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4 S. Kawada.

Introduction.

I have tried to arrange in order the papers® on the study of the
velocity field induced by helical vortices and its applications, which
I have published on various occasions during 1935-1937 and to develop

a theory for the prediction of the propeller performance.

The vortex theory was a great success in its applications for aero-
foils, The distribution of circulation and consequently the distribution
of force along the span for a given aerofoil, its induced resistance,
mutual interference between aerofoils or between aerofoil and boundary

etc., were all brought within the reach of computation by its applications.

The vortex theory was also applied by some authors to elucidate
the aerodynamic problems of the propellers. IHowever, the success in
this case was not so brilliant as in the case of aerofoils. The cause
lies in that the calculation of the induced velocity by a finite number of
helical vortices in a compact form was impossible and the authors were
obliged to consider an hypothetical propeller with an infinite number

of blades. In this case the induced velocity is given simply by
Wo = —pol'[4mv, w;= p['|47r.

and it was found that the neighbouring elements of the blades can be
treated as independent of each other. Therefore even at the tips of
the blades there is no drop of circulation. This is evidently in contradic-
tion with the experimental fact and this is the gravest defect of the

simple vortex theory.

(1) “Induced Velocity by Helical Vortices,”

Journal of the Aeronautical Research Institute, Tokyo Imperial University, July,
1935 (In Japanese), Journal of the Aeronautical Sciences, Vol. 3, No. 3. Jan.
1936. etc.

“ Effect cf the Number of Blades on Propeller Characteristics,” Jourral of the Scciety
of Aerorautical Science «f Nippon, Dec, 1936 (In Japarese).

“On the Flow near the Proprller,”
Jourral of the Society of Aerorautical Scierce of Nippon, July, 1937 (In Japarese).
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Calculation of Induced Velocity by Helical Vortices 5

I have obtained in Chapter I comparatively simple expressions for
calculating the induced velocity by a finite number of helical vortices.
In the following Chapters II and III the applications to the calculation
of the performance of propeller are studied and in the last Chapter the

theoretical considerations are verified by the experiment.

CHAPTER I. THEORETICAL INVESTIGATION.

1. Induced Velocity by Helical Vortices.
Take a propeller with p blades and consider the flow due to the

free vortices shed from the tips and the centre. The free vortices shed
from the intermediate positions are not con-
sidered. Thus this assumption is equivalent
to assume a propeller with an uniform dis-

tribution of circulation along the radius.

For the sake of simplicity the induced

velocity is assumed to be small compared

Fig. 1.

with the translational velocity of the pro-
peller. The consideration is at first limited to the region remote from

the propeller.

Let o = angular velocity of the propeller,
v = translational velocity,

r, 0, z = semi-polar coordinates.
Then the equations to the surfaces described by the blades become®
0—wzfv =0, 27P, <evee., 2(p—D)7[p.

If a new variable ¢ = 6—wz/v is introduced, the velocity potential
due to the vortices becomes a function of  and ¢ only. Furthermore
we know that the potential must be a single valued function of the

~ point and moreover it must be periodic in ¢ with the period 27[p.

(1) Goldstein, On the Vortex Theory of Screw Propellers, Proc. Roy. Soc., 123, 1929.
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6 S. Kawada.

‘

The Laplacian equation to be satisfied by the potential ¢ becomes

2 1 2 2
R CAeNL SR
Putting
p=owr|v
We have
—32—4’4——1-%4-(14--1—_ —a%i=o. (2)
8 p O pt /o ‘

To obtain the solution of this equation it is convenient to consider

outside and inside of the propeller wake séparately.

Outside of the wake.

In this region the velocity potential must satisfy, besides the equa-

tion, the following boundary conditions:

¢, odd and periodic in (,
¢ = O at u = infinity.

We can construct the solution by taking an infinite series

¢o = Z=lcm(/t) sin pm¢ . (3)
Substituting in (2)
9%Cm , 1 9Cm Z( 1 )
+ XL % w1 +——)em=o0. )
3t p O 7 p/ | (4

The solution of this equation is evidently
Cm = aprm(pml‘L) ’ . ( 5 )

where K,,, is the modified Bessel function of the second kind and a,
is constant to be still determined.

Hence the solution becomes

do = i;laprm(fpm;L) sin pm( . (6)

This document is provided by JAXA.




Calculation of Induced Velocity by Helical Vortices 7

Inside of the wake.

In this region ¢ must have a discontinuity at the surfaces described
by the blades and its amount must be equal to the circulation [" at the
point. Consider further a region 0 < ¢ < 2/p, then the difference in
¢ at { =0 and { = 2nm/p mgst be equal to the circulation I which is

constant along the radius.

Besides, since there is a straight vortex at the centre R R—

r 9C
become infinite as 1/r at r = 0.
If we put
__pl' (= = .
¢ = — A ==C)+ > bupm(pmp) sin pm(, (7)
2T \Dp m=1

all the conditions are satisfied and (7) must be the required solution.
In the above expressions I, is the modified Bessel function of the first
kind and b,, is constant to be determind.

The constants a,, and b,, -can be determined from the continuity of
¢o and ¢; as well as aa—(f_o— and %%— at r = 719, the radius of the helical
vortices.

Now in the region 0< ¢ < 2n/p we have in Fourier series the

following relation

2

2(Tg)= " 1 gin pmC . (8)
)" S
Therefore equating ¢o and ¢; at 4 = po

apr’m(pm,uO) = - Fi +b'mIpm(me0) ’
mm

and equating B0 and 29

ar r

K g (0Mpt0) = by I D1Mp0)
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8 S. Kawada.

We have therefore

a, = — 1. Lym(DMpo)
Tm Iz;m(pm/‘O)Kprn(pm/-‘O)_Ipm(pmﬂo)K;m(pmm) ’
bm = — r Kz:m(pml‘O)

mm L (0mp) Ky mpte) — Lm(pmpe) K., (pmgee)

While we have®

L, (0420) K 010410) — Lpm(0110420) K L (0100100) = — 21— .
DPMpo
Therefore

a,, = —DPwl I, (pmpud) ,

™

(9)

bum Pul”, K/,.(pmu) .

T

The expressions for ¢ and ¢; become

do = __p_;:]i legm(pmpo)Kpm(pmp) sinpm, p=w
r I & .
¢; = —PL i—-c)—& > Ko (0mp0) Lm(pmps) sin pml . p < pag
2w \p o m=1

(10)

Now let

w, = tangential component of induced velocity at the blade
element,

w, = axial component,

w = resultant of the above two = Vuw?+ u? .

(1) Watsen, Theory of Bessel Functions, p. 80, formula (19).
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Calculation of Induced Velocity by Helical Vortices 9

Then we have
(1 a¢) =L(1 B¢
r o

w=2(3) = %(EMQ) =~

0z eC 0z /
r
wy = — L S5 o (ompo Kom(oms)

(11)

; — -ﬂ — (EW 7
Wi Ay [1 .’213,14'»(17’L>_\:l prm(pm;Lg)Ipm(pm“)] ,

I" [
0 ——7—)—2(20—_7,2——‘ mzjlm pm(pm,u'O)Kpm(pm/.L) ’

__ pel’
47V

II

Wai [1— 2Ppa 2 2 MK i (P40) Lym(pps) | -

These are the induced velocities by a propeller with uniform distri-
bution of circulation and therefore the induced velocities by helical
vortices at the tips of the propeller and a straight vortex at the centre
whose strength is p times that of the vortices at the tips. Hence to
obtain the induced velocities due to the helical vortices only, we must

substract the indiced velocities due to the straight vortex at the centre.

Therefore the tangential induced velocity becomes

Wy = [I + 20 33 M L (pm0p0) Kpm(pmps) |
471'7' m=1
(12)
wy = — 2L S mK;m(pmm)Ipm(pm;»)
2mwr m-=1

On the contrary the axial induced velocity is not influenced by the

~ straight vortex and the expressions remain unchanged.
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10 S. Kawada.

Thus,

2 &
Wa = 'M‘MJ— 2 mIz:m(pm/“o)Kpm(pmﬂ) ’
0 27V m=1

(13)
. p(oP

o [1— 2Ppo0 23 M K o) Lm(pmps) |

Wai =

Thus we have obtained the induced velocities by a finite number

of helical vortices in a compact form. However for numerical calcula-

tion these formulae are not so simple as they appear. This is due to

the want of so complete a table of Bessel functions Ky, and I, as is

required in the calculation. Fortunately, however, in most of the

practical applications g is fairly large and we can obtain an approximate
values in the following way.

According to Nicholson® I, and K, are given by the following

expressions for large values of order and argument.

(1) Nicholson, Phil. Mag. 1910.

To see the degree of approximaticn of this formula, take p =2, m =1, 4 = 2. The
formula (14) gives

I(4) = 6-3080,
Ky(4) = o-0177,
while the exact values are from table
I(4) = 6-42219,
K,(4) = 001740,

The ratios become 0-9822 and 1-018 respectively.

