

航空機の冬期運航

冬期の運航効率向上•安全性維持は大きな課題

- エアラインとの意見交換で要望の多かった分野
- 冬期運航に影響する気象要因は雪氷•雷

エアラインからの要望の例
機体への着氷

- 離陸時の着氷については，防氷液の有効時間との関係で，モニタリングが重要
- Ice Crystalは日本付近で発生確率が高いが，レーダーに反応しない
- Ice Crystalの気象状況を事前に検知できると良い
- Pitot TubeやCockpit Windowにも防氷技術を適用できると良い

滑走路の雪氷

- 滑走路雪氷時のブレ—キングアクション分布をリアルタイムで知りたい
- 航空機と路面の摩擦係数が高精度で分かることが重要

機体への被雷

- 雷の強度を事前に検知できると良い
- 日本固有の事象（落雷等）に対応するための技術が有益
- 雷を避けるか，機体損傷が少なければ，整備効率•運航効率が上がる

航空機の気象（雪水•雷）対策

- 着氷対策
- 着氷センサー（IIDS：Inflight Ice Detector System）
－Pneumatic Boot De－icing System
－Piccolo Tube
- 電熱ヒーター
- 雷対策
- 銅メッシュ（スキン）
－ボンディングジャンパ
－レドーム（ストリップダイバーター）
－Static Discharger
－NGS（燃料タンク）
－Current Return Network

（2）Ice Crystal Icingの問題
- 機体の着氷センサーでIce Crystalの状態を捉えることはできない
- エンジンに溶けながら入り込み，内部表面に水膜を形成することで，さらに入ってくるIce Crystalを補足して氷が蓄積され，それが圧縮機内部に入り込むことで内部を損傷，サージやストールを発生させ る事象が発生
－TAT（Total Air Temperature ：全温）センサーやPitot管まわりの熱で溶けたIce Crystallこより計測エラ
- を発生させ，エンジンの推力喪失事象も発生
- 1990年以降だけでも100件以上の推力喪失事象が特定の地域に発生している
- 特に日本から東南アジアにかけての地域で多発しており，約 60% がアジア地域で発生している

Ice Crystal Icingのイメージ （出展：NASA）

Ice Crystalの着氷エリア （出典：Boeing AERO QTR＿4．07）

Ice Crystallこよる航空機推力喪失事象 （出典：Boeing AERO QTR＿4．07）

航空機への影響

（3）雪氷滑走路の問題

- 滑走路雪氷によるオ一バーラン
- 滑走路雪氷による欠航・ダイバート
- 日本は滑走路が短い上に大型機の割合が多い
- 日本は滑りやすい雪質
- 滑走路の状況がリアルタイムではわからない
- 現在の運航規定では，かなりコンサバティブ

機材 区分	北米	中南米	欧州	CIS	アフ帅	アジア	豪州	日本	世界計
大型機	574	72	744	86	111	1,542	97	114	3,340
	(8.6%)	(5.3%)	(17.1%)	(8.4%)	(14.2%)	(27.8%)	(19.0%)	(21.8%)	(16.1%)
中型機	1,143	83	262	117	63	226	28	143	2,065
	(17.2%)	(6.1%)	(6.0%)	(11.5%)	(8.1%)	(4.1%)	(5.5%)	(27.4%)	(10.0%)
小型機	3,099	943	2,746	561	444	3,482	293	226	11,794
	(46.5%)	(69.2%)	(63.1%)	(55.1%)	(56.9%)	(62.8%)	(57.5%)	(43.3%)	(56.8%)
RJ 機	1,848	265	600	254	162	291	92	39	3,551
	(27.7%)	(19.4%)	(13.8%)	(25.0%)	(20.8%)	(5.3%)	(18.0%)	(7.5%)	(17.1%)
合計	6,664	1,363	4,352	1,018	780	5,541	510	522	20,750
	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)

> 東京航空局管内の空港
> (東京航空局HP)
（4）機体への雷撃

- 航空機が運航中に被雷する確率は1000～20000FHIに1回
- 複合材料構造の場合，導電率が低いために損傷する可能性が高い
- ベアリングなどの融解による可動部の固着
- リベット等からのスパークにより燃料が発火する危険性
- 強い電磁場の発生による装備品への影響

航空機の雷撃損傷

飛行中のA380への雷撃
http：／／www．dailymail．co．uk／news／ article－1386086／Jet－struck－ lightning－lands－Heathrow．html

航空機への影響

（4）機体への雷撃（冬季雷）

- 通常の雷は主に夏季に発生するが，冬季に発生する雷が冬季雷
- 世界の限られた地域（日本の日本海側，ノルウェーの西海岸，アメリカの五大湖東側）でのみ発生
- 冬季雷の特徴
- タ方だけでなく一日中発生する
- 上向きの放電

- 電荷量が大きく，夏季雷の数十倍
- 夏季雷は $3,000 \sim 5,000 \mathrm{~m}$ の上空で発生するが，冬季雷は $300 \sim 500 \mathrm{~m}$ という低空で発生

JAXA航空本部のミッション
冬期運航における外的要因（雪氷•雷）に対して機体の安全性を高めるとともに，機体•滑走路の状態や気象状況を把握し，機体毎に安全性を管理できるシステムを開発する

研究事業「機体安全性マネジメント技術の研究開発」

研究事業の目的

ミッション達成に向けて

- システム要件を定義
- システムに必要な要素技術の技術レベルをTRL4ヘ向上研究事業のスケジュール
- 第I期：2013年度～2017年度の5年間の基礎研究
- 第II期：2018年度～2022年度の5年間の実証研究
- 第II期中にプロジェクト化•技術移転

