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High Enthalpy Flow Workshop

Problem II-1 OREX Configuration
Ichiro NAKAMORI* and Yoshiaki NAKAMURA'

Dept. of Aerospace Engineering, Nagoya University

In this computation, an upwind method with MUSCL type extrapolation was applied to nonequilibrium
chemical reacting hypersonic flow around an orbital re-entry experimental (OREX) configuration. The flow
solver employed in this computation is based on Steger and Warming's' flux-vector splitting (FVS), and
classified as a variation of the advection upstream splitting method (AUSM)*. It has been confirmed that
the present scheme has many good characteristics in the ideal gas flow such as monotonicity for shock
wave, robustness for expansion wave, and high resolution for contact discontinuity and shear layer. In order
to extend the present scheme to a chemical reacting flow, we used Park's two temperature model for 5
neutral species(N, O, NO, O2, N2) with 17 chemical reaction, and the finite volume formulation was
employed to discretize the axisymmetric Navier-Stokes equations.

Nomenclature

= speed of sound
internal energy per unit volume
total energy per unit volume
vibrational energy per unit volume
inviscid flux vector
= viscous flux vector
= thermochemical source
= total enthalpy
= pressure
= solution vector
= Cartesian velocity components
= Cartesian coordinates
= eigenvalue
= density
uperscript

= positive and negative flux contributions
Subscript
L = left hand side of the cell interface
R = right hand side of the cell interface
s = species
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Introduction

We computed a hypersonic flow around OREX
configuration under the following assumptions:

free stream velocity: 7450m/s

free stream pressure: 0.169N/m’

*Graduate student
tProfessor, Aerospace Engineering

free stream temperature: 186.9K;
the mass fraction of species in free stream:
N2-79%, 02-21%.

Moreover, we assumed the flow is laminar and
chemically and thermally nonequilibrium. The
wall temperature was fixed at 540K. In order to
take the thermal nonequilibrium into account, we
employed Park's two temperature model, where the
translational-rotational modes have the transla-
tional temperature, while the vibrational mode has
the vibrational temperature. In this study, a 5-
species and 17-chemical reaction model is used:

0,+M&0+0+M, M=N, NO, O, N,, 0,
N, +MeoN+N+M, M=N, NO, O, N,, O,
NO+Me&N+O+M, M=N,NO, O, N,, 0,
O+NO & N+0,,
O+N, &N+NO.

The numerical method is based upon the
modified Flux-Vector Splitting to estimate the cell-
interface inviscid fluxes, and the Lower-Upper
Symmetric Gauss-Siedel (LU-SGS) factorization®’
was utilized for the time integration to efficiently
solve the system equations in A-form.

Governing Equations
A nonequilibrium chemical reacting flow has the

system of governing equations with the physical
model, which is expressed in the following form:
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where
[P ] [ pyy ] [0 ] [0
pu puju; + 8, ;p Tia 0
pv puyu; +6,;p T2 0
pw pusu; + 6, p Tis 0
q=| E |, F=| (E+p)y |.G,=| 1, |.H=|0
A Ay; pDy %{" H,
P Aoy pD, 52 H,
[ €v | el J L Tvd ] _Hv_
1
E=e+—2-p(u,2 +u3 + uz),
and
p=p(p.e.n.....0,) 2)

the solution vector q consists of the total density
p, the momentum components in X, y, and z
directions:pu, pv, pw, the total energy E, the
species density pi, and the vibrational energy ev.
D., X, and H. denote the diffusion coefficients,
the mole fraction, and source terms, respectively.
These equations include the internal energy e,
which can be expressed as the sum of
translational-rotational energy er and vibrational
energy ev, which are given as

er = Zp,e-r'

e = Z Aey,

(3)

4)

Numerical Method

Inviscid flux evaluation

The inviscid flux vector in the x direction of
the Cartesian coordinates is written as

F=[pu, pu’ + p, puv, puw, puH, pu, -, pu, evu]t(S)
where H is the total enthalpy:

‘ H=(e+p)p (6)
We first describe the cell-interface mass flux
formula®’, because other fluxes are constructed
based upon it. We define the cell-interface mass
flux following the FVS formulas for the ideal gas
flow, which is given as
_ T+ 7 - P ¥y Y 7+

(pu)m’,2 -(pL)., +AA )+5_:2.-(_2)"+ +A7 +43 )L

PR{ ~3-41-4+i-
+¥( 27 + A7 +15)
It has been pointed out that FVS schemes"*"
generally produce excessive numerical dissi-
pation for contact discontinuity and shear layer.
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In order to eliminate such dissipation, we
separated pressure contributions from the cell-

interface mass flux, because there

is no

difference of pressure across the contact
discontinuity. Then, we introduced the virtual
speed of sound instead of the local speed of
sound, which is expressed as

where

and

EL =CmK+CL(1-K) 8

ER=CmK+CR(l—K) ( )
_ate

Cm 5 9)

K = min(py. pg )/max(py. pg) (10)

Moreover, the eigenvalues employed in this
formula are defined as the polynomials of Mach
number, which is redefined by using the virtual
speed of sound c.

