FIEMIZERABRERN T v v kv v niax s

High Enthalpy Air Flow Computations with
a Sphere and a Blunted Cone Models

Igor MEN'SHOV and Yoshiaki NAKAMURA

Dep. of Aerospace Engineering, Nagoya University

ABSTRACT

A computational fluid dynamics (CFD) technique is employed to study hypersonic high enthalpy air flow around
blunt bodies at a range of enthalpies relevant to suborbital flight speeds of aeroassisted orbital transfer vehicles
(ASTVs). The method uses the two-temperature model of Park for the description of thermo-chemical
nonequilibrium processes in high temperature air and solves the full Navier-Stokes equations for multicomponent
reacting gas mixture in finite volume formulation on a grid of arbitrary structure. The calculations performed in
this work simulate in detail the experiments carried out recently at the KHI (Japan), and at the DLR (Germany),
where heat flux distribution over a sphere and a capsule-like:blunt cone model was measured at several freestream
conditions related to the range of enthalpies mentioned above. The main emphasis in this paper is given to
comparison between numerical and experimental results in order to verify adequacy of data in terms of heat flux
distributions predicted by the CFD technique for suborbital ASTV flight range.

1. Introduction

The assessment of heating load during re-entry has
always been one of key points in the design of ASTVs.
This problem has been extensively investigated initially
by both experimental and analytical methods for the
purpose of estimating the convective heat transfer rates
at the stagnation point (e.g. Refs.1, and 2). However,
all these experiments and theoretical considerations
were performed at the range too far from flight
situations that may be encountered by ASTVs, and
where nonequilibrium phenomena are not essential and
the flow can be considered on the assumption of
thermo-chemical equilibrium.

The development of experimental base makes now
possible to realize high enthalpy flow experiments
through a range of enthalpies: 2.5 MJ/kg to 45 MJ/kg,
equivalent to velocities: 2 km/s to 10 km/s, which
covers re-entry flight speeds of the ASTV (e.g. Refs.3,
and 4), and where nonequilibrium effects should play a
considerable role. The results derived from these
experiments are of crucial importance for the
justification of existing CFD's models for flows in
chemical and thermal nonequilibrium mainly in the
question that to what extent these models can predict
close to real values such basic thermo- and
aerodynamic characteristics as forces, moments, and
heat flux rates.

The two-temperature model of Park (Ref.5) seems at
present to be a most widely used model in the CFD for
the simulation of high enthalpy nonequilibrium air
flows. In this model, two assumptions are made to
describe species' energy distributions. The first is that
the translational mode is in equilibium with the
rotational mode and the distribution of energies in
these two modes are described by one translational-
rotational temperature for all heavy particle species. In
the second one, another temperature (vibrational-
electronic) is introduced to characterize the vibrational
energy of molecules, translational energy of electrons,
and electronic excitation energy of atoms and
molecules.

Supported by many experimental data, a
justification for the two-temperature model is based on
the facts that (a) the energy transfer between the
translational and rotational modes, and between the
translational mode of free electrons and the vibrational
mode of molecular nitrogen are very fast, and (b) the
low-level electronic states of heavy particles become
equilibrium very quickly with the ground electronic
state at the electronic temperature.

In Ref. 6, the effects of thermochemical
nonequilibrium on forces and moments at hypersonic
flight speeds were studied by using Park's model, and a
10% change in lift and drag and a 20% change in
pitching moment for the airfoil caused by the
nonequilibrium  phenomena were numerically
predicted. In this paper, we make an attempt to apply
the two-temperature model in the prediction of heat
characteristics by numerically simulating the
experiments carried recently out at the DLR, Germany
(Ref.3), and at the KHI, Japan (Ref. 4), where
convective heat flux distribution over model' surface
was measured at different freestream conditions with
enthalpies ranging from 20 MJ/kg to 40 MJ/kg.

