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Numerical Simulation of High Enthalpy Flow

— High Enthalpy Flow Workshop —

Ryvoji Takaki and Yasuhiro Wada

Computational Sciences Division,
National Aerospace Laboratory in Tokyo, JAPAN

ABSTRACT

Numerical analysis of thermally and chenically nonequilibrium viscous flow around simple shapes
is carried out as an entry of High Enthalpy Flow Workshop. We chose Problem 1, flow around a
sphere, and Problem IV, flow around a spherically blunted cone. Park’s two-temperature model and
Dunn & Kang’s seven species and finite-rate eighteen chemical reaction model are used in order to take
accounts of thermal and chemical nonequilibrium effects. Axis-symmetric full Navier-Stokes equations
considering thermal and chemical nonequilibrium effects are solved by the Chakravarthy-Oshers’ TVD
scheme with generalized Roe’s approximate Riemann solver. Regarding time integration. the LU-SGS
implicit method with local time stepping method is used to suppress calculation time and increase

code stability.

1 Introduction

There are a lot of research and development about hy-
personic, re-entry or space vehicles recently. However,
it is difficult to simulate the flow of tvpical flight condi-
tions for the above vehicles with ground-based experi-
mental devices. On the other hand, recent remarkable
progress of computer hardware and numerical tech-
nique make it possible to analyze the flow including
thermo-chemical nonequilibrium phenomena, so called
‘real gas effect’. Hence the CFD analysis is indispens-
able for designing the high speed vehicles. It’s neces-
sary to validate CFD ability in order to use CFD as a
design tool. But it is difficult to obtain plenty of high
quality experimental data in the high speed flow fields.
Therefore this High Enthalpy Flow Workshop is very
precious opportunity to validate CFD ability. Hence
we took part in the High Enthalpy Flow Workshop and
attempt to Problem I and Problem 1V.

2 Governing Equations

The flow field is regarded as two-dimensional axis-
symmetric steady state flow. We consider mixed
gas flow with thermo-chemical nonequilibrium effects
(1. 2]. In order to treat the flow exactly. each energy
level of chemical species must be considered respec-
tively. However. such treatment increases the num-
ber of variables. the unreliability of relaxation models
and the difficulties in solving the equations. Therefore
Park’s two-temperature model (3. 4]is used in these
calculations. which is simple but has been reported to
get good results. In this model, the translational en-

ergy mode and rotational energy mode are considered
to be the equilibrium state and they are presented by
one temperature, so-called ‘temperature, T°. The vi-
brational energy mode and electronic excitation energy
mode are also considered to be the equilibrium state
and they are presented by another temperature, so-
called ‘vibrational-temperature, Ty’. Hence the govern-
ing equations consist of, two-dimensional unsteady full
Navier-Stokes equations, the conservation equations of
chemical species and the conservation equations of the
vibrational energy:
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F and Fy are the convective and viscous flux vec-
tors, and the vector § is a set of elements of thermo-
chemical nonequilibrium source terms. e presents to-
tal internal energy and it consists of translational-
rotational energy ¢, vibrational energy €, , and elec-
tronic excitation energy €., for each chemical species.
ev is the total of vibrational energy, electronic excita-
tion energy and translational-rotational energy of elec-
tron and it is characterized by vibrational temperature,
Tv.

These equations are transformed into generalized
curvilinear coordinates (7,£;,6;):

dq OF; OFy; .
. A Wbl =S
ar g, Tog, T

with

§g=Vq,5=VS,

FJ’ = TtﬂFl +nj2F2,
FVJ- = nleV] + nngyz.
V is the volume of a computational cell surrounding
a grid point. Vector m; = (nj1,nj2) is cell interface
normal of ¢;-direction. The effect of axis-symmetricity
is introduced by the treatment of metrics in finite vol-
ume method and additional element, a; appeared in
the source term, S. FEach conservation equation of
chemical species, and total mass equation are calcu-

lated together in order to suppress the total numerical
error.