A = (|

i

3

where

and

B
o and B *

(11a)

&at +B*] if|M|<1

la(in 1+ + 1|) othewise 1)
2

ela* - B*] if|M]<1
-;-E(A-l— 1 +|A-!-l|) othewise (te)
M =§ 12)
at =i-;-(b-!il)2(lf!2¥21t7{+3) (13)
*=-:—(A?il)2(2$!5!) (14)

are defined so as to satisfy the

restriction of the compatible conditions, which
are given as

and

These

at+ro =M (15)
Bt+p =1 (16)
expressions can be extended to

nonequilibrium gas flow on the assumption that
a speed of sound c is calculated from the eigen-
values included in the Jacobian matrices. As a
result, th speed of sound employed in this solver
is equivalent to an appropriate frozen speed of

sound.

Then, the interface momentum flux can be also
expressed by the FVS formula, which is given as

(9“2 + I’)Mp = R, + Fgug
%[(1; - 152 (3 -i;)-’_’i] 1)

CRr

Thic dociiment i nrovided hv TAXA



110 fit

where

=p,i;+6£2(-2i,*+iz* +1%) (18)
To prevent the scheme from having some diffi-
culties at the stagnation point, 4 would be

redefined as

| e |
e a—c(M-i[Ml) if M2 e )
—E(M :te) othewise
where
¢ = 0.2 min(py. Pr) (20)
max(py, pr)

€ is a small empirical value depending on the
pressure gradient. However, this modification
results in dissipative solution for the stationary
contact discontinuity. Then, for the practical use,
density was calculated with the upstream values
as follows:

A=A_‘vi&=q_ iflﬁlse and ui‘vzzo
AL =Pr PR=P iflfllSe and u; .y, <0
A=A.R=MA otherwise 2n

Then, we utilized the advection upstream
splitting method(AUSM)"* for tangential
momentum fluxes, energy flux, species mass
flux, and vibrational energy flux, which are
expressed according to the sign of the cell-
interface mass flux previously obtained. The
fluxes are written as

(puv), o= (pu oyl (v +vg —-;—'(pu mlz| vg -v) (22)
(pv) =3 L (pu), (WL +we)- %kP")..kar‘“L) 23
(puv), ., = 3 (pu), o, (B, + H) = 2w, [ - ) 24
(Pin), .y, =3 (PW), g (e, + e0a) = 300), e — ) 22

A piecewise linear interpolation was used with a
minimum-modulus (minmod) TVD limiter in
such a way that these inviscid fluxes have the
second-order accuracy in space.

Transport Coefficients

In order to evaluate the transport coefficients,
we use Yos's formulas based upon Chapman-
Enskog's first approximation. To simplify the
estimation of the collision integral in Yos's
formulas, we invoke Chapman-Cowling's
formulas for viscosity and diffusion coefficients
with Wilke's empirical formulas. Comparing
these formulas with Yos's one, a compact
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expression is available for the collision integral,
leading to the easily computed expression for the
transport coefficients.

Translational Vibrational Energy Relaxation

In this study, the relaxation model introduced
by Landau and Teller for the vibrational-
electronic excitation energy was employed,
where the relaxation time can be calculated in
Millikan-White's'* empirical correlation with
Park's'® correction at high temperature.

Numerical Results

To verify the calculation method mentioned
above, we computed the flow field around OREX
configuration, whose diameter is 6.8m. Figure 1
shows the grid system of 32x64, where the
minimum value of An is 1x10™ near the wall.
The OREX configuration has the following flight
conditions :

free stream velocity: 7450m/s;
free stream temperature:  186.9K;
free stream pressure: 0.169N/m’;

mass fraction of species in free stream:
N2-79%, 02-21%.

These data were employed at the High Enthalpy
Flow Workshop. In addition, the body surface
temperature was fixed at 540K along with the
assumption of a non-catalytic wall. Steady
solutions were calculated with the residual
reduced by three order of magnitude from the
initial one. Figures 2-6 show pressure,
translational-rotational temperature, and vibra-
tional temperature contours along with the mole
fraction of species, translational-rotational
temperature and vibrational temperature profiles
along the stagnation stream line. The present
scheme can capture a strong shock wave with no
oscillation in the fields of pressure, translational-
rotational temperature, vibrational temperature,
and mole fraction of species. It should be noted
that the present scheme does not need the special
procedure to protect the numerical oscillation of
the bow shock wave near the stagnation stream
line, called the carbuncle phenomenon®.

Figures 7 and 8 show pressure and heat flux
distributions along the body surface. The heat
flux at the stagnation was 41.6kW/m’. These
value must be verified by comparing with the
experimental data, because it is difficult to
estimate the heat flux distribution on the body
surface.
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Conclusion

In the present study, an improved Flux-Vector
Splitting method was applied to a nonequili-
brium chemical reacting hypersonic flow around
OREX configuration selected at the High
Enthalpy Flow Workshop. The results show the
validity of the numerical method in shock
capturing, monotonicity, and robustness. Further
comparison between numerical solution and
experimental data is required.
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Figure 1 Grid configuration: 32x64
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Figure 2 Pressure contours. Figure 4 Vibrational temperature contours.
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Figure 3 Translational temperature contours. Figure 5 Mass fraction of species distributions
along the stagnation stream line.
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Figure 6 Translational and vibrational tempe-
rature distributions along the stagnation stream

line.
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Figure 7 Heat flux distributions along the body
surface.
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Figure 8 Pressure distributions along the body
surface.
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