Towards this end, a numerical code for obtaining
steady-state solutions to the equations of 2D fluid
motion coupled with the finite-rate chemistry in
thermal and chemical nonequilibrium air has been
developed in the Fluid Dynamics Laboratory,
Department of Aerospace Engineering, Nagoya
University. The code basically described in Ref.7 solves
the Euler or Navier-Stokes equations for
multicomponent reacting gas flow in finite-volume
formulation on a grid of arbitrary structure. Inviscid
convective terms are discretized with a modification of
the Advection Upstream Splitting Method (AUSM)
(Ref. 8). Viscous fluxes are approximated with a
standard centered scheme. Time integration is
performed in two-step implicit manner, and an
approximate linearization is made for inviscid and
viscous fluxes and exact that is used for the thermo-
chemical sources. The approximate linearization of the
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inviscid fluxes is performed based on the method
proposed in Ref. 9, which leads to an implicit operator
in diagonal form after applying the Lower Upper
Symmetric Gauss-Siedel (LU-SGS) factorization (Ref.
9) in the case of strucured grid. We proved that this
remarkable property is conserved if the LU-SGS
factorization is applied to unstructured grid, and hence
independently on the grid considered, in order to invert
the implicit operator in this way only the Jacobian
matrix of the thermochemical source needs to be
inverted in each computational cell.

2. Physical model and goveming equations

With the exception of ionization phenomena that are
neglected in this paper, we closely follow the two-
temperature model of Park (Ref.10). The five neutral
species: N, O, NO, N,, O, are considered and 17
most important chemical reactions among these species
are employed. The reaction rate coefficients are
controlled by the temperature (rate-controlling
temperature), which is a geometrically averaged
temperature between the translational-rotational and
vibrational-electronic temperatures. The rate parameters
are cited from Ref. 11.

Transport coefficients are evaluated by extending
Yos's formula based on the first Chapman-Enskog
approximation to multitemperature gas mixture
(Ref.12). To simplify evaluation of the collision
integrals in Yos's formula, the formulas of Chapman
and Cowling for species viscosity and binary-diffusion
coefficient along with the semiempirical formula of
Wilke for mixture viscosity (Ref.13) are invoked.
Comparing these formulas with the corresponding Yos's
ones, compact and easily computed expressions can be
obtained for the collision integrals by which the
transport coefficients are expressed.

The relaxation of vibrational-electronic excitation
energy due to collisions with heavy particles is modeled
according to the theory of Landau and Teller (Ref.14).
The relaxation time employed in this theory is computed
as the sum of the empirical correlations of Millikan and
White and high temperature correction proposed by
Park (Ref. 15).

The system of governing equations with the physical
model described above can be expressed as follows:

9,9+9,f, =3,g, +H ()
where q is the solution vector, the components of
which are the species densities, 3 momentum
components, the vibrational-electronic excitation
energy, and the total energy, respectively. The vectors
f, and g, (k=1,2,3) are inviscid and viscous flux
vectors, respectively, and H is the thermochemical
source. The summation on repeating index is assumed
in eq.(1) and hereafter.

3. Numerical algorithm

We use the finite volume method with two-step
implicit time integration to obtain spatial and time
discretizations of the governing equations (1) . Having

been given a spatial decomposition, which is structured
or unstructered, of the computational domain by a set of
control volumes (CV), the resulting system of discrete
equations can be written as:

®;8q, +A1Ts, 0" =Al§scg:“ +0,MH",  (2)

€, =8l » i=1,..,N

where q, is the solution vector averaged on the CV, o,
is the CV volume, s_ is the area of the CV interface,
n=(n,n,,n,) is the exterior normal to the CV

interface. Here the superscript denotes the time level, ¢
denotes the CV interface, and A denotes the increment
in time. The summation in eq. (2) is performed for all
faces bordering the CV under consideration.

« The inviscid numerical flux f_ at the interface G is

expressed in terms of the local one-dimensional flux F
as follows:

f,=T,F, F=£(Q), Q=T,q 3)
where T is the transforming matrix defined by the

coordinates of the unit vectors of the local orthonormal
basis at the interface (Ref.16).

To solve the system of discrete equations (2) we
linearize the thermochemical source vector and
approximate the inviscid local flux and the viscous flux
in the following way (Refs.7, and 17):

F*™' =F'+A[AQ, +A_,AQ,,

g." =g, +D,(Aq,, -Aq,)
Here, A* is a positive matrix, and A~ is a negative
matrix such that their sum equals to the Jacobian matrix
of the flux F with respect to the vector Q:

fo =MioNes

4)

A*+A =A=0F/3Q (5)

The coefficient D in eq. (4) is taken in the form:
D, =pg /h, (6)
Pg, = maxd,,....d,,v,a,a )

where d, (k=1 to 5) are diffusion coefficients, v is the
viscous diffusivity, a, o, are the thermal diffusivity for
translational-rotational and vibrational-electronic mode,
respectively, and h is the distance between i- and
o(i)-node points projected on the normal to the
interface, h, =Ine(x; —=x_. ).

