スーパークリティカル翼における 遷音速バフェットの数値解析

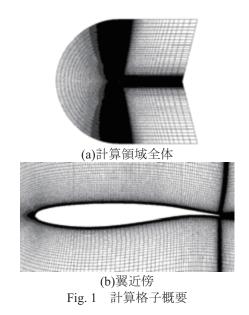
竹川 国之(菱友システムズ),石向 桂一,石田 崇,橋本 敦,青山 剛史 (JAXA)

Numerical simulation of transonic buffet over a super-critical airfoil Kuniyuki Takekawa (Ryoyu Systems Co.) Keiichi Ishiko, Takashi Ishida, Atsushi Hashimoto, Takashi Aoyama (JAXA)

Abstract

Predicting buffet over an airfoil is one of the challenging problems for current CFD because the phenomenon is complex and unsteady. In this paper, we conduct a simulation of the transonic buffet over a super-critical airfoil using FaSTAR code which is the unstructured CFD code developed by JAXA. Zonal DES approach is employed for the flow simulations, which is RANS/LES hybrid approach. Results are compared with the past research and the experimental data.

1. 研究背景・目的


CFDを用いた航空機の空力特性の予測では、乱流 モデル等の進展により、特に巡航状態においては信 頼性の高い結果が得られるようになった.一方で剥 離・振動といった非定常現象が発生する巡航以外の 条件では、依然としてCFDの信頼性は低い.第5回抵 抗予測ワークショップ(DPW5)では、高迎角の条件で 各国の計算結果が比較されたが、巡航状態と比べ結 果に大きなばらつきがあることが明らかとなった^{II}. 剥離を含む高迎角の解析はCFDにとって依然として 大きな課題となっており、そのため航空機開発にお いてはCFDの適用は巡航状態とその周辺に限られて いる.非定常現象解析に対する信頼性を向上させ、 その適用範囲を広げ、フライトエンベロープ全体を 解析できるようにすることが現在のCFDの課題であ ると言える^[213].

航空機における代表的な非定常現象としてバフェ ットが存在する.この現象は,遷音速で飛行時に翼 上面で発生した衝撃波が,衝撃波背後で発生した剥 離によって振動する現象であり,機内の乗り心地や 飛行の安全性に影響を及ぼすことが知られている. 本研究では航空機の非定常現象解析に対する信頼性 向上に向けた研究の一環として遷音速の高迎角流れ を対象とし,数値解析によるバフェットの再現を目 的としてスーパークリティカル翼型の遷音速バフェ ット解析を行う.解析対象として実験および計算デ ータのあるスーパークリティカル翼型のOAT15A翼 型を採用する^{[4][5]}.解析手法にはZonal DES^[5]を採用す る.

2. 数值解析手法

2.1 計算格子

計算格子にはC型の構造格子を用いた.格子の概要 図をFig.1に示す.外部境界は翼表面からコード長cの 80倍の距離に設けており,スパン方向はコード長cの 0.26倍に取っている.

壁面第1層目の格子間隔はy⁺が1程度になるように 8×10⁻⁶cとした.格子点数は周方向,半径方向およ びスパン方向に501×161×101点とし,総格子点数は 約800万点となった.衝撃波波面の移動を精度良く捉 えるために翼上面側に格子点数の配分を大きくして ある.

2.2 流体解析ソルバ

流体解析ソルバにはJAXAが開発を行っている圧縮性流体解析ソルバのFaSTAR^[6]を用いる.本研究に用いる主な手法をTable 1に示す.

Table 1 解析手法

支配方程式	3次元圧縮性NS方程式
離散化手法	セル中心有限体積法
非粘性流束	SLAU ^[7]
勾配評価	GLSQ
勾配制限関数	Hishida
空間精度	2次精度
時間積分法	LU-SGS
乱流モデル	SA-DES ^[8]

時間積分には三点後退差分とLU-SGS陰解法を組み 合わせた疑似時間進行を行う.

非定常流体解析のため, RANS/LESのハイブリッド 手法を採用し,本研究ではZonal-DES^[5]を用いる. RANS/LESハイブリッド手法であるDES, DDESおよ びIDDESでは, RANS領域の厚みは長さスケールや渦 粘性の大きさから自動的に決定される.一方Zonal DESにおいては, RANSで解く領域を壁面距離で陽に 指定する必要がある.本研究ではDeckらの論文に倣 い, RANSから得られた定常場における付着衝撃波根 元の境界層厚さを採用する.

2.3 解析条件

解析条件をTable 2にまとめる.これらのパラメー タはDeckらの論文に準拠している^[5].