In the actual propeller the free vortices springing frem the blades are generally con-
centrated at the tips and near the boss.

The value of p at the tip of the propeller is not usually smaller than 2 and the portion
of the blades where the effect of the tip vortices are mostly felt are restricted to the region
near the tips where p is rarely smaller than 2 as before mentioned. Near the boss p. is
very small and the formula ceases to be valid. But fortunately the contribution towards
thrust and torque of this portion is very small. Considering this and remembering that the
discussion are directed towards the first term in the series and that the error in the second
and the higher terms rapidly tends to zero, the above simple formula seems to be quite
sufficient for practical applications.

This document is provided by JAXA.



Calculation of Induced Velocity by Helical

Vortices

. ‘% pm{l/l +p.‘-’——«lo e //::u;j:}
Lom(pmy) =[ _] e e,
2 pmV 1 + pt
(14)
N g e JL %}
Kp(pmp) = [ W___/ 2 ¢ l 2 I —1 )
2pmV 1 +p,
We have then
Lim(pmp) Kpm(pmp) = . — (15)
2pmV 1 + it
Differentiating with respect to pmpu
LKom+ I = =2 (1 +-—) = (16)
2p m /L
On the other hand we have as before
Iﬁlprm— Imezfm = ‘—'IV‘ -
pmp
Therefore
I -2
LKy = — [1— 1 (1+_2) 2]. (17)
2pmpup 2pmuy 7
Similary
-3
LnKin=—— 1 J14e—t (14 ‘) 2]. (18)
2pmpl " 2pmp N\

And

Koml(pmy) _ [ 1+ ,,,g]%e-p,,,c, ,
Kpm(pm,uo)

Lom(pmp) _ [r;@]%e-mg _
Ipm(pm/"o)

11
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12 S. Kawada.

Therefore (11) becomes

2\ L & _3
Wy = —;1211(1—*_”2)4 E [1— I (I‘*‘ 1 > 2]e—ﬁmtl’
4nr

I+p*/ 1 2pmpo \
(19)

-3
wti = _121:'_[1 ( I + /"0) Z II + (] +_I_) 2 1e—pmt2] ,
4y 1+t /) AU 2pmp ui/ )

or performing the summation

, .

_ ol 1+ u\7 11 51

Wey = T\ 1 . (1+— lge
r 5 e I 2pm

2\ -1 -3
we = PL 1+<1+"“>4{ 4+ {1+L) ? loge—— } .
4mr 1442 ePt: — 1 2pme N 4l 1—e Pl

where

Vi1i+ @+ DV 14 g—1)

th= V1t @Z2—V1+ g—Llog, >

! # o ‘Wit pt—1)(VI1+g+1) ] p=H
5 (Vi+ 2+ 1)V 1+p3—1)

b=vV1+ @—V1+ ut+ L log, ) > . =
Ho By o8 (Vi+ = 10)(V1+g+1) == 0

In this form the calculation of the induced velocity is simple and
easy.

2. Discussions of the Expressions.

The mean value of the induced velocities along the circumference

is calculated from (10) as follows

1 1 9
I __—._d = ,
(wto)mean (f r aC ¢ (o]
(21)
} _ 1 1 9¢; dr = pl’
(wtt)mean 471'6[ C_ ’
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Calculation of Induced Velocity by Helical Vortices 13

(wao)mean =0 ’
pr

(wai)mean =T
4TV

Thus the mean value of the induced velocities depends only upon
the circulation at the radius in consideration. Further we must notice
that the expressions are just the same as those given in the simple
vortex theory.

When the number of blades p or g is infinite we have

r !
Wy = O, wtizL) wa0=09 wai=*pw—-
47y 47
This is the case assumed in the simple vortex theory.
In the other extreme case o =0, the helical vortices become

straight and the tangential induced velocity must be given by®

(22)

Now from (12) we have when gy and p are very small, taking the

predominent term in the expansions of I, and K,,,

L pm#>pm
Lon(omp) = ~2———,
? (pm)!
—1)! om
Kpm(pmp) = (pm 1) 2 ) s
2 omuy

In,m(pml“) = ‘;“(Ipm—l'l'-[pmﬂ)

(™
1 2 .

- 2 (pm—1)!

(1) W. Miiller, Mathematische Strdmungslehre, p. 97.
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4
Therefore

ppa LD ) Komlomps) =

':"g
g
N
0 | -
N
|3
- 3

r
pm
pmpK g (D1 p0) Ipm(pM42) = —i(-”‘—) = -7
2\ po 2 \To
(23)
Sl PO T o Tl P |
47T m=1 70 4mr rP—1r?

r < pm

W = _Lz(_&> = o
To 4mr  r?P—ry

Thus we have obtained the expected results.

3. Stream Function.

As in the case of two dimensional flow or three dimensional flow

with axial symmetry, we can define the stream function in the following
way.

Take a small portion as in Fig. 2 whose three faces are parallel to
9 = const., z = const. and § = const.

Then the quantity of flow in this
portion should be equal to that out of it in the same time.
From the face (r+dr/2)dddz a quantity
of fluid equal to

~ P,n2)
p(r+ dr/z)(wr + l-%dr dddz ,
2 or

n
oo
flows out and from the face (r—dr/2)dddz a |\
quantity \
i

\ \
. NN
sw AN \\ \
p(r—dr/z)(wr -1 ’d?‘)d&dz , NN
2 or \‘L 1
—~—
£4
flows into this portion in unit of time Fig. 2.
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Calculation of Induced Velocity by Helical Vortices 15

The difference becomes

—p(wr+r~ay—)1)drdz9dz = —Mpdrd&dz . (24)
or ar

In the similar manner the excess of quantity of fluid flowing into

the same portion from the faces parallel to z = const. is

—.%Z“prdrd&dz , : (25)

and the excess of quantity of fluid from the other faces becomes

— aa%;t pdrdddz . (26)

Therefore the condition that there should be no accumulation of

the fluid requires

8(rw.) o Wa g =o0.
or 9z co

We have from (11)

wa=—pw,, C=l9'—ﬁ
)
Therefore
QW _ _ B(pw) °C _ o, B
o7 9 9z v o

dw, _ dw, 3 _ dw

0 3 3 3¢

Hence it becomes

a(rw,) + dw, " dwr

—o,
or o¢ 14
or .
a(rw"') 2 _a_ulé =
or + (,bb +1) aC o. (27)
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16 S. Kawada.

This is the condition that w, and w, can be put in the form

Wy = L3y , Wy = —1 -@i. (28)
r 9C 1+ 4% or

We can name +» as stream function.

The equation for stream line is

o= =, (29)
Wy Wt Wa
Since
(=0-22, d=d9—"dz,
v v
from (29) we have
do—2d
dr _ v _ _rd
Wr - wt/fr—_aiwa (I +/"2)w0
v
Putting 4 in this we have
dr  _ rdC
T
r o or
or
oY g + a"’dc=o, or dyr=o0. (30)

ar oC

Thus + = const. represents a stream line.

The expression of the stream function can be easily obtained from

that of the potential function as follows:

Since
d¢bo Pl &
1 9o v "o T’ (- ’ :
LI = gy, = — = ml,,,(omu) K,,.(pmp) sin pm¢ ,
’ ac ar - mZSI e FO) v M
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Calculation of Induced Velocity by Helical Vortices 17

we have

KO m=1

Yo = _ Prpl Z L,.(omu) K, (pmp) cos pm& + folr) . (31)
Similarly

yi= — PRl SN g (o)LL mp) cos pmC + fir) . (32)

™ m=1

where f; and f; are arbitrary functions of 7 which will be determined

as follows

(N2 pg‘“” 5 o
o _ v ,
ar - %If’m(pml“’)““ M Kpm(pm;&)}cos pmf + - oy
? ? S (1)
— 2l +’&)!:Z mlI,, (pmpo) Kpm(pmu) cos pmg +§fo_ .
nwr m=1 or
(33)

On the other hand

B\Iro = (1+ 2)w — 1+, “2 B¢0
or ol

' 2 2 hnd
= ,—B"""-(-I e )F'-Z Ml (pmpo) Kpm(pmy) cos pmC . (34)

™ m=1

Therefore fo becomes purely a constant.

Similarly
13;14)1“i -
a;;’ - : Z P (pmm)—\ﬂlpm(pmﬂ)}cos pml + =2 f
v 1 2 [ .
_ Pl +H<)fz mK,,(pmpuo) Lym(pmp) cos pm + o
&K m=1 87'
(35)

(1) The following relation is evident from the property of Bessel Functions.

3?! {y.K;m (pmy)) = pm (p'+[IT) Kpm(pmy) -
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18 . S. Kawada.