By substituting eq. (4) in eq. (2), we obtain the
system of linear equations with respect to the increment
of the solution vector:

a +2“: —AtS;)Aq, +Zu;(i)ch(i) =R, (7
[} (]

where S, is the Jacobian matrix of the thermochemical
source vector H,. R, is the residual defined as

a At n | ]
R, =AH +—Y s (g, - 1)) (8)
(1)i o

and the matrices p* are defined at each CV interface
as follows:
4

At ;
p*=—s_(TA*T, £D_1) 9)
mi
The system of equations (7) has a large block band
matrix, which requires many operations for its
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inversion. To reduce the computational cost, which is
usually encountered in direct solvers, the matrix in the
left hand side of eq. (7) is often approximately
factorized as product of a number of easily invertible
factors. One of such factorizations referred to as the
Lower-Upper Symmetric Gauss-Siedel (LU-SGS)
method was proposed in Ref. 9 for strucured spatial
discretizations. We employ this method and extend it to
unstructured grids to solve eq. (7).

The generalization of the LU-SGS to unstructured
grids is obtained in the following way (see Ref.16).
First, the second term in the left hand side of eq. (7) is
represented by the sum of two terms:

;u;ﬁ)Aqom =2L(Aq)+zr (Aq) (10)

where

2, (8Q)= D HowAg,, an

c:6(1)<i
ZL‘ (Aq)= Z“’;(:)ch(i)
o:0(1)>i
Then, the equation (7) is replaced by the two coupled
equations

(I+ Y 1} -AS)Aq; =-Z, (Aq")+R,

I+ Y 1)Aq, ==, (Aq)+(I+ Y pu')Aq]

which are used for calculating intermediate values of
the increment, Aq;, and its final values, Aq,,
respectively.

The system (12.1) has a lower triangular matrix,
while that of (12.2) is a upper triangular with elements
of block (Nsp+5)x(Nsp+5) matrices, where Nsp is
the number of species. It allows us to efficiently solve
egs. (12.1) and (12.2) by implementing forward
(i=1,...,N) and backward (i=N,...,1) relaxation sweeps,
which involve the inversion of the block
{Nsp+5)x(Nsp+5) matrices on the diagonal only.
Thus, the final increment Aq; can be obtained, which
then used to update the solution vector q;.

The method described above needs to be comleted
by setting up the formulas for the approximation of
inviscid and viscous fluxes at the lower time level, and
by defining concretely the Jacobian matrix splitted in
eq. (5).

The discretization of the viscous terms requires an
approximation to the derivatives of the solution vector
at each face of the CV. In order to evaluate the
derivatives we employ the following two-step procedure.
First, the solution vector is interpolated from cell
centers to cell vertices. Then, the derivatives are
calculated by applying the Gauss formula to a dual cell
coupled with the face.

To approximate the inviscid flux, a modification to
the Advection Upstream Splitting Method (AUSM)
proposed in Ref. 8 is used. A key issue of the AUSM is
to divide the flux vector F into two terms: convective
and pressure terms, and approximate them separately.
The main achievement of this approach is that a
stationary contact discontinuity can be captured without
excess numerical dissipation, and consequently, shear

(12.1)

(12.2)

layers can be calculated quite accurately even with a
first order approximation.
Introducing the vector @ with the components

®, =Q,, k#Nsp+5 (13)
d)rs'qu»s = qu»s +p
the flux vector F can be expressed as
F=u®+P (14)

where u is the projection of the velocity vector onto the

exterior normal to the interface, and the pressure term P

has the following components
P, =0, k#Nsp+l

PNspH =P
Here p denotes the pressure.

« The first term on the right hand side of eq. (14) can
be treated as a passive advection of the vector ® with
the velocity u, and approximated in upwind fashion
according to a suitable defined wvelocity u
Approximation of the pressure term is in fact to define
an appropriate value for the pressure at the interface p .
In this way, giving values to interface pressure and
velocity, one can obtain a two-parametric approximation
to the inviscid flux F, which can be written in the
following form:

F=0.5[u, (9, + @, )-1u, (D, )-D)]+P,  (16)

Hence, a specific approximation to the flux F is
uniquely defined by an appropriate interface velocity u
and an interface pressure p . In the AUSM scheme,

these values are defined with Van Leer's splitting
procedure (Ref.18) as

(15)

G°

Uy =u; +ug, )
Po =P; +Pog)
where
. [#0.25a(M 1), ifIMIL]
u® = (18)
0.5a(MzxIMI), otherwise
. [0.25p(M£1)’(2FM), ifIMI<I
0.5p(MzIMI)/M, otherwise

Here a is the sound velocity, and M=w/a is the Mach
number.