Table 2	解析条件
---------	------

主流マッハ数	0.73
迎角	3.5 deg.
レイノルズ数	3.0×10^{6}
時間刻み幅	0.0005
内部反復回数	4

これらの条件を基準として,時間積分の内部反復回数,RANS領域の厚みおよび計算領域の大きさの影響を調査する.

RANS領域の厚みに関しては,事前の検討解析の結果,境界層厚さは8.892×10⁻³cとなった.以降ではこの境界層厚さを基準厚み l_0 とする.

スペクトル解析にはBurgの最大エントロピー法を 用い, 次数を1400, データ数は25000で評価を行う.

3. 解析結果

3.1 内部反復回数の影響

時間積分における内部反復回数の影響を調査する ため、内部反復回数4回および100回の解析を行い、 比較を行った. RANS領域の厚みは基準厚みとした.

スパン中心断面における翼表面上の時間平均Cp分 布および変動圧力RMS分布をそれぞれFig.2, Fig.3 に示す.時間平均Cp分布に関してはほぼ一致した結 果となっている.変動圧力RMS分布に関しては、衝 撃波の変動位置の中心は一致しているが、大きさに 若干の差が見られる.スパン中心断面におけるコー ド方向の各位置での変動圧力に対するスペクトル解 析を行った結果をFig.4に示す.Fig.4よりピーク周波 数位置,SPL最大値およびスペクトル波形に大きな差 は見られず、内部反復回数のスペクトルに対する影 響は本解析においては小さいものとみなせる.

3. 2 RANS領域の厚みの影響

内部反復回数を4回に固定し,RANS領域の厚みを 変えて影響を調査した.採用する厚みは基準厚み*l*₀の 0.5倍,1.0倍,1.5倍である.

Fig. 5にスパン中心断面における時間平均Cp分布 を示す.厚みが小さくなるほど衝撃波位置が上流側 に移動している.Fig.6,Fig.7にスパン中心断面にお ける変動圧力RMS分布および翼表面上面側の変動圧 力RMSをそれぞれ示す.厚みが小さくなるほど衝撃 波変動中心の位置が上流側に移動している.スパン 中心断面におけるコード方向の各位置での変動圧力 に対するスペクトル解析を行った結果をFig.8に示す. RANS領域の厚みが大きくなるほど特徴的なピーク が表れていることが分かる.

3.3 計算領域の影響

計算領域の幅の影響を調査するため、スパン方向 に倍の計算領域を取った格子を用いて解析を行った。 内部反復回数は4回, RANS領域の厚みは基準厚み*l*₀の 1.5倍を採用した。

スパン中心断面上での時間平均Cp分布をFig.9示 す.計算領域の幅による違いは殆ど見られず,両者 はほぼ一致した.スパン中心断面における変動圧力 RMS分布および翼表面上面側の変動圧力RMSをそれ ぞれFig.10, Fig.11に示す.図より衝撃波の変動中心 の位置には殆ど差が見られないことが判った.スパ ン中心断面におけるコード方向の各位置での変動圧 力に対するスペクトル解析を行った結果をFig.12に 示す.ピークに若干のずれは有るが,概ね両者が一 致し,計算領域のスペクトルに対する影響は本解析 においては小さいものとみなせる.

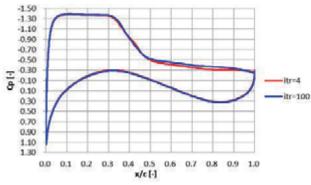
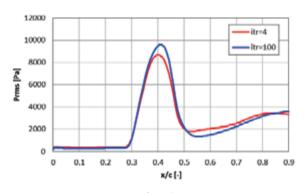
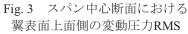
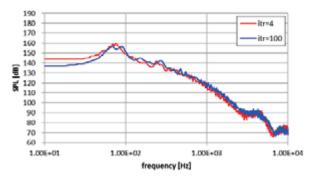





Fig.2 スパン中心断面における時間平均Cp分布

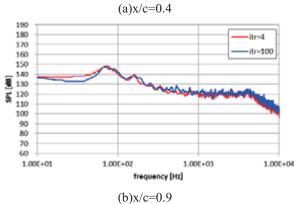
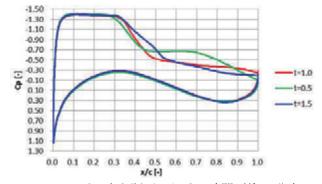