体制：JAXA研究員8名
開発する要素技術
機体防着氷技術（機体着氷センサー，着氷防止）
雪氷滑走路技術（滑走路モニタリングセンサー，地上摩擦計測装置，機体摩擦係数推定，データベース）気象状態検知技術（着氷気象状態事前検知，雷気象状態事前検知）
耐雷技術

システム運用イメージ

スケジュール

現状の問題点
1．従来の着氷センサーは振動数の変化で着氷を検知する接触式のセンサーで，胴体部に設置されて おり，機体全体，特に主翼の着氷状況を精度良く計測するができない
2．エンジン抽気および電気ヒ一タ等による防氷システムが一般的で，SLDに対し熱量が不足する問題が ある。また翼前縁で溶けた氷が翼後方で再着氷（Runback）する問題もある

研究が目指す効果
1．機体の着氷状態をリアルタイムに同定できることで，適切な離陸判断が可能になり，運航効率が向上 する

2．化学的な着氷防止コ一ティングにより，防氷システムが不要もしくはコンパクトになる。また着氷を防止できることで，空力性能の低下を防ぐことが出来る。

機体防着水技術

（1）着氷防止の為の界面化学，機能性化学等を用いた
着氷防止コ一ティングの研究開発及び世界基準となる評価法の開発
－超撥水性機能を有するコ一ティング
（過冷却水滴付着防止）

- 氷成長抑制機能を有するコ一ティング
- 氷融解機能を有するコ一ティング

各コ一ティングの研究開発を実施し評価法に基づき評価を実施中

（2）着氷防止システム技術開発の為の着氷現象の解明

- 静的過冷却水滴凍結現象の温度分布可視化
- 動的過冷却水滴，衝突凍結現象の温度分布可視化

着氷風洞におけるスプレ—ヤ一噴霧時の温度分布可視化

過冷却水滴用衝突試験装置の開発中温度分布可視化システムの開発中

雪水滑走路技術

現状の問題点

1．短い滑走路長，大型の機体が多い，すべりやすい雪質と日本の冬期運航は世界的に見ても厳しいに も関わらず，滑走路の雪氷状況がリアルタイムで把握できなかった

研究が目指す効果（仮）
1．滑走路面状況を常時モニタし，リアルタイムで安全な離着陸判断ができるようにする（目標：雪氷が原因のオーバーラン発生1～2件／年をゼロに）
2．その際，航空機の離着陸距離を高精度に把握し，過度な安全余裕を排除し冬季の運航効率を向上さ せる（目標：欠航・ダイバートの便数を平均 10% 削減）

雪氷滑走路技術

（1）地上摩擦計測装置

高精度に摩擦係数を計測する装置の提案と設計を実施した。装置はスリップ比を任意に変更して，精度 の高い摩擦係数を得ることが出来る。
（従来はスリップ比固定）
特許出願済み

（3）数値シミュレーション技術の検討
雪の中を伝播する光の数値シミュレーションの検討 を実施する。雪の異方性を考慮するとともに，雪のモ デル化，実験との定量的な比較の方法についても検討を進める。

（2）モニタリングセンサーの開発
路面の雪氷状況をリアルタイムでモニタリングできる装置の開発を実施している。
（1）光の透過量を計測することで雪氷状況を検知できる装置 の提案と開発 \rightarrow 特許出願済み

（2）前方散乱光強度を 2 次元的な分布で，雪氷状況を効率よく検知できる小型の光学計測装置を提案し開発 \rightarrow 特許出願手続 き中

滑走路への適用イメージ

16

気象状態検知技術

$>$ 着氷気象状態検出装置
\checkmark 発生機構の調査（概要調査完了 \Rightarrow 詳細調査へ）
積乱雲内の着氷粒子については名古屋大で研究がスタートしている
\checkmark 着氷気象状態観測装置の調査（概要調査完了 \Rightarrow 詳細調査へ）
2重偏波レ—ダ（名古屋大），2周波2重偏波レ—ダ（コロラド州立大）が有力
\checkmark 着氷過程の調査（文献ベースで調査中）

耐雷技術

耐雷技術については来年度以降の研究に向けて調査研究を実施中

方針	メリット	例
着雷位置の予測 コントロール	雷撃対策を施す部位の集約，最適化 につながる	サブコンポーネント内レベルでの着雷位置の予測，コン トロール - 着雷位置の予測技術（解析／試験） - 構造内の材料配置 - 誘雷技術の適用 - 構造配置による着雷位置への影響検討，コントロール
構造材料の耐雷性能向上	雷撃損傷の減少	- 複合材料の樹脂の導電性向上 - 複合材料の繊維の導電性向上 - 新規の金属材料の適用
耐雷保護技術の向上	同上	－導電物質による，箔，メッシュ，塗料 －ダイバーター，スタティックディスチャージャー 性能向上，新規技術の開発
被雷後の修理の容易化	整備コストの低減運用コストの低減	- 部品交換の容易化（翼端等） - 構造部材を部分的に導電性材料に置換 - 損傷検知技術（暴露温度による損傷領域の判定など）
燃料タンク防爆技術	安全性向上設計効率	- 雷電流解析技術 - ファスナからのスパーク防止技術 - 疲労亀裂，製作不良を考慮したスパーク防止技術

