be nearly
correct.

Since the calm layer is much lower in the case of land-breezes, the
value of ¢ must be smaller than that in the case of sea breezes, and

perhaps agree with the Taylor’s value.

In order to arrive at further conclusions it is necessary to measure

accurately the distributions of temperature and the propagational velocity
of the sea-breeze front,
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