Fig. 4 スパン中心断面における 翼上面変動圧力に対するスペクトル解析



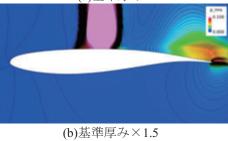
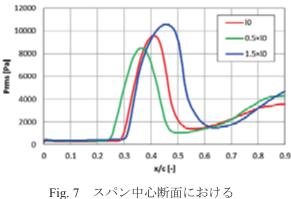


Fig.5 スパン中心断面における時間平均Cp分布



(a)基準厚み

(c)基準厚み×0.5Fig. 6 スパン中心断面における変動圧力RMS分布

翼表面上面側の変動圧力RMS

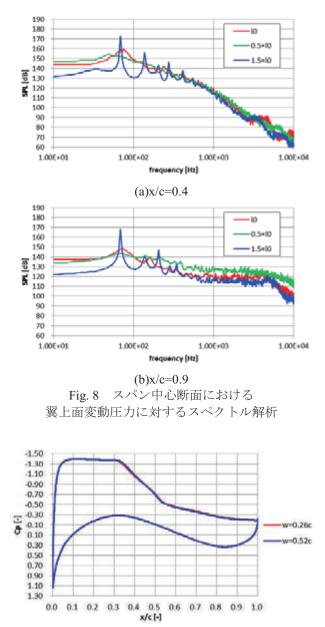
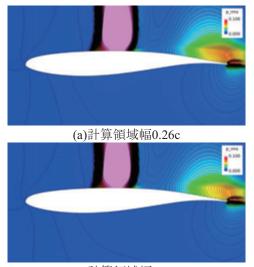
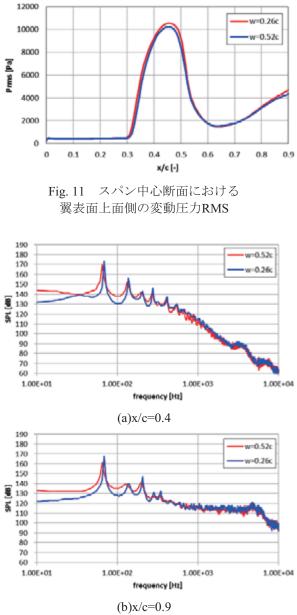




Fig.9 スパン中心断面における時間平均Cp分布

(b)計算領域幅0.52c Fig. 10 スパン中心断面における変動圧力RMS分布

(6) パー-0.9 Fig. 12 スパン中心断面における 翼上面変動圧力に対するスペクトル解析

3. 4 先行研究との比較

Deckらによる先行研究^[5]との比較を行い,計算結果 の妥当性を検証した.比較には内部反復回数4回,ス パン幅0.26c,基準厚み*l*₀×1.5の計算結果を用いた. 参考のため,同じ解析条件のもとに得られたIDDES の結果もプロットした.

Fig. 13はスパン中心断面における時間平均Cp分布の比較図である.スパン中心断面上における変動圧力RMS分布および翼上面側の変動圧力RMSをそれぞれFig. 14, Fig. 15に示す.これらの結果より,Zonal DESの結果は実験およびDeckらの結果に近いものとなっているが,IDDESの結果は衝撃波変動中心が上流側へと移動していることが分かる.

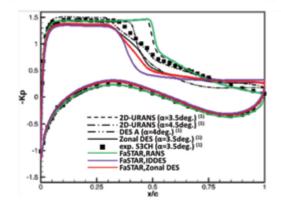
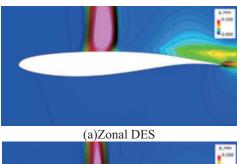



Fig. 13 スパン中心断面における時間平均Cp分布

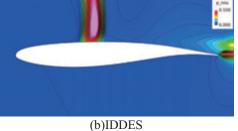
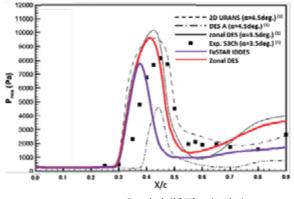
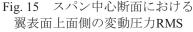
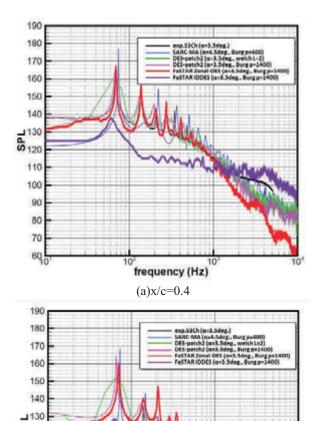





Fig. 14 スパン中心断面における変動圧力RMS分布

スパン中心断面におけるコード方向の各位置での変 動圧力に対するスペクトル解析を行った結果をFig. 16に示す. Zonal DESの結果は実験およびDeckらの結 果とピーク周波数位置やスペクトル波形も良く一致 している.一方, IDDESではピーク周波数がずれて おり,かつ全体的なSPLのレベルも低くなっており, 実験およびDeckらの結果と乖離が大きい.