On the other hand

0y _ 1+4% 9

ar r of
+AI
(IZW" ) [— 21#«);; MK (0mp0) Lm0 ) cos pmc] .
(36)
Equating (35) and (36) we have
ofi _ pI0+4)
or 2mr
i = Tili{loge ;L-!-L/.LZ} + const. (37)
27 2

Therefore the complete expression of the stream function becomes

A
choosing f, so as to obtain the continuity of o and 4 at p = po

1—7 oo . 4 N
Yo = %;[loge po + v;*/i%— 2ttt 23 Lom(P1p0) Ky (P12) 05 me] ;

B> po
.= PL|, — K I,
V= ogept-" p» 2peph0 2 om(DMpa) L (pmps) cos pml | -
p < po ‘(38)
g 107 o ¥ % 13
(I) Now: r a" = = I+[.L" ‘37‘ ) ar = r_,._'f 3{ 3
o7 __r_ o +ﬂ 1—yp?
_ o 14p? orr " or (1tudt’
And - : o7 1 oY

oroc Tz’
Equating we have the following equation which the stream function satisfies.

I . R e A ..

I+u2 or? +§" (14p2)? ' oroot =%
W 1 1—u? QY 1\ oW _
or i Ty e 3u+( H)BC’—O'
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Calculation of Induced Velocity by Helical Vortices 19

4. Calculation of the Stream Lines and the Comparison with the
Experiment.

From (38) we can easily
calculate the stream lines. To
lighten the labour in calculation
the Nicholson’s asymptotic ex-
pansion (14) was further simplified
supposing p? is large compared
with the unity. The calculation
was done for the case py = 6.
Fig. 3 shows the stream lines
relative to the plane surface

perpendicular to the axis of the

helix and Fig. 4 shows them
taken relative to the plane
parallel toit. The figures affixed to the stream lines represents the value
of 2ayr [ Ik .

To obtain the stream lines

experimentally, two methods

were tried.
/ k/ \@ In the first method the

hydrodynamical and electrical

analogy was used. Cupper bars

4-5 mm in diameter were bent
75

in the form of regular helix of

Z 10cm in diameter of gy = 6 and

the direct current of about 100

&

amperes was sent through them
as shown in Fig. 5.

The equipotential lines were

0 made visible by scattering the

Fig. 4. iron dust on the plane placed
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20 S. Kawada,

perpendicular and parallel to the axis of the helix. TFig. 6 and 7 show

the obtained equipotential lines. We see that they are qualitatively in

|
T
N

Bl
U

§

|
7
N

\

)
\
N

Fig. s. Fig. 6.

good agreement with the calculated
stream lines. The behaviour of
the equipotential lines near the
helical conducting bars are some-
what different from the theoretical
stream lines. This is due to the
finite dimension of the bars. This
distorts the equipotential lines
close to the helical bars to a large
extent owing to the severe obli-
quity of these to the plane per-
pendicular to the axis of the helix.
The equipotential lines on the
plane parallel to the axis are in-
fluenced in a much lesser degree
as can be seen from Fig. 7.

In the second method the

stream lines relative to the tank
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Calculation of Induced Velocity by Helical Vortices 21

(absolute stream lines) were photographed when the model propeller
(23cm  in  diameter) was moved through the water. Fig. 8 to
Fig. 10 show the results of the experiment. The sheet of light, 1 cm
in thickness, was shifted to 3
positions parallel to the axis.
Therefore the photographs show
the cross section of the stream
lines at respective positions ex-
plained in the figures. In these
experiment the value of g, of tip
vortices as revealed from Fig. 8
was approximately 3-8, The
general behaviour of the tip
vortices are well predicted by

the theory. Tig. 8. Section containing the axis of rotation.

CuarpreER II. METHOD OF
PrAcTiCAL APPLICATIONS.
1. FExtension to Avbitrary Distribu-
tion of Circulation.

Thus far we have obtained
the induced velocity by a pro-
peller with an uniform distribution

of circulation. When we are re-

quested, in general, to calculate

Fig. 9. Section at an half radius apart. the induced velocity by a propeller

with any distribution of circula-
tion, an artifice to divide the
propeller radius into as many
divisions as possible in which
the circulation is supposed con-
stant and to apply the formulae

above obtained is most con-
venient.
For example, let us divide

the radius from r=0to r=R Fig. 10. Section outside cf the propeller wash.
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22 S. Kawada.

into eight divisions: r =0 to r= 0-1R, r =0-1Rtor =03R, r = 0:3R
to r = 0-5R, etc. as shown in Fig. 11 and let us suppose that in these
divisions the values of the cir-
culation is constant, being equal
to the values at the centre of
the divisions r = 0-05R, 0-2R,

etc.

Then we have 9 sets of

helical vortices at ¢ =o0.

Tig. 11,

r = o-1 R, etc. and their respec-
tive circulations are [y, [17—/%2, [2—I%, ...., 1%
Therefore the tangential induced velocity by these vortices is given

by the following expression at 1 = 7y, .

ol pG—D), Py PTG

Wem = !
= _"‘"p“A [[1(1 +Rl'm)'_[rz(zlm_22m T e e —1%(27,”—23,,0] ’ (39)
47T’rm
where
1+ u2\ ¢ 1 1 T\ s 1 '
= (Y [ (Y o ]
Mo e — 1  ZPpon Mn 1—e ™1

m_>n
2 L -3
- (*+a«m) 4 [ LSRN S +_L> 2 Jog, __If] _
1+ g e’r—1  2Ppen Pm 1—e Pk

t; and t, have same meaning as in (20).

2. Calculation of Circulation for a Given Propeller.

The problem which we encounter in the practice is to find out the

distribution of circulation for a given propeller.
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Before entering into the detail, it is essential to make an hypothesis
upon which the propeller theory is to be based. Following the usual

practice we make here the following assumptions:

1. Each element of the propeller blade is considered as an aerofoil
in two dimensions.

2. Relative velocity of the air to the aerofoil is determined from
the velocity of advance, number of rotation and the induced velocity
at the element.

In this circumstance the circulation is given by

I'= kntV sin (a—w/V)
(40)
= kntV{a—w|V).

where k = constant depending upon the aerofoil characteristics, being
equal to unity for a thin aerofoil from the theory.
¢ = width of the element,
V = resultant velocity = V9% + or?
w = .resultant induced velocity, _
o = apparent angle of incidence of the element counted from

| ‘ no-lift angle.
Then we have
w|V = a—TIkmwtV .
But since w = w,V 1 +p 2,

V=’U‘I/I +,u2,

we have

we|v = a—I|bkmtv1/1 + 42 .

Putting in (30)

D — . = - 1+ Awm)[1—< - (Prm—Asm) 8] -
L T .47rrmL( 1m) 1= (7v ‘ 8] ;

“where m =1, ...., 8.
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Let
= _pln B = 4T m
4mR’ T PkntaV 1+
Then we have
(I +le)Jl—(;‘lm_22m)J2_ ce —{Z(M—l)m—j'mm'—ﬂm) Jm'* M

oo — Cm— o) s = am%, (41)

where m should be taken to be 1, 2, ...., 8.

These equations can still be written in the form:

“almJl—a?rnJZ_ cec +amme""" °* °_a8mJ8 = am% ’ (42)
where
alm = —(I +)‘1m) ’ a2m = A]m—z?rn y "0y, aimm = —(l(m_l)m—zmm"—ﬁm),

) a’ﬂ'm = R7m_28m .

In these equations the coefficient @,,,(n==m) are functions of
Mo = @Tp/V and po, = wre,/v only and can be calculated from the formulae

(39)- , :
The coefficient 8,, and the right hand side of the equations are

depending upon the given characteristics of the propeller only.
The author calculated in Table 1 the coefficients a_;,m for wR/v= 3,6
and 9 by the formulae (39) and the values corresponding to wR[v =0

(0 = 0) by the exact formulae:

7’ |
lnm=—1—2m?9 m>n
T Ton
(43)
2
o Ton . m <Z n
Tin—"T o

The calculation was limited to the case p= 2. The values of
coefficients for another values of py can be easily obtained from the
interpolation.. The coefficients B is depending principally upon the
width of the element and the right hand side depends upon the shape
of the propeller and must be calculated for each respectfve case.
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TABLE 1.

Values of the Coefficients a,,, .