The definition of the inviscid flux as egs. (16) to
(18) is computationaly very simple, and requires
O(Nsp+5) operations per grid point. At the same time,
numerous numerical experiments show that it provides
just the same accuracy in capturing discontinuities as
Godunov's type schemes based on the solution of the
local Riemann problem. In addition to these positive
properties, the method has the disadvantage that it may
produce slight numerical overshoots just behind shock
waves, essentialy precluding the possibility of an
accurate high-order extension in the vicinity of shock
waves.

In Ref.19, the reason of these overshoots is supposed
to be due to the fact that the mass flux in (16) does not
directly take into account of the density behind the
shock wave. Several attempts have been performed to
eliminate these overshoots (Refs.19, and 20), based
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mostly on the adding of blending elements of more
diffusive schemes into the AUSM formulation. In this
paper, we propose a very simple modification to the
AUSM, which alleviates the monotonicity problems.

In authors’ opinion, the nonmonotonicity at shocks
might be caused by the definition of the interface
velocity in the form of Van Leer's splitting. In fact,
because the first term in eq. (16) is treated as a passive
advection of the vector @, the propagation of
disturbances in this process is defined by one eigenvalue
of the Jacobian matrix A, which is equal to the normal
velocity u, while the pressure disturbance propagation is
in accordance with two acoustic eigenvalues. Therefore,
the evaluation of p, in a splitting manner is justified,

but as for u, , an interpolation between u, and u

seems to be a more plausible approach.

To this end, we substitute the splitting form
definition of wu_ in (17), and (18) by the symmetric
averaging:

u, =0.5(u; +u_,) (19)

It was observed in numerous numerical experiments
that due to this modification the overshoots can be
eliminated, and the method produce monotonic solution
behind shock waves. As an example, Figure 1 illustrates
the density contours for hypersonic flow around a
cylinder at the freestream Mach number of 20 computed
assuming non-reacting inviscid perfect gas by the
AUSM with formulas (17), and (18) (Fig.1a), and (19)
(Fig.1b) for the interface velocity u, on a coarse grid of

15x40 meshes.

Fig.1 Density contours: a) splitting, b) averaging velocity

The system of discrete equations (12.1), and (12.2) can
be written in the standart LU operator form as follows:

LD'UAq=R (21)
where
L=D+X, -AtS, U=D+X, (22)

D= 6+(1+%;Do)l. > =%Z‘SGT;'A'T,

If the thermochemical nonegilibrium process are not
considered (S=0), then the solution to eq. (21) requires
inversion of the operator D only. A merit of the LU-SGS
approximate factorization is found when it is used
coupled with the Jacobian matrix splitting proposed in
Ref. 22:

A*=0.5(Atp,) (23)
If a structured grid is used and a transformation to
curvilinear coordinates followed by the LU-SGS
factorization with the splitting (23) is performed, the
operator D in eq. (21) is reduced to a diagonal form,
and any matrix inversion is excluded from the
algorithm (Ref.9).

It appears that this remarkable property is kept even
in a general approach described above. This fact comes
from the following property of the Jacobian matrix A,
which is formulated for simliticity for a non-reacting
one-component gas model in the following
Lemma. Let S be a closed surface in R’,
n=(n,n,,n;), k=(k ,k,,k,;), I=(1,1,,1,) are
uhit vectors of the orthonormal basis at S, where n is the
exterior normal, and k, 1 are tangential unit vectors to S.
T, is the transforming matrix associated with the basis:
1 0 0 O

0
0 n, n, n, O
T, =0 k, k, k, 0
o1 1, 1, 0
0 0 0 0 1

q is the conservative solution vector, Q=T,q, and

F=F(Q) is the local one-dimensinal inviscid flux
associated with the basis.