(b)x/c=0.9Fig. 16 スパン中心断面における翼上面変動圧力に対するスペクトル解析

frequency (Hz)

4. 考察

70

60

IDDESとZonal-DESを比較した結果, IDDESでは Zonal-DESに比べて衝撃波とその変動位置が上流側 に移動していることが分かった.この理由について 考察する.衝撃波根本位置におけるIDDESとZonal DESのRANS領域の高さを比較した図をFig. 17に示す. 図から明らかなように,衝撃波の根本付近において, IDDESにおけるRANS領域はZonal DESにおける RANS領域に比べて小さくなっている.そのため IDDESでは衝撃波が形成されるまでに十分に乱流境 界層が発達せずLESに切り替わってしまい,結果的に 衝撃波が前方へ移動したと考えられる.Zonal DESに おいてRANS領域の厚みを基準厚み*l*₀×0.5にした場 合も同様な理由で衝撃波および衝撃波変動中心が上 流側に移動したと考えられる.

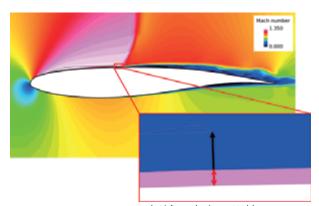


Fig. 17 RANS領域の高さの比較 (赤矢印: IDDESのRANS領域, 黒矢印: Zonal DESのRANS領域)

5. まとめ

本研究では航空機の非定常現象解析に対する信頼 性向上に向けた研究の一環として遷音速の高迎角流 れを対象とし,バフェットを数値計算で再現するこ とを目的としてスーパークリティカル翼型である OAT15A翼型に対してZonal DESによる解析を行い, 実験, Deckらの結果およびIDDESとの比較を行った. また, Zonal DESにおける時間積分の内部反復回数, RANS厚み、計算領域の大きさの影響の調査を行っ た. その結果, 内部反復回数および計算領域の大き さの影響はスペクトルで見ても大きくないことが 分かった.一方, Zonal DESにおけるRANS領域の厚 みの影響は非常に大きく,スペクトルにも大きな差 が表れた. 今回の解析では, 基準厚みlo×1.5のケー スが実験およびDeckらの結果と良好に一致する結 果となった. OAT15Aの遷音速バフェット解析にお いては、衝撃波根本の境界層厚さをRANSで解像す ることが現象を再現するためのキーポイントであ ると言える. IDDESでも衝撃波根本の境界層厚さま でをRANS領域と判定するブレンディング関数を用 いればZonal DESと同様の結果が得られると考えら れる.

本解析で2次元翼を用いたため、RANS領域の厚み に衝撃波根本の境界層厚さを指定すれば良かった が、後退角を持つような3次元翼の解析の際に、 RANS領域の厚みをどのように設定するかがZonal DESの課題であると言える.

参考文献

- Levy D. W., et al., "Summary of Data from the fifth AIAA CFD Drag Prediction Workshop," AIAA 2013-0046, 2013.
- Tinoco, E. N., et al., "Progress toward CFD for Full Flight Envelope," *Aeronaut. J.*, Vol. 109, 2005, pp. 451-460.
- [3] Abbas-Bayoumi A., et al., "An Industrial View on Numerical Simulation for Aircraft Aerodynamic Design," J. Math. Ind., 1, 2011.
- [4] L. Jacquin, P. Molton, S. Deck, B. Maury and D. Soulevant, ","AIAA paper 2005-4902, 2005
- [5] S. Deck, "Numerical Simulation of Transonic Buffet over a Supercritical Airfoil," *AIAA Journal*, Vol.43, No.7, 2005
- [6] Hashimoto et al., "Toward the Fastest Unstructured CFD Code 'FaSTAR'," AIAA 2012-1075, 2012.
- Shima, E., et al., Parameter-Free Simple
 Low-Dissipation AUSM-Family Scheme for All
 Speeds, AIAA J., 49(8), 2011, pp.1693-1709.
- [8] Spalart, P. R., "Detached-Eddy Simulation," *Annu. Rev. Fluid Mech.*, Vol. 41, 2009, pp. 181-202.