25

Ist eqn. Yg=0 3 6 9

Coeff. of Jj 1-33 1-36 1-31 1.28
Jy 0-30 0-34 030 0-28
J3 0-03 o or 0-01 o
Js o o o o

2nd eqn.  J; 0-33 0-25 015 008
Jy 2-13 1-91 1-53 1.28
Jz - 0-61 0-55 35 o-19
Jy o-11 0-08 0-03 0-01
Js 0-02 001 o
Jg 0-02 0-01 o
J7 0-01 o

3rd eqn.  Jy 0-07 0-03 0.01 o
Js 1-21 0-64 0-28 o-15
Js 4-06 2:70 174 1-37
Jy 1-30 0-85 0-42 0-21
Jg 0-16 009 0-02 0-01
Js 0-08 0-04 0-01 o
Jy 0-03 0-01 o
A 0:03 0-01 o

4th eqn. , |

Coeff. of J; 0-03 0-0I o
Jy 0-30 0-07 0.0I o
g3 2:44 0-75 0-34 0-17
Jy 6-04 3-01 1.81 1-38
Js 1-48 074 0-35 0-18
J 0 49 0-23 0-08 0-02
J; I 0-13 005 0-02 0-0I
Js ' 0-11 0-05 o o

(1) When n = m, the value of @umy—Bm is given in the Table.
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TABLE 1.—(Continued).
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Vo=0 3 6 : 9
|
sth eqn. J; 0-02 o ;
Js 0.17 0-03 o ;
Js 0-61 014 0-04 | 0-01
J, 6-00 2-21 1-06 0-63
Js 15:0 6-15 3-35 2:35
Jg 4.93 2-07 1-03 0-63
Jq 0-61 0-25 0-11 0-05
Jg 0-38 o-15 0-05 o-o1
6th eqn. J; 0-01 o
§A 013" o0-o1 o
J3 0:39 0-07 - 0.01 o
Jy 1-58 0-43 0-15 0-06
Js 6-09 1-95 095 059
Js 17-0 6.27 3-36 2-36
Jz 414 1-58 0-79 0-50
Jg 1-36 0-52 0-25 0-13
{
7th eqn.
Ceeff. of J; o-01 o
Jo O-I1 0-01 o
J3 0-29 0-03 )
Jy 0-83 0-21 0.06 0-01
Js 1-72 0-46 0-19 0-09
Je 13-64 4-84 246 1-59
gy 38-05 12-57 6-61 4-49
Jg 13-51 4-25 2-18 1-43
8th eqn. J; 0.01 o
Js 0-09 0-01 o
J3 0-25 0.02 o
Js 0-71 0-13 0-03 0-01
Js 0-99 0-25 0-09 0-03
Jg 372 1-10 0-50 0-28
Jy 12-22 409 2-12 1.38
Jy 38-0 12-64 6-€4 4-49
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3. Solution of the Equations and the Investigation of the Applicability

of the Method,

As an example suppose a propeller with constant width, constant

apparent angle of incidence and uniform blade- section throughout, the

circulation of which is related by
= atV(ie—w/V), as before.

Suppose po = 3, p = 2, pt/R =0-3. We have then

TABLE 2.
fR | Bm rIR -
0-05 | 0-66 0-75 4-06
0-2 2-29 0-85 4-14
0-4 3-41 0-925 418
0-6 3-88 0-975 421

The equations become putting now J = pI'/4mvRa .

~ 2:02J;—0-34J2—0-01J3 = 0-05,
—0-25J1+4-20J2——o'55J3—O-08J4—'o-01J5——o-01Js = 0-2,
—0-03J1—0-64J2+ 61 1J3—0+85J3—0-09J5—0-04Js—0-01J7
—0-01Js = 04,
—0-01J1—0-07J2—o-76J3+6-89J4——o-74J5—o-23Je—o-05J7
—0-05Js = 0-6,
—0-03J—0-14J3—2-21Js+ 10-21J5—2-07Js—0+25J7
—o0-15Js = 075,
—0-01Je—0-07Js—0-43Ja— 1-95J5 + 10-41Je—1:58J7
—o-52Js = 0-85,
—0-01J2—0-03J5—0-21J4—0-46J5— 4-84.Js+ 16 75J7
—4-25Js = 925,
—0-01Jp—0+02J3—0-13J4—0-25Js— 1-10J6— 4-09J7
+ 16-85Js = 0-975.

(44)
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It is not an easy task to solve these simultaneous equations in an

ordinary manner.

the solution by successive approximation.

In the first place obtain the approximate values of J.

vortex theory gives these approximate values.

thought

Atms Aom, **°° =0, Amm = 1, Rm,lp e

However the present equations permit us to obtain

The simple

In this theory it is

Therefore the first approximate values of J become

Ji = 0-030, J2 =

Js

I

Now put Jz, Js,
Jl) J3’ s ® e

0-165, J7

in the second; and so forth.

0061, J3 =

0-179, Js =

0.

0-091, Jy = 0-123, Js = 0148,

0-187.

. above obtained in the first of the equations;

We have thus the second approximation.

several times we obtain finally the required solution.

Repeating this process

This is shown in

Table 3.
TABLE 3.
Ji Jy J3 J4 Js Js Jz Js
1st appro. 0-030 0-061 0-091 0-123 0-148 0-165 0-179 0-187
2nd 0.032 | ©0-064 | 0093 | 0-12z | 0145 | 0-I52 | ©-156 | O-1I§
3rd 0-036 0-065 » 0-121 0-135 0-144 0-134 0-109
4th ’ » 0-092 2 0-120 | 0-134 | 0-139 | 0-130 | O'103
sth . » » ‘ 0-119 0:133 0-137 0-126 0-102
6th » » ” ! Ty » ”» ” 0-1Q1
7th » 2 ”» ” ”» 0"36 » »
1
Sth » » » i b1} » ” ” »
i

Thus if we take three significant figures the 8 repetitions of the

calculation gives the exact solution and if we take two figures only 5

repetitions are sufficient. The length of the calculation depends upon
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p and gy, becoming less complicated with increasing values of p and
po. At any rate the solution of the equations is not so laborious as
it at first appears.

When the values of circulation are known, the induced velocities
at the element can be calculated as follows. The relation between the

tangential induced velocity w, and the circulation is given, as before

shown, by
o r
W= kwtv'1 + 42
_ (. _ 7oR
= ale J,BT} ,
or
welor = i{l—J,sE} . wafv = a,L{I—JaE} . (45)
M r r

In Table 4 the values of wi/wr and w,/v are calculated supposing
a = 0-1 radian. The values deduced from the simple vortex theory are
shown in the same table. The induced velocities above calculated are
those at the blade element. The mean value along the circumference
of the induced velocities which we can measure directly in experiment

and represented by
we = pl’[ 471, Wa = pol’[ 47V,

are also shown.

The applicability of the present method can be best studied by the
comparison of the result with that obtained from the exact treatment
of the problem. One of the cases which can be dealt with exactly is

the one in which

This document is provided by JAXA.




30 S. Kawada.
TABLE 4.
Present theory Simple theory Mean value
r/R wifwr Walv wifer Wealv wifwr Walv
0-05 0-35% 0-008 0:40 0-009 0-48 0-011
0-2 0-043 0-015 0-051 0-018 0-054 ~ 0-0195
0-4 0-018 0-026 0-019 0-027 0-019 0.028
0.6 0-013 0-041 0-a11 0-037 0-011 0-036
0-75 0-012 0-063 0-009 0-044 0-008 0:040
0-85 0-013 0-086 0-008 0-050 0-006 0-041
0-925 0-0155 0119 0-007 0-054 0-005% . 0038
0-975 0-019 0-165 0-007 0.056 0-0035 0-030

In fact this corresponds to the case of an aerofoil in rectilinear motion.

We can also infer that the interference velocity is largest in this case.

Suppose that the aerofoil is a rectangular one in plan form and the’

cross section and the angle of incidence are uniform along the span.

Let us calculate the circulation by the method mentioned before and

let us compare the result with the exact one obtained directly. Take

k = 1, aspect ratio 5.

We have the equations:

0-597J1— 2+559J2—0°285J3—0-109J4—0-033J5—0-024Js—0-01 1J7
—0-010Jg = 1,
—0-799J1+6-381J:—1 066J2—0-213J4—0-053J5—0-038J5—0-016J7

—0013Js = 1,

—0-133J1—1-C67J2+ 6-381J3— 1-066J3— 0+ 133J5—0-08cJs—0-029J7
—0-024Js = 1,

—0-053J1—0-213J2— 1:066J3+ 6-381J4—0: 799Js—0-267Js—0-070J7
—0-058Js = 1,

—0-040J1—0- 102J3—0-285J3— 2-559J5+ 9-579J5— 2+ 132Js—0-267J7
—o-160Js = 1, '
—0-024J1—0-078J3— 0+ 166J3—0-609J4 — 2- 1325+ 9*579J6— 15997

—o0-532Js = 1,
—0:021J1—0-C62J2—0°120J3—0334J4— 05695 — 5 11 7Js+ 15-976¢J7
—4-265Js = 1,

—0-018J1—0-054J2—0-099J3—0-246J4— 033 15— 1-218Js—4-265J7
+15-976Js = 1,

where J =

4vab

17

’

(46)

= half span.
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The solution of this system of equations is

Jy = 0179, Jz = 0-233, Js= 0-250, Jy= 0250, Js = 0238,
Js = 0-219, J7 = 0-187, Jg = 0-140.