Then, for any constant vector q the Jacobian matrix
A=0dF/0Q satisfies the following identity:

[T ATgs=0

(24)

(25)

Proof. The identity (25) comes from the conservative
property of the inviscid flux:

menmdsso (26)
From eq. (3) we can rewrite this as
[T Fas=0 27

As F is the homogeneous function of degree one in Q,
one can substitute F = AQ = AT, q and obtain

[1,'AT,qds=0 (28)

from which (25) follows immediately.
It follows from the lemma that the matrix D in (22)
with the splitting (23) reduces to the diagonal matrix

= At
D=0.5-5-§p,\1 (29)

for an arbitrary unstructured spatial discretization, and
any matrix inversion is not required to solve the discrete
equation (21) if S=0. For reacting gas flow, the Jacobian
matrix of thermochemical source, S, needs to be
inverted at each computational cell only.

3. Sphere model calculations

Calculations are performed for the flow around a
sphere to simulate the experiments carried out at the
K.H.I. (Ref.4). The radius of the sphere I, is 2cm. In

these experiments, the heat transfer rate along the

Thic dociiment i nrovided hv TAXA



FIOHIEBAEERNY Y VR YU LRE

sphere surface was measured for three cases of
freestream conditions listed in Table I.

Table |
Case A B C
V..km/s | 5939 6.180 5.151
p..kg/m’ | 0.00156 0.0034 0.0058
T_,K 705 934 708
m.frac., N | g 0 0
m.frac., O | 0.1708 0.1468 0.0406
m.frac., NO | 0.0317 0.0429 0.0688
m.frac., N, | 0.762 0.744 0.733
m.frac., O, | 0.0348 0.0659 0.1578
M_ 10.19 9.33 9.43
Re, 33535.6 64148.3 120641

A nonuniform grid consisting of 60 cells in the radial
direction and 30 (60 in the case C) cells in the direction
along the sphere surface is clustered in the boundary
layer and characterized by a minimum cell size at the
sphere wall, h_,, which is taken such that the cell
Reynolds number at the wall varies from 1 to 3
depending on the calculations.

The total heat flux q, is calculated by the
summation of 3 contribution parts: translational
temperature mode flux, vibrational temperature mode
flux, and diffusion mode flux:

ar

oT 3 aY
G =kgrtk, gE+pdhD, 5 (30)
=1

16

_case Aff.cat) l

=1
144+ —e—trans.temp. 4 ‘\
Y 12-«—1 ——vibr.temp. /_Z
D 10.] 1A |
S o Wialp® *~\\ \
=1 } -
B s i" 1
2 L7 \_\
E 7] Y \
e, \
] )
0 v v v - v v
000 002 004 006 008 010 012
r/r
05258 A(f.cat) 2
r—vr—v—v
& "/" l
cos o ——N
3 b _._O B
'% R ——NO
[ —_—
So4 :Z |
§ 4
EO.Z » (L1 = & . —o S
J ~.
.
0.0 ...l A—t—d1o-0-0 e T
—— . v v

0.00 0.02 0.04 0.06 0.08 0.10
r/rsp
Fig.2 Case A: mass fraction and temperature along stagnation ne

Both fully catalytic and non-catalytic boundary
conditions are imposed at the wall, the temperature of
which is assumed to be 300K for all cases.
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Fig.4 Case C: temperatura and mass fraction along stagnation ne

Figures 2, 3, and 4 illustrate distributions of the
translational/rotational and  vibrational/electronic
temperatures, and mass fractions of species along the
stagnation streamline for the case A, B, and C,
respectively, computed under the assumption that the
wall surface is fully catalytic to chemical reactions. The
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distance is calculated from the stagnation point and
normalized with the radius of the sphere.

The translational/rotational temperature grows up
abruptly at the shock wave, reaching a maximum value
of approximately 15000K for the case A, 15600K for
the case B, and 11100K for the case C. The
vibrational/electronic mode does not change across the
shock. As a result, a stretched zone is formed behind the
shock where translational/rotational and
vibrationalelectronic modes are in non-equilibrium.
Due to the relaxation process between these modes the
vibrational/electronic temperature increases gradually,
achieving its maximum value at the end of the
relaxation process. This value is about 9200K for the
cases A and B, and 7000K for the case C.

High temperature behind the shock wave initiates
dissociation processes, which dissociate diatomic
species (N,,0,,NO) and produce atomic species (N,
0). This can be seen in mass fraction distributions of
species (Figs.2, 3, and 4). Comparison of computed
mass fractions with equilibrium composition of air
under conditions obtained in the calculations show that
the flow in the shock layer is mostly nonequilibrium.
The equilibrium state is achieved near the wall only,
where the species mass fractions tend to their freestream
values due to fully catalytic boundary conditions.

