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Abstract

Numerical simulations of hypersonic flow assum-
ing no reaction and thermochemical nonequilibrium
are performed. Three different methods, Implicit-
Explicit Flux Vector Splitting(IEFVS), AUSM and
AUSM_DYV scheme are used. All of these schemes
are coupled with Fourth-order MUSCL TVD scheme
in space which enable us to capture vortices more
clearly. AUSM scheme is applied for non-reactive
flow problems, the flow around OREX (Test case
problem II-5), and hyperboloid flare (III-1). On the
other hand, for the thermochemical nonequilibrium
flow problems, such as the flow around OREX (1I-2)
are calculated by the IEFVS and AUSM_DV scheme.
The spherically blunted cone (IV-1) is done by the
IEFVS.

1. Introduction

For the numerical simulation of hypersonic vis-
the computational method should
be very robust for shocks and numerically non-

cous flows,

dissipative in the boundary layer. To satisfy them,
some methods have been already proposed. The
authors also have developed a method based on
Implicit-Explicit Flux Vector Splitting (IEFVS) for
the simulation of thermochemical nonequilibrium
hypersonic viscous flow[l}. This scheme is very ro-
bust for obtaining the bow shock because of the
characteristic of the FVS scheme, accurate in the
boundary layer by using the Roe’s averaging and
quite simple for the almost same formation of both
implicit and explicit terms. We also know robust
schemes, AUSM and AUSM_DV scheme, therefore,
these schemes are also used to check reliability for
the present flow problems.

On the other hand, fourth-order compact MUSCL
TVD[2] is used to obtain higher-resolution results,
with each IEFVS, AUSM, AUSM.DV scheme.

In this paper, the numerical procedure of dis-
cretization is firstly explained briefly and flow prob-
lems given as the present workshop subject, the flow
around OREX (II-2, II-5), the hyperboloid flare (I1I-
1) and the spherically blunted cone (IV-1) are con-
sidered. The problem II-5 and III-1 are calculated
by the AUSM, the problems 11-2 is calculated by the
IEFVS and the AUSM_DV, and the problems IV-1
is calculated by the IEFVS,

2. Numerical Method

2.1 Fundamental Equations The two-dimensional

conservation equations for the thermochemical
nonequilibrium flow are expressed as follows.
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Q is the vector of unknown variables, Q@ =
J(ps, puyr, puz, E, E,), where p is the total density
and p, is each density of species s. F;, S and H
are the flux, the diffusion term and the source term
respectively, and they are described as follows.
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For reacting fiow, 7 chemical species ( N2, Oz, NO,
NO*, N, O, e~ ) are considered so that the system
includes 11 equations here. Models for chemical re-
actions and the vibrational relaxation time in the
source term H are quoted from Park[5] and Card-
lar[6]) mainly. The total energy E, the pressure p,
and the gas constant are given below.

= 1
E= Ep.C.,,T+ 3P + E,

s#e
n n
+ Z Pohe + Z PsCels
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_ n R . n p.R
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Cos, T, 85, €c1s, R, M,, pc means the translational
specific heat, translational-rotational temperature,
heat of formation of species s, universal gas con-
stant, atomic weight of species s and the electron
pressure respectively.
2.2 Discretization

The numerical flux of F; in eq.(1) are defined as

the linearlized flux vector forms.

(F)esay2 = (A} )t+1/2Qf+1/2 + (A.‘-)u-uzQﬁn/z (2)

The superscripts L and R in the vector of unknown
variables, Qf‘“ /2 and Qf_“ /2 mean the weighted ex-
trapolation from the right and left by the MUSCL
approach, and they are calculated by the following

equations.

1 1,
Q:'+1/2 =Q¢+ §A+Ql—ll2 + EA Qes1/2
1, _- 1 =
Q172 =Qup1 — EA Qes3)2 — §A+Qz+1/2 3)

where A*Q are the numerical functions composed of
ordinary third-order term and fourth-order compact
term.

On the other hand, if the LU-SGS scheme by
Yoon et.al.[7] and point-implicit method by Eber-
hardt[8} are used, eq.(1) can be written in the im-
plicit form as

[ + At{Bo(A:) + diag(+) + diag(a;)}16Q = RHS

—A(A] )e41/26Qes1 — (A )e126Qe-1)  (4)
where

RHS = —At(AF! +S™ + H™)

In eq.(4), o(Ai) is an identity matrix with the spec-
tral radius of A;. In this paper, the maximum of
absolute eigenvalues for A; is taken. 1/7 = 1/7, (

s=1,...,n and E, ) is quoted from Ref.{8] and a;
is set to 2ug;;/( RepAé;).

Next, the Implicit-Explicit Flux Vector Splitting
(IEFVS) is explained. The distinctive feature is that
it is applicable to both explicit and implicit calcu-
lations. It means that not only the flox A‘-*Q, but
the flux A?‘&Q can be calculated from a same finx-
vector splitting form. This form can be written in
the vector form composed of sub-vectors as

ds
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If we use eq.(5) in the explicit calculation, then
Q= Gu Gu Je §e.) is specified to Q. On
the other hand, Q is set to §Q if it is for the im-
plicit calculation. We need no additional calcula-
tions such as matrices for eigenvectors. The values
with upper bar are estimated by the Roe’s averaging
to overcome the excessive dissipation in the bound-
ary layer.