More accurate method of Glauert gives the following values shown
in Table 5.

TABLE 5.
= ’ |
y/b J -2 / =T T

.20 [—— / 3
o 0:249 /

.15 - \
0-2588 0 246 Circulation Distribution \

. for Rectaugular Aerofoil \

0_50 0_234 .10 of Aspect Ratio 5. — l;‘
0-7071 0-211 o8 ~==< Olauers \
0-86€0 0-169 R */m
0-9659 0-098 J 0.2 0.4 0.6 0.6 1

Fig. 13.

The results are compared in Fig. 13. We see that the coincidence
is fairly good. The comparison also suggests that the increase of the

number of divisions ameriolates the

result.
‘T Considering that in the actual cases
f propeller pis greater than 2 and e is
. ] of propeller pis greate ®
b different from zero, we can safely
R conclude that the error introduced by
Fig. 14.

the assurﬁp’cion of step by step distribu-
tion of circulation is always negligible and the method is well suited

for the purpose.

CuapTER III. APPLICATIONS TO PROPELLER THEORY.

1. Expressions for Thrust and Torque.

We could thus find out the values of circulation along the radius

of the propeller. The expressions for thrust and torque can be written
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down according to the hypothesis made in the preceeding chapter that
the behaviour of an element of the blade is similar to that of a single
aerofoil with the same cross section with the relative velocity composed
of v and wr, and that the force due to the circulation acts normally
to the resultant of these two velocities, while the force due to the
profile resistance acts in the direction of the resultant velocity.
Therefore the thrust which is the component of force in the direction

of v is

aT

—— = ppl'(wr—w¢)—force due to the profile resistance

dr

= ppF(wr—wt)—%Cxo PV 1 + 4l . (47)

and the torque which is the component force in the direction of er
multiplied by 7 is

aQ

i ppI r(v+w,) +torque due to the profile resistance

= ppl'r(v+w.) +- L Cropptorivy’T + ue. (48)
2

where C,, is the coefficient of the profile resistance of the blade element
under consideration, p is the density of the fluid and ¢ is the width of

the element,

2. Investigation of the Tip Eﬁ'e,ct.

In order to investigate the tip effect, let us take out some typical

propellers and let us calculate the distribution of circulation and thrust.

In all these examples the value of k is taken to be unity and the
profile resistance was neglected. Moreover the induced velocity was
supposed to be vefy small. All these resitrictions were introduced to
simplify the calculations and it will be shown later that these restrictions

can be easily removed if necessary.
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Ex. 1. Constant width, constant angle of incidenee propeller.
Solidity = ¢ = pt/R =03, m=6, p=2.
In this case the equations to determine [’ become

1-95J1—0-30Jz-~0-01J3 = 0-05,
—0-18J1+ 3-24J2—0-35J3—0-03J4 = 0-20,
—0-01J1—0-28J, + 3-79J3s—0-42J3—0-02J5—0-01Js = 040,
—0-01J3—0:34J3+ 3:95J4—0-35J5—0-08Js—0-02J7 = 0-60,
—0-04J3— 1:06J4+ §-52J5— 1-:03J6—0+11J7—0-05.J3

= 075,
—0-01J3—0-15J4—0-95J5+ 5-54J6—0- 79J7—0-25.J3
= 0-85,
—0°06J3—0°19J5—2:46J5+ 8-80J7—2-18J3
= 0-925,
—0-03J3—0-09Js—0- 50— 2-12J7+ 8-83J¢
= 0-975.
(49)
where J = S .
zmvRa

Proceeding as it was explained previously and taking as the first

approximation the circulation corresponding to infinite number of blades:

J, = 0031, Jp = 00738, Js=o0-131, Js= 0-191, J5= 0237,
Je = 0267, J7= 0-290, J9 = 0-306.

we have finally the following values:

Jy = 0:039, J» = 0080, Js= 0134, Js= 0-189, Js = 0223,
Js = 0-237, J7 = 0-222, Js= 0-180.

Now when w,/wr is small, the expression for thrust can be written

_ﬂ = pprwr

dr
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or

dCT — I dT — 7r3a

= T
dr - pn?D* dr wRk R
In Table 6 and in Fig. 15 the values of ﬂii;g‘l are given as well
a

as those deduced from the simple vortex theory which corresponds to
the case of infinite number of blades of same sclidity.

It may be seen that there is a marked difference in thrust near the
tips and in other places the difference is small. This decrease of the
thrust near the tip is the so-called ¢ tip effect” of the propeller due to

the finiteness of the number of blades.

TaBLE 6.
R d
Values of — Cr .
a dr
| .
5 r/R Present theory Simple theory |
0.05% 0-003 . 0-002
0-2 0-021 0-019
0-4 0-067 0-067
0-6 0-15 0-15
0-75 0-21 0-23
0-85 0-26 i 0-30
0-925 0:26 ! 0.35
0.975 0-23 1 0-39

Ex. 2. p = 3, the other conditions are same as in Ex. I.

The equations to determine the circulation become
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1-77J1—0-13J2 = 0-05,

—0-08J;+ 2:92J3;—0-13J3 = 0°20,

—0-13J2+ 3:38J3—0-20Jy = 0-40,
—0-15J3+ 3+50J4—0-18J5—0-03Js = 0-60,
— 0:01J3— 0604+ 4-48J5—0-62J5—0-05J7—0-02J5

where J =

—0-06J3—0+56J5+ 4-51J5— 0-50J7— 0135
—0-01J4—0-09J5—1-55J¢+ 6-58J1—1-37Js

—0-01J3—0:03J5—0-28Js— 1-30J74 6-60.J5

3
4mvRa

35

Since the solidity is the same as in Ex. 1, the simple vortex theory

gives the same result as in Ex. 1. The solution of the equations gives

the following result given in Table 7 and in Fig. 15.

Values of

TABLE 7.

r/R

Present theory

Simple thecry

0-05
0-2
0-4
0-6
0-75
0-85
0-925
0-975

0-002
0-019
0-067
0-15
0-22
027
0-295
0-26

0-002
0-019
0-067
015
0-23
0-30
0-35
0-39
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Ex. 3. p= 4, and the other conditions remain unchanged.

The equations become

1-69.J;—0-052 = 0-05,
—0-02J1+ 2-80J;—0-07J3 = 0-20,
—0-06Jz2+ 3-21J3—0-09Js = 040,
—0-08J3+ 3-32J4—0-09J5—0-01Jg = 0-60,
—0-39J4+ 3:99J5—0-40Js—0-02J3—0-01J3

= 075,
—0-02J4—0°37J5+ 4:01Jg—0:33J7—0°07Jg
= 0.85,
—0-04J5—1-11Js+ 5:57J7— 1-02J3
= 0°925,
—0:01J5—0°17J6—0-98J7 + 5-58Jg
= 0-975.
(51)

and the solution of these equations give the result shown in Table 8

and in Fig. 15.

TasBLE 8.
<5 T T
= € =0.30
R dCT R dc t constant, 0.
. = 8T a = constant, p = 2,
Values of « dr < dr 3,4,8 and infinity,
-4 Mo= 6
R dCt
B « dr 3 i
0-05 0-002 i
0.2 o o019 5 2°
0-4 0-067
0-6 0-15 ‘
0-75 0 22 </ l
0-85 0-285 }
0 925 0:31 1 ‘ R
0-975 0.285 7 2 4 -6 -8 F0
Fig. 15.
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Ex. 4. p =8, and the other conditions remain unchanged.

The equations become

1-64.J; = 0-05,
2-71Jp = 020,
3:06J3—0-01J; = 0-40.
—o0-01J3+ 3-15J4—0-01J5s = 0-60,
40-09J4+ 3-36J5—0-10Js = 0-75,
—0-09J5+ 3+37Js—0-09Js—0-01Js = 0-85,
—0:40Js—4:03J7—0-41Js = 6-925,
—0-03Js—0:38J7+ 4-03Js = 0-975.

(52)
and we have the result shown in Table 9 and in Fig. 15.
TABLE q.
Values of EQZ—C—@ .
a dr
R dor R _dCr
IR o« dr v/’ o« dr
0-05 0-002 0-75 0-23
0-2 0-019 o 8s 0:30
0-4 0-057 . 0-925 0-34
0-6 0-15 0-975 0:34

The reduction of the thrust in these cases is shown in Table 10,
taking the thrust corresponding to the infinite number of blades to be

unity.
TABLE 10.
l P 2 3 4 8 : ' infinity
Ratio of
I ‘Thrust 0-86 0-90 0:92 0-96 | 1-00

Ex. 5. Now the solidity was doubled without changing the other
conditions in Ex. 1., namely, constant width, constant angle of in-

cidence, yo =6, ¢ = 0-0.
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The result is shown in Table 11 and in Fig. 16. The ratio T/T,
decreased from 0-86 to 0-835, thus showing that the tip effect increases
with the relative blade width.