10 —
o8 ’ <~ ——cax A
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16
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Fig.5 Pressure over sphere, f.cat. wall

The pressure distribution over the sphere surface is
shown in Fig.5 for absolute values (lower graph) and
normalized values (upper graph) for the case of fully
catalytic case. One can see that the pressure normalized
with the freestream density and velocity are in fact
described by a unique curve for all cases. That is, this
means a good correlation with the Newton-Busemann
asymptotic theory.

The calculations with non-catalytic boundary
conditions on the wall show no essential distinctions in
comparison with fully catalytic wall cases in all flow
parameters except for species mass fractions. Their
distributions along the stagnation streamline are
presented in Fig.6 for the cases A, B, and C.

The heat flux at the sphere surface with its
contribution  parts  in translational/rotational,
vibrational/electronic, and diffusion modes are shown in
Figs. 7, 8, and 9 for the cases A, B, and C, respectively,
for both fully catalytic and non-catalytic wall

calculations. Here, we also give the experimental data

obtained by the KHI (Ref.4).
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Fig.7 Case A: heat transfer rate at the wall
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Fig.8 Case B: heat transfer rate at the wall
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Fig.9 Case C: heat transfer rate at the wall

Main conclusions, which can be derived from the
analysis of heat flux data, are made in the following.
The contribution due to the convective flux in the

vibrational/electronic mode is found to be considerably
less that that in the translational/rotational and diffusion
mode, and hence, the estimation of the corresponding
dissipative coefficients seems to be of crucial
importance in the prediction of heating characteristics.
The heat fluxes obtained in calculations under non-
catalytic wall boundary conditions are much deviated
from the experimental data than those with fully
catalytic wall surfaces. The latter differs from the
experimental data within 20% for the cases A, and C
and 40% for the case B. Especially for the case B, where
even a non-monotonic profile of the heat flux over the
sphere surface was observed (Fig.8), the maximum
distinction in numerical and experimental data lies in a
middie region, which corresponds to the angle between
20 and 40 degree. The reason for this is not clear now,
but a hypothesis can be put forward that the transition
to turbulent flow might happen in the boundary layer
around here, leading to an increase of heat flux.

4. Blunt cone model calculations

A 140° blunt cone model with a cylindrical
afterbody part (sting) utilized in many high enthalpy
tunnel experiments (Refs.3, 21) is employed in the
calculations described herein. The model consists of a)
the forebody part I-11 (Fig.10) in the form of a 140°
spherically blunted cone with a base radius
R, of 7.62cm, and a nose radius R, of 3.8lcm, b)
the back side of the forebody (the afterbody) II-IIT , and
c¢) the cylindrical support (the sting) III-IV with a
length L =22.1cm and a diameter D=1.91cm.
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Fig.10 Geometry of blunt cone model

The forebody and the afterbody are smoothly joined
by a circumference with a radius R, of 0.382cm. The
sting is connected with the afterbody through a junction
radius R; of 0.635cm.

The calculations have been performed for the
freestream conditions listed below:

pressure: p. = 5785.2dyn/cm’
density: p_ =4.085+10°g/cm’
velocity: v_ =4, 5395¢10° cm/s
temperature: T_ =489.89K

Mach number: M, =10.19

Reynolds number: Re_ =3.79x10°

where the Reynolds number is based on the base
diameter 2R, .
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These parameters correspond to the test No132 in a
series of high enthalpy flow experiments recently
carried out at the HEG of the DLR (Ref.2), where the
heat transfer rate along the blunt cone model was
measured with fast response surface thermocouples on
the forebody and sensitive thin film heat transfer gauges
on the sting. The test No132 was implemented with a
special system designed by NASA for high spatial
resolution of the heat transfer on the model surface,
where the model was instrumented with 113 sensors
mostly located on the sting.

Air in the freestream is considered to consist of
oxygen and nitrogen with the molar concentrations of
0.21 and 0.79, respectively.

The calculations are carried out with a non-uniform
grid greatly clustered in the boundary layer. The grid
consists of 65 cells in the direction away from the body
and 160 cells in the direction along the model surface.
The wall cell Reynolds number defined as
Re_, =ReAh_/R,, where Ah_ is the normal spacing
at the wall, is equal to 2.37 . It is expected that this is
sufficient to achieve grid convergence at least in terms
of heat flux distribution (Ref. 17).

At the wall surface, the vibrational/electronic
temperature is assumed to be equal to the given wall
temperature of 295K. The wall surface is assumed to be
fully catalytic to chemical reactions.