AUSM scheme by Liou et.al.[3] and AUSMDV
scheme by Wada et.al.[4] are also applied here with
fourth-order compact MUSCL TVD scheme.
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3. Results

3.1 Non-reactive flows

Problem II-5. The axisymmetric non-reactive
laminar flows around OREX is simulated. Outer
boundary conditions are set to ¥ = 5562 [m/sec],
Poo = 23.60 [Pa}, To = 248.1 [K] and the wall tem-
perature is Twau = 1519 [K].

The computational mesh has 95 x 95 grid
points.(Fig.1) In this calculation, the AUSM scheme
with the fourth-order compact MUSCL TVD is used
to verify the capability of its application. Fig.2 to §
show the temperature contours, pressure contours,
pressure distribution and the heat flux distribution
on the body surface. The shock distance from the

nose is about 0.19m.
Fig.3 Pressure Contours
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Fig.1 Computational mesh( 95 x 95 grid points) Y/Y.
Fig.4 Pressure distribution on the surface
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Fig.2 Temperature Contours Y/Y.

Fig.5 Heat flux distribution on the surface
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Problem III. The axisymmetric non-reactive lam-
inar flow around hyperboloid flare is simulated also
by the same scheme of II-5. The computational
mesh has 521 x 101 grid points which was pro-
vided by the workshop organizer.(Fig.6) The exper-
imental data of the Geottingen Ludwig Tube (Cold
Case) was used for the condition of this calculation.
Outer boundary conditions are set to M., = 6.83,
Reeo/m = 7.0 x 10%, T, = 67.765 [K] and the wall
temperature is Tyan = 310 [K]. Calculations both by
fourth-order and first-order accuracy in space were
executed.

Figs.7 and 8 show the calculated results of pres-
sure contours and temperature coxitours by by first-

order scheme respectively and Figs. 9 and 10 show
the same results by fourth-order one.”

In the latter results, a large separation area near
the compression corner and shock interactions are
captured clearly, though small oscillations are visi-
ble. The separation point of fourth-order case esti-
mated from pressure distributions (Fig.11) is about
X,eparatc/X;_cf = 0.62. The reason of the oscil-
lations is unconsiderable here, but this should be
deleted. )

Fig.6 Computational mesh( 521 x 101 grid points)

Fig.9 Pressure Contours (Fourth-order)
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Fig.10 Temperature Contours (Fourth-order)
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Fig.11 Pressure distributions

3.2 Reactive flows
Problem II-2. The computational mesh has 75x75
grid points.(Fig.12) Outer boundary conditions are

set t0 woo = 5562 [m/sec], poo = 23.60 [Pa}, Teo =

248.1 [K] and the wall temperature is Tyon = 1519

In this calculation, IEFVS and AUSMDV
schemes with fourth-order compact MUSCL TVD
are used. Figs. 13 and 14 show the calculated results
of pressure contours and translational-rotational
temperature contours respectively by IEFVS scheme
and Figs.15 and 16 show those results by AUSM.DV
scheme. Fig.17 shows the temperature distributions
on the stagnation streamlines. These results are sim-
ilar and the shock distance from the nose by FVS is
10.9cm. On the other hand, that by AUSM DV is
slightly less than that of FVS. However the differ-
ence is only a length between a grid point and next

one.

Fig.14 Translational-rotational temperature
contours (IEFVS)
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used here is shown in Fig.18 which was provided
by the workshop organizer. Outer boundary condi-
tions are set to %o, = 4539.5 [m/sec], poo = 588.42
[Pa], Too = 489.89 [K] and the wall temperature is
Twaen = 295 [K].

The calculation was performed by IEFVS with
fourth-order and first-order accuracy in space. Fig-
ures 19 to 21 show the calculated results of pressure
contours, translational-rotational température con-
tours and vibrational temperature contours respec-
tively by the fourth-order scheme and Figs. 22 to 24
show those results by the first-order. From the com-
parison of these figures, the further rear stagnation
point from the base is obtained by the fourth-order
case than by first-order. This reason may be due
to the capability of capturing separation points and
vortices. Figure 25 shows the heat flux distributions
of the calculated results and that of experimental
data[9], where S means the distance along the body
surface from the front stagnation point. The fourth-
order result has a peak at the almost same position
as that of experimental one whereas the value at the
point is smaller. However, it seems to be at least
necessary to apply higher-order scheme to simulate

base region in hypersonic flow.
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Fig.16 Translational-rotational temperature
contours (AUSM_DV)
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Fig.17 Temperature distributions
on stagnation streamline

Problem IV-1. The axisymmetric laminar flow
with chemical reacting around the spherically
blunted cone is simulated. The computational mesh
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Vel

Fig.19 Pressure contours Fig.22 Pressure contours
(Fourth-order) (First-order)

\sfff})?

Fig.20 Translational-rotational temperature Fig.23 Translational-rotational temperature
contours (Fourth-order) contours (First-order)

Fig.21 Vibrational temperature contours Fig.24 Vibrational temperature contours
(Fourth-order) (First-order)
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Fig.25 Heat flux distribution
4. Conclusion

Numerical simulations are performed for High
Enthalpy Flow Workshop problems. The AUSM
scheme was very effective for non-reactive problem.
Howevér, the oscillation in higher-order case of II-5
should be overcomed in future. The AUSM_DV and
IEFVS with the higher-order accuracy were equiv-
alently effective for the reacting flow problem II-2.
The last case IV-1 indicates the necessity of higher-
order accuracy at the wake region after the body.
By the way, the result by the AUSM_DV for the last
case is not shown because of still having a problem
in the result. It must be also resolved.
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