3 Chemical Model

As a chemical reaction model, seven chemical species,
0,. N3, N, O. NO, NO* and e~ and eighteen finite-
rate chemical reactions are considered.

e O+ Mo O+0+MM=NNO.0,0;, N,

e N+ M e N+ N+MM=NNO,0,0,, N,
e NO+ Mo N+ O+MAM=NNO,0,0,,N;
e O+ NO = N+O,

¢« O+ N, N+ NO
¢ O+ N NOY + €™

The mass production rate of species s per unit volume,
W, is expressed as

N,
W, = Ms E(ﬂ:,r - Qs.f)(Rj,r — Rb.r)a

r=1

(3)

where N, is the number of reactions, a,, and S,
are respectively the stoichiometric coefficients for reac-
tants and products in the r reaction. Ry, and R, are
respectively the forward and backward reaction rates
for the r reaction, as expressed by

R,

Ry

kj,r H(P7a)u"r 3

kb.r H(P‘h)ﬁ"ra

&

i

(4)

where ks, and Ky, are respectively the forward and
backward reaction rate constants. In this calculation,
Dunn and Kang's chemical reaction model is applied
and these reaction rate constants are determined as
follows:

n -E s
kf', = C!',Tq’-'exp(Tf'—‘),
q

kb,r

—E,,
Gy T3 exp( —ITL)’

q

()

where T, is a dummy variables for the rate-controlling
temperature and defined below.

T, = VTTy for dissociative reactions

T,=Tv for the reaction of
electron impact ionization
T,=T for other reactions

Millikan and White’s semi-empirical equation with
Park’s modification which limits the collision at the
high temperature (above 8000K) is used as a relaxation
model between vibrational and translational energy.
Transport properties are calculated from the collision
integrals [1].

4 Numerical Techniques

The convective flux vectors are differenced using post-
processing TVD scheme {5, 6] with the generalized
Roe’s approximate Riemann solver [7, 8). The vis-
cous flux vectors are differenced with second order cen-
tral differencing. Therefore the right hand side has a
second order accuracy in space. The form of gasdy-
namic matrices is described first, and then the treat-
ment of the generalized Roe’s approximate Riemann
solver is presented. Three-dimensional treatment is
used for this description. Two-dimensional formula-
tion is a subset of three-dimensional one.
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4.1 Gasdynamic Matrices for Real
Gas

The eigenvalues and eigenvectors of Jacobian matri-
ces of the convective term are analytically derived for
nonequilibrium flow [6]. The Jacobian matrix A =
()

in genelallzed coordinates, is decomposed like this:

at an averaging state satisfying the property U,

A=TAT™, (6)

where T7! and T are, respectively, the left and right
eigenvector matrices. The diagonal matrices of eigen-
values A are expressed by

A = diag(U,U,U,U + |n;le,U — In;le, U, U,--), (7)

where

U=nju;, [|n;]=/n;?

@O ctrdp | Op .
dp " p Oc “0pv.  p ey
The eigenvectors used for this study, are calculated
using reciprocal vectors ! and m,
nl=0n-m=0l- m=01l-l=m -m=1).

6; Bp

4.2 Generalized Roe’s approximate
Riemann solver

Recently, upwind differencing schemes are often used
for flow computations. Up to now several upwind
schemes have been developed and most of them are
categorized as either Flux Difference Splitting (FDS)
or Flux Vector Splitting(FVS). FDS scheme uses an
approximate solution of the local Riemann problem,
and the most popular approximate Riemann solver is
Roe’s approximate Riemann solver [9]. Roe’s approxi-
mate Riemann solver has good efficiency and possibil-
ity of achieving high resolution of stationary disconti-
nuities. This solver can catch the stationary disconti-
nuities with one intermediate point. Roe has presented
an averaged gasdynamic matrix for perfect gas. For
nonequilibrium gas, the following averaged values are
taken [6, 7):
uf‘ + Duj-R

’ 1+D °

s
=75 D

HY + DH®

1+D

p=p"D, (8)

H=

where

The averaged pressure derivatives which satisfy
Eq.(9) are determined as:

2 - DIt
% = %
3?71;3 =L [B(Z];'s + 6—p(RT)2Ap7,],
o b2 Brnae),  (0)
where
D= D —-p_ﬁpép’
A= é[AL + AR},
D=AP + (Rmm,)? + (RTvev)?,
When T7! is evaluated at the Roe averagmg state,

a simple form for the characteristic vector T~ 'Aq is
given as:

T'Aq = (d',d% d%d* d a®F,a")!
EAp—Ap )
pe(l - Au)
pe(m - Au)

1
51ap + pe(n - Au)]
I
3[8p = pe(n - Au)]
EAey — e—f’Ap
p

& ApT,

4.3 Time integral method

Generally, nonequilibrium viscous flows have several
characteristic time scales such as a fluid scale or chem-
ical reaction scale. Such a disparity in time scale is
referred to as ‘stiffness’ causing numerical instability.
Thus, each term in the governing equations, especially
chemical sources should be treated implicitly to con-
struct stable schemes. For this purpose, the source
term is treated with the point implicit method in or-
der to increase the rate of convergence on steady state
solutions. The time integration of the left hand side is
carried with the LU-SGS [10] implicit method, and the
steady state is achieved by the local time step method.
The implicit time integration with LU-SGS method is
expressed as:
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(1 + EAtP)Aqi,j + §AtA'~+l,qu,~+1,J' + §AtBi,j+lAQi,j+1 = Aq

where,

o =x Y max[N(Au])
k
. oFy
A

A7 = 5lA £ xmp N (A1)

K is a constant that is greater than or equal to one.
The use of approximate Jacobian matrices in the LU-
SGS method makes the inverse algorithm very sim-
ple. With this approximation the implicit operators
can be completely vectorized on oblique planes, which
are equivalent to oblique lines in two-dimensional cases
and the inversion of these operators is equal to forward
and backward sweep of these planes and lines.

1 1A e .
(1+ §Atg) AG:; = JAY: P (12)
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A minimum grid length is 0.0002mm. Hence Cell
Reynolds number is about 0.05, 0.1, 0.18 for Case 1(2),
Case 3(4) and Case 5(6), respectively.

It is very important for designing of thermal pro-
tection system to estimate heat flux distributions pre-
cisely. The heat flux values depend on the grid length
near the wall, which are evaluated by Cell Reynolds
number. Therefore, we especially pay attention to the
size of the Cell Reynolds number. We calculate with
grids which have different size of the Cell Reynolds
number and compare the heat flux values to investi-
gate the influence of the Cell Reynolds number. The
stagnation heat flux values obtained after such pre-
calculations are 8.791, 12.03, 13.93, 18.72, 10.27 and
13.88 for Case 1 to 6, respectively. The stagnation
heat flux values of Case 2,4 and 6, which are fully cat-

alytic cases, are about 1.4 times higher than Case 1,3
and 5, which are non catalytic cases.
5 Results and Discussions

5.1 Problem I Sphere

Figure 1 shows a computational grid for Problem I.
This grid is composed over a semi-sphere because it is
not necessary to calculate the base region in this prob-
lem. The number of grid points is 73 points normal to
the surface times 56 points along the sphere surface.
This grid is used for calculations from Case 1 to 6.
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Fig. 2 : Pressure contours (Case 1)

For example, Fig. 2 shows the pressure contours
in Case 1. Figure 3, 4 and 5 respectively show the
heat flux distributions along the body surface (Fig.
3), temperature distributions along the stagnation line
(Fig. 4) and distributions of mass fraction for chemical
species along the stagnation line (Fig. 5).

Fig. 1 : Computational grid around a Sphere
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Fig. 5 : Mass Fraction distributions along the stagnation line

We regard Case 1, 3 and 5 as Case 2. 4 and 6, re-
spectively because the results are almost the same each
other. From Fig. 4-a and 4-b, the temperature jump at
the shock wave are similar in Case 2 and Case 4. There-
fore the Shock wave in Case 2 and Case 4 have almost
the same strength. However, the temperature distribu-
tions after the shock wave of Case 2 are different from
Case 4. The energy exchange between T'(translational-
rotational energy) and Ti-(vibrational-electron excita-
tional energy) of Case 4 is more active than that of
Case 2. Hence Ty follows T beter in Case 4 due to

the difference of free stream pressure. The free stream
pressure of Case 2 is relatively lower than that of Case
4. Hence the flow of Case 2 is more nonequilibrium