TAaBLE 11
R dC . ‘8 T l
Values of —-22T, Rdtr | § = constant, 6 = 0,60
a L dr a = constant p=2
"o— 6
. /T = 0, B
r/R | Present theory | Simple theory‘ 6 /Ty 835
0-05 0-004 0-002 ‘
0-2 0-031 0.028 v
0-4 0-10 010
0-6 0-22 0-22
0-75 0-32 0-35
0-83 0-37 045 2
10-925 036 . 0-53
0:975 0-30 0-58 ;
/R
Ex. 6. Same as in Ex. 1. 0 2 4 6 8 +o
except gy = 9 instead of 6. Fig. 16. Simple theory
The result is shown in Present theory - - - - - -
Table 12 and in Fig. 17. To-
gether with the example men-
tioned before, namely the case 5
where py = 3, we can conclude t = constant, 6= 0,z0 W/
. . ﬁgﬁf c = constunt: p= 2‘u ‘*’ 1
that the tip effect decreases with X dr | pe= 3 and 9 /
the increase of yyq. 4 T/Tq = 0.91 for p.= 9 4
.
. " 0.84 fio=3 ;/ r-.o’
TABLE 12. 3 ‘J_’ﬁé
R dC !
Values of — =L,
a dr
2
r/R ’ Present theory ! Simple theory Y
0-05 |‘ 0-:002 0-001 v ‘(/'
o2z | 0-02 , 0-02 “
04 | 0-06 ; 0-06 //
06 0-13 013 -4 l by
o7s | om | om 1 X
0-85 | 0-24 !' 0-25 0 2 - 4 6 8 0
0-925 | 0-25 * 0-30
0-975 | o2z | 0-33 Fig. 17. Simple theory |~ """
The ratio T/T, becomes 0-91. Presenttheory | _ _ _ _ _ _ _
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Ex. 7. Constant angle of incidence propeller, p =2, t = 6, the
width is tapered towards the tip:

t= t0<1 ——;-—r2/R2> , o = pto/R = 0:6.

We have the result shown in Table 13 and in Fig. 18.

TABLE 13.
.5 N '
Values of ——FL.
a dr R dirl ¢ = g(1-r2/28")
« dr | a = constant, p = 2
T } = “ Jo= 6, 6 =pte/R = 0.60 7
r/R | Present theory | Simple theory T/T4=0.88
0.05 0-004 0-002 3 e
0.2 0-03 0-03 v /1 N
04 0-10 0-10 /A .
06 0-19 0-20 ,,’ b
0-75 0-27 0-29 2 a !
0-85 0-30 0-34 4 v
0-925) 0-29 0-38 v
0:975 0-24 0-395 {
7
The ratio T/T, becomes 0-838. .
e - . | i
Ex. 8. Constant width pro- 0 2 p7 6 3 70
peller, ¢ =03, o= 6, p=2 Fig. 18. Simple theory
and a = ao([—fr/R) . Present theory - - — — =
We have the result shown
in Table 14 and in Fig. 19. e % = oconstant, 6 =0.30
-~ a = afl-r/R), p = 2
LLELr b et 6
TABLE 14. o Xo dl' T4T,= 0.58
R dC ‘
Values of =221,
a dr
04
r/R | Present theory | Simple theory
"
0-05 0-002 0-016 -02 \-
0-2 0-016 0-015 : \:«
04 © 0-039 0-041 ]
0-6 0-0565 0-059 R\
0-75 0:054 0-057 ” B B
0-85 0-042 0-044 0 2 4 6 8 £0
0-925 ,0-027 0-026 Fig. 19. Simple theory
0-975 0-014 0-010
Present thecry = = = — = =
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In this last example the value of T/T; becomes 0-g8. The simple
vortex theory gives nearly the correct value and the tip effect is very
small. Thus the tip effect of the propeller differs to a large extent
according to the propeller and it is difficult to write down a general
rule. But it may be said that the tip effect decreases with the increase
in the number of blades and g, for a given type of propeller. In the
above examples the smallest tip effect was only 2 percent. This explains
the reason why the prediction from the simple vortex theory, which
does not take into consideration the tip losses, can afford in some cases
quite a good result. It will also be made clear, that even if in some
cases the simple vortex theory gives very good results, it is premature

to conclude that it is the satisfactory theory.

3. Investigation of the Periodic Flow behind the Propeller.

It is thought that the flow behind the propeller is highly periodic
in nature and there are some experimental explorations of flow. On
the theoretical side, however, it was impossible till now to know even
qualitatively the flow pattern behind the propeller.

The expressions for indueed velocity by helical vortices (10) permit
us to calculate this periodic flow. For the sake of simplicity let us
calculate the periodic flow induced at a radial distance 7 by the vortices

shed at a single radius 7y .

Ex. 1. =06, r[ro =095, p = 2.
In this case we have the following series to calculate the induced

velocity w; .

We[Wem = 1+0°584 cos 20 +0-315 cos 4L+ 0172 cos 6C+o-o§4cos 8¢
+0-051 cos 10{+ 0028 cos 12{+0-015cos 14 L+ 0:008 cos16L
+0-005 cos 18 £ +0-0025 cos 208+ =+, (53)

where w,,, represents the mean value of the tangential induced

velocity along the circumference and is equal to pl/4mr.
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The axial induced velocity
w, can be calculated by the

relation
Woq — — pWe

The values of wywy, for
some values of ¢ are given in

Table 15 aad in Fig. 20.

I*:X. 2. Ho = 6, 7'/’7"0 = 0‘9,

n/2 n/4 n/4 /2 p = 2.

Fig. 20. We have

Wi/ Wem = 1+0-314 cos 2+ 0-095 cos 4{ +0-029 cos 6L +0-009 cos 8¢

+0-003 cos 10£ 4+ 0:0007 cos 120+ -+ . (54)

Ex. 3. #o =06, r[rg =08, p=2.
We have
WeJWem = 1+ 04100 cos 2& +0-009 cos 4{ +0-0007 cos 6L + ==+ - .
(55)
Ex. 4. po=4, 7[ro =095, p= 2.
We have
WiJWem = 1+ 0718 cos 2{ + 0465 cos 4{+0°304 cos 6+ 0-200 cos 8
+0-139 cos 10£ +0:093 cos 12{ +0-C62 cos 14{ + 0042 cOs 16¢
+0-028 cos 18C+0-017 cos 208+ 0011 cos 22{+ 0-008 cos 24(
+0-005 cos 26 +0-003 cos 28 +0-002 cos 30L+ -+ - - .
(56)

EX. 5. o= 10, 7[ry = 095, p = 2.
We have
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We[Wim = 1+0:387 cos 2+ 0140 cos 4L +0-051 cos 6 +0-019 cos 8

0:007 cos 10{ +0-002 cos 12§+ 0-001 cos 140+ -+ .

TaBLE 15.

Values of w,/w;, -

(57)

O
n/16
/8
ni/4

37/8

v/2

2-28
1-76
1-18
0-76
0-64
0-€62

1-47
1-38
1-20
0-90
0-78
075

Ex. 3 Ex. 4
I-11 3-10
— { 1-86
1.07 1.09
0-99 0-67
0-93 0-58
0-91 0-56

Ix. 5 |

1-61 ‘
147 |
1.21
0-88
075 |
0-72

We see that the fluctuation in flow is largest near the vortex fila-

ments and rapidly dies away with the distance from it and also that

the fluctuation decreases with the increase in the value of py. From

this we can safely conclude that for actual propellers the fluctuation of

flow is largest near the tips and for the high pitched propellers.

To compare with these results, deduced from purely theoretical

considerations, the flow in the propeller wake was measured experi-

mentally with a calibrated hot-wire direction and speed meter.® The

experiments were carried out in 1-5 meters wind tunnel of the Institute

(1) The hot-wire direction and speed meter is constructed from fine

platinum wire (0.015mm in diameter) span across three supports also of

platinum wire (0-5 mm in diameter) as

each branch of platinum wire is 6mm

The two branches of platinum wire

S

i

Fig. b. S;, S, hot-wire.

@

bridge
meter

shown in the figure.

The length of

and the angle between them is 30°.
were placed in double Wheatstone

as shown in the figure.

The galvano-

0S8, measures the speed fluctuation
and OS, the direction of the wind. The
meter was calibrated alter each experiment.
The propeller was driven by I IIP electric
motor placed under the wind tunnel by
means of chain belt and the space behind

the propeller was left unobstructed as far

as poss

ible.
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using a two bladed propeller of 07 m  in diameter (see Fig. 21). To
minimise the effect of inertia on the records of instantaneous velocity a
very fine platinum wire 0-015 mm
in diameter was employed to-

osether with very low transla-

o

tional speed of the propeller.
IFor example, in experiment Ig. 21
No. 37 the translational speed was 3-64 mjs and r.p.s. was 7-70.