Fig.11 Mach number contours

The Mach number contours are shown in Fig.11
with a contour line increment of 0.2, where sonic lines
are singled out by bold lines. It can be seen that the
flow accelerates at the edge, turning toward the sting,
and then separates from the wall near the edge on the
afterbody. It leads to formation of a recompression
shock and a zone with strong recirculation flow. The
recompression shock has a small angle of about 20°
with the centerline. It does not have a good resolution
due to a coarse grid used in this part of the wake.
Nevertheless the reattachment point and the position of
the shock can be identified. The recirculation zone has a
complicated structure characterized by two closed
supersonic zones located on the sting and on the
afterbody near the separation point.

The flow in this zone is characterized by an extensive
vortex, the center of which is strongly shifted toward
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the separation point as shown in Fig.12 where vorticity
contours are presented.

Fig.12 Vorticity contours

The following discriptions are associated with the
heat transfer q,, and the pressure p,, on the model

surface. The total heat transfer is calculated by the
summation of 3 contribution parts: the translational
temperature mode flux, the vibrational temperature
mode flux, and the diffusion mode heat flux.

1
E v
qv/ Ayt ; \
d | YN °
0.1+ el ~
3 L=t —
] A" L s
0.01 by T~
. F - "
] === --trans temp.mode
—+— vibrtemp.mode fiux
oot et M F e diffusion mode fiux
. total heat flux
® experiment
! )
PPyt
0.1
3 L
0.01 ]
0.001
blunt cone (DLR), f.cat
0.0001 1
0.0000% - — e v
0 2 4 6 8 10

Fig.13 Normalized heat flux and pressure
along the body contours

Figure 13 illustrates normalized heat flux with
each contribution part and pressure along the model
surface. Here, the solid symbols were obtained from the
test No132 in the set of experiments performed at the
HEG of the DLR (Ref.3).
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The data are normalized by the stagnation point heat
flux and pressure, which were found to be
q, =3.64MW/m’ and p, =8.08+10°din/cm’,
respectively. The horizontal axis is the distance along
the model contour S_ (measured from the stagnation
point) normalized by the base radius R .

It can be seen that the numerical data are in good
agreement with the experimental data except for the
values near the edge of the forebody. The experiment
data show a rise of heat flux at the edge up to 90% of
the stagnation point value, while it is 64% in the
calculations. The heat flux on the afterbody (II-1II,
Fig.13) abruptly drops at the edge, and suddenly rises
on the upper part of the afterbody reaching the value of
about 30% of the stagnation point value. This
unexpected effect might be caused by the presence of a
supersonic zone close to upper afterbody (Fig.11), where
gas tends to come to the wall, forming a high intensity
vortex around the separation point (Fig.12).

The numerical model predicts a local heat load peak
on the sting (III-1V, Fig.13) caused by the compression
of the flow in the shear layer with a formation of a
recompression shock in the near wake. However, in
comparison with the experimental data it turns out to be
about 20% less, slightly shifted towards the afterbody,
and spatially stretched. This might be due to a coarse
grid used in this region of the wake, leading to
insufficient accuracy in resolution for the recompression
shock with a reattachment point.

As in the sphere calculations described above, the
contribution due to the convective flux in the
vibrational-electronic temperature mode is found to be
considerably less than that in the translational-rotational
temperature mode and the diffusion mode, which
confirms that estimations of the corresponding
dissipative coefficients seems to be very important in
heat transfer rate predictions.

5. Summary

A numerical model for the calculation of
thermochemical nonequilibrium air flows has been
applied to simulate the experiments with a sphere model
and a blunted cone model carried out by the KHI and
the DLR, respectively. For the calculations with the
blunted cone model, main features as separation of the
flow, recompression shock with a reattachment point,
and a recirculation zone were obtained. It was found
that the recirculation zone is characterized by a vortex
shifted strongly towards the separation point with two
supersonic zones.

Despite  good qualitative  agreement  with
experimental data, the heat transfer obtained with the
numerical model turned out to be underpredicted in
comparison with the experimental data at the middle
part of the sphere (20%-40%) in the sphere model
calculations, and at the edge of the forebody (30% less)
and in the peak value on the sting (20% less) in the
blunted cone model calculations. It was also found that
an abrupt heating rise on the upper part of the afterbody

(blunted cone case) reaches 30% of the stagnation
point value.
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