The records are reproduced in IFig. 22 and the rotational induced

velocity w; was calculated from these records. The hot-wire was placed

No. 37. Upper line shcws the variation of No. 41. Upper line shows the variation of
direction, middle line the variation of speed direction, middle line the variation of speed
and lower line time interval of 1/50 sec. and lower line time interval of 1/50 sec.
Fig. 22 (a). Fig. 22 (b).
at a distance of 6 times the diameter of the propeller. Therefore we

can safely ignore the influence of the blades themselves. The record
show that the induced velocity differs a bit according to one blade or
other and also according to time. We picked up a record correspond-
ing to one revolution of the propeller and analysed it.

To facilitate the comparison with the theoretical results we calculated

from these results the quantity w/wn -
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As zero point of the angular position the position when the hot-
wire came just behind the trailing edge of the blade element was taken.
The results are shown in

i No.37. r/T,= 0,60 , Mo= .65 Fig. 23.

”/‘-’m The general behaviour of
Wy/W,,, curves resemble the
theoretical ones shown before
notwithstanding the fact that

3 the theoretical values show
the induced velocity by a
single layer of vortices and

the experimental ones may

o One Revolution = 2m o« due to the layers of vortices

Fig. 23 (a). at different radii.

r3 No. 41. M= 4.44, T/T,= 0.90

we CHAPTER IV. ANALYSIS OF

ftm

THE PROPELLER SW-1
AND THE COMPARISON
WITH THE EXPERIMENT.

A wooden propeller, SW-
18, 1 meter in diameter, was
subjected to an exhaustive
experiment in 3 meters wind
tunnel of the Institute. The
propeller is shown in Fig. 24.
The blade sections were SE-

series of the Institute. The

o 2 aerofoil characteristics of the

Fig. 23 (b). blade sections were obtained

(1) This is one-four h model of the wooden prepeller used on the long range acroplane

of the Institule during its earlier stages of trial flights.
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from the experiment made in the same wind tunnel at speed of
gomfs.

The wind tunnel experiment of the propeller was carried out also
in the same tunnel with the
aid of a tower type propeller
balance as shown in Fig. 25.

The torque is not measured

directly by the torque balance Fig. 24,
marked B in the figure, but it

was measured by the torque measuring mechanism marked A in Fig. 25.
When the torque is transmitted through the mechanism the rod C (Fig. 26)
pushes the bellow containing the
oil, the pressure of which is read
by means of the precision pressure
gauge. The scale on the pressure
gauge is calibrated beforehand
replacing the propeller with a fan
brake and measuring the torque
by the torque balance B. Iun this
case there is no need of paying
attention to the perfect parallelism
of the thrust line of the propeller
and the knife edge axis, nor to
the agreement of the thrust line
and the direction of the wind
which introduces  considerable
error in torque measurement in

case of a propeller. As for the

experiment of blade sections, the

Fig. 25.

results obtained were converted to
the case of two dimensional flow using the conversion formulae for

rectangular aerofoil.
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Fig. 26.

The aerofoil characteristics thus obtained are given in Table 16.

TABLE 16.

Thickness No-lift angle |
ratio ‘ 8 k Camax ]’

|

10 % -47° 0-86 127 |
12 % -5:65° 0-855 1.36 |
14 % -6-65° 0 84 143 |
16 % —7.850 0.805 1,48 ‘

]

where C, = 27k sin (a+3)

The dimensions of the propeller measured on the actual model are

as shown in Table 1.

TABLE 17.
r[R t k 8 (from chord lire)
_ —

02 0-125 o-8o -9° 54-3°

04 0-117 0-805 -7-8° 34-8°

0-6 o 100 0-85 -6-0° 25-5°

0-75 0-082 0-855 -5-1° 21-1°

0-85 0-068 0-86 -4-85° 19 15°
0-925 0.056 0-86 -4-8° 17-8°

0-975 0-047 0-86 —4-7° 17-1°

(1) The experiments were carried out at 2000 r.p.m. and the Reynolds number for

blade section at 0-75 R was about 4 5X 105 when v/nD = 0-524.

of aerofoils were made at Reynolds number of about 8.4X 105.

Whereas the experiments
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Analysis 1. o =6 or v/nD = 0-524.

In this case we have

TABLE 18.

r/R o in radian (from nc-lift angle) ‘ & ;

i | |
0-2 i 041 | 1-28 ?
0-4 0-347 l 1-69 I
06 0279 i 1-89 i
075 | 0-24 | 2-33 4
0-85 | 0-224 i 2.80 :
0-925 ' 0-217 3-41 !
0-975 ‘ 0-212 ; 4-06 |

47

Supposing the section at r/R = 0-05 is non active we have the

following equations to determine the circulation:

2-81J,—0-35J3—0-03J4 = 0-082,
—0-28J,+ 3-43J§;——o-42J4——o-02J5—0-01JG = 0-139,
—0-01J,—0-34J3+ 3-70,1',,—o-35J5—o-08J6—o-02J7 = 0-168,
—0-04J 35— 1+-C6J 4+ 5:68J5—1-03Jg—0-1 1J,;—0-05Jz = 0-180,
—0-01J3—0-15J4—0-95J 5+ 6:16Jg—0-79J;—0-25Jg = 0-191,
—0-06J,;—0-19J5—2:46J;+ 10:02J;—2-18J5 = 0-201,
—0-03J4—0-c9Js—0-50Jg—2-12J7+ 10-80Js = 0-207,
(58)
pl’ I’

where =P _=_"1 |
4mvR 2mvR

The simple vortex theory gives immediately

J, = 0-0360, Jg = 0-0503,
Jy = 00517, J, = 0-0456,
J, = 00582, Jg = 0:0409 .
Js = 0:0540,
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From these approximate values we have the following solution o

the equations

J, = 0036, J¢ = 0-047,
J3 = o051, Jy = 0039,
Jy = 0:056, Jg = 0-030.
Js = 0052,

We can also easily calculate the induced velocities w; and w, at

the blade element as follows

TABLE 19.
r/R . wifer Walv
02 o-15 0-216
04 0:055 0-318
0-6 0-029 0-372
0-75 0-017 0-348
0-85 0-014 0354
0-925 0-013 0-408
0-975 0-015 0-510

In order to calculate the contribution of the profile resistance to-
wards the thrust and torque, it is essential to know the effective angle

of incidence of the blade elements.

Let a, = effective angle of incidence,
V., = effective resultant velocity.

Then we have
I'=kntV,sine, . (59)
The effective angle of incidence can be calculated from the above
formula and the corresponding values of the coefficients of the profile

resistance can be obtained from the data in wind tunnel experiment.

We have the following result shown in Table 20.
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TABLE 20.
r/R ae (from chord line) Czo
oz 4-4° 0-015
0-4 4-3° 0-014
0-6 4-1° 0-014
0-75 4-5° 0-013
0-8s5 4-1° 0-013
0-925 3.8° 0-012
0-975 2.4° 0-012

Now it is easy to calculate the thrust and torque. It proceeds as

follows:

We have when the profile resistance of the element is neglected
—‘Z—T—> = ppl(er—w:) .
"
Putting
( dCT> — 1 aT ) gg,,) — 1 (m_dQ
dr /, pnD*\ dr /] dr /,  pnDP \ dr

dCr dcC, ot
R=2L -—J— — , | R=—* J— + We
dr )0 0 (1— We/owr) ( )0 (1 +wafv) .

0

(60)

The thrust and torque due to the profile resistance can be calculated

by the following formulae

L —LopCr V1 + pit, ©dQy _ L opCroa?r®vtV 1 + g2z,
dr 2 dr 2
dCT) _ P Cao Cro bt _/ 5
R v+ g,
( G

(61)

(#4) - P e = e (),
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The values of thrust and torque on the elements of the blade are

calculated in Table 21.

TABLE 21.
dCrp dCp dCrp dCp dCp dCp

iB (RGN | (B | (B ) | (Ba)s | Bar | B
0-2 0-032 0-024 0-0004 0-0003 0032 0024
0-4 0-100 0-073 0-0006 0-0017 0-099 0-074
06 0-1€9 0-124 0-0007 0-0049 0-1€8 0-129
0-75 0-198 0-142 0-0007 0-0071 0-197 0-149
0-8s 0-203 0-146 0-0005 0-0086 0-202 0-155
0-925 0-184 0137 0-0008 0-0084 0-183 0-145
0-975 0-149 0-119 0-0005 0-0068 0-149 0-126

The total thrust and torque of the propeller can be obtained by

the graphical integration of the thrust and torque grading curves.
We have®

Cr=o0-116, Cp=0089 and 7z =068,
While the experiment gives (see Fig. 28)
Cr=o0-122, Cp=0-092 and % = 0-68.

In the above calculations it was thought that the induced velocities
are small compared with the translational and tangential velocities of
the propeller and these induced velocities were neglected in calculating
the configuration of the vortices, or in other words when determining
the value of p,. In the actual case, however, the induced velocities
W is fairly large compared to v.

Therefore it may be seen that the values of thrust and torque calculated
under the assumption of the smallness of the induced velocities would lead

to erroneous result. More accurate values can be obtained supposing

(1) The resistance of the boss alone was measured and it was found to be negligibly
small.
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that the propeller is advancing with the velocity v+w, and rotating

with the tangential velocity wr—w,;. The values of w, and w; are

Fig. 27.

different for each blade element, but for
an approximate purpose it is sufficient to
choose the values at /R = 0-75. In the
present case we have
V+Wa = 1:348V, or—w; = 0-983 07,
and the new value of g, becomes 4-37.
The fundamental equations (40) become

then (see Fig. 27)

I'= knatV'(a—w'IV’).

In this expression the apparent angle of incidence a is not altered

and can be calculated by

v

a=0—1g ,

w?

as before, ignoring the induced velocities.

The values of w’ and V’ should be now calculated supposing

!

!

Mo = 4°37-

v/ = 1-348v and (7)) = 0:983wr and

The equations to determine /" become

3-23J,—0-45J5—0-c6J,—0-01J5 = 0-112,
—0-46J 3+ 4-29J3—0:63J,—0-05J5—0-04J¢ = 0-187,
—0-04J,—0-51J3+ 4-83J 4, —0-52J5—0- 15J§—0-03J;—0-02J5 = 0-226,
—0-01J,—0-08J5—1-52J s+ 7-59J5— 1-46J;—0-17J;—0-coJy = 0:243,
—0-03J3—0-27J—1-34J5+ 8:35J¢—1-17J,—0-36J5 = 0-258,
—0:01J3—0-12J ;—0-30J5—3-40Jc + 13-§8J,—2-09.J3 = 0-271,
—0-07J4—0-15J5—0-75Js—2:90J 1+ 14-61J5 = 0-279.

(62)
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where J = _pl’ as before.
47

Solving these equations we have the following result.

TABLE 22,
dacC. ac

r/R J wefwr Walv =T P

/ t/w a/ R dr R dr
0-2 0-044 0-25 0-19 0:034 0-029
0-4 0-057 0-088 0-27 0106 0-080
0-6 0-061 0.045 0-31 0-179 0-134
0-75% 0-055 0-028 0-30 0-206 0-152
0:85 0-049 0-023 0:32 0-209 0-157
0-925 0-041 0:021 035 0-191 0-146
0-975 0-031 0-026 0-47 0152 0-127

The graphical integration gives
Cr=o0-122, Cr= o093, 7=069.

This is in very good agreement with the experiment.

We can also see that there is no need of proceeding to the further
approximation. The new value of py becomes 4-49. This is not so
different from 4-37 as does 4-37 from 6.

Analysis 2. py = 4-37 or v/nD = 0-719.

The equations to determine the circulation become now

3-23J3—0:45J3—0-c6J ,—0-01J5 = 0-051,
—0-46J5+ 4:29J3—0:63J ;—0-05J 5—0-04J§ = 0-089g,
—0-04J3—051J3+ 4:83J y;—0-52J5—0- 15J¢—0-03J;—0-02Jg = 0-111,
—0-01J3—0-08J3—1-52J ;+ 7:59Js— 1-46J¢—0-17J;—0-Cc9Jg = 0-127,
—0:03J3—0:27J4—1:34J 5+ 8:35J¢—1:17J7—0:36J = 0-134,
—0-01J5—0-12J4;—0-30J 5—3-40J ¢+ 13-38J,— 2:09.J = 0-141,
—0:07J ;—0°15J5—0-75Jg—2:90J 7+ 14:61Jg = 0-146,

(63)
pl”

where = = .
4mR
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The solution of these equations gives the following result.

TABLE 23.

dC dC

R J wiwr Walv T ot if
rl il @ E dr R dr
02 0-020 0-114 0-092 0-025 0-022
0-4 0-028 0-043 0131 0-075, 0-066
0-6 0-030 0-022 0-153 0-124 o-112
0-75 0-029 0-0I5 0-168 0151 0-131
0-85 0-025 0013 0-175 0-148 0-132
0-925% 0-021 0-013 0-210 0-135 0-127
0-975 0-016 0014 0-253 .0-108 0-107

The graphical integration gives
Cr= o008, Cp=o0077, n=0804,
Proceeding to the second approximation as before, we have
o= 3:70.
The calculation gives finally
Cr= 0089, Cp =009, n=081.
The experiment gives in this case

Cr = 0089, Cp= 00795, 7 =0-80.

Analysis. 3. po =3, or v/nD = 1-047.

The equations to determine the circulation become

3:63J3—0:55J3—0-08J, —0.01J5—0-01J5 = 0-007,

—0-64J 5+ 5-42J3—0-85J,—0-09J;—0-04Jg—0-01J;—0-01J3 = 0-019,
—0:07J3—0:76J3+ 6-44.J ;—0- 7 4J s—0-23J ¢—0-05J;—0-05Jg = 0-026,
—0:03J3—0-14J3—2-21J,+ 10- 50 5— 2:07J g—0- 25J;—0-15J5 = 0-030,
—0-01J;—0:07J3—0:43J ;— 1:95J5+ 11:57Jg— 1:58J;—0-52J5 = 0-040,
—0°01J3—0-03J3—021J ;7 —0-46J5— 4:84J ¢+ 19-c9J;—4-25Js = 0-045,
—0:01J3—0:02J3—0-13J ;—0-25J5— 1-10J 5— 409+ 20-45J3 = 0-051,

(64)
oI’
4mR

where J =
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The solution of these equations gives the results shown in Table 24.

TABLE 24.
r/R J wifwr Wafv R %(iT R d‘gf
0-2 0-002 0-0008 0-0029 0-003 0-003
0-4 0-0048 0-0016 0-0023 0-018 0-023
0.6 0:0055 0-0018 0-0059 0:032 0-041
. 075 0-0052 0-0018 0-0088 0-040 0-051
; 085 0-0054 00018 0-0117 0-046 0-058
g 0-925 0-0048 0-0016 0-0112 0045 0-057
I 0975 0-0038 0-0013 0-0112 0-037 0-049
|
r8 . . .
,\\ Graphical integration
ives
6 N &
Er PROPEULER Sk/-1 Cr = 0-023, Cp = 0031,
Lp
7 n=078.
—o— EXPERINENT.
$ } ean. From the smallness of
7 x the induced velocities, it
\ may be seen that the
10

second approximation is not

necessary in this case.

[~
ey 5 ,
// \ The experiment gives®
-5 Y -&

Cr = 0-022, Cp = 0032,

4 / \\ \ p =072

‘ // In Fig. 28 the theoreti-

2 2 cal values obtained from the

7 first and second approxima-

”p 1 r 1 r r

b ¥ 2 y: = 70 7o tion are shown respectively
Fig. 28. by x and .

(1) In this case the effect of the boss may be more pronounced than in former cases
and the discrepancy between the theory and the experiment may perhaps due to the neglect
of the resistance of the boss.
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Author’s thanks are due to Prof. K. Wada, Director of the Institute,
for having given him valuable advices during the preparation of this
paper, and to Messrs. Yosida, Hirooka and Takahashi f(\)‘r.having
assisted him in carrying out the experiments and in numerical calcula-

tions.

Conclusion.

1. The consideration of the finiteness of the number of blades in
propeller theory is not insurmontably difficult as might at first appears,

at least for practical applications.

2. The tip effect of the propeller is widely different according to
the blade form, pitch angle etc. and it may be as great as 14 percent

even for low pitched propeller in thrut estimation,

5. The distribution of the instantaneous velocity in the wake can

be calculated theoretically.

4. The performance of a propeller, which takes the tip effect into
consideration, computed by the present method, affords complete agree-

ment with the experiment.

5. It seems to the author that the performance of a propeller can
be computed theoretically in an accurate manner from the characteristics

of the blade elements only.
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Appendix.

Aevofoil Characteristics of Blade Scctions of the Propeller analysed in
Chapter- 1V.

Five rectangular aerofoils of aspect ratio 5 were tested in 3m wind
The chord was 30cm. and the wind speed was .
about 4om/s. Therefore the

tunnel of the Institute.

Reynolds number

, o o R, = vt/lv (v = velocity,

t = chord).
Fig. 29.
was about 8-4 x 10°.

The 14 percent thickness ratio aerofoil is shown in Fig. 29 as an

example. The other aerofoils are similar to this, differing only in the

g
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thickness ratio. The results of the experiment were converted to C,
and C, corresponding to infinite aspect ratio making use of the
following convertion formulae :

=G

2(14+o0-154) radians,
A

da

(65)
C2
Cuxi = t=2(1+0041) ,
T

where 1 = aspect ratio.
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Fig. 30 (b).

The results are shown in Fig. 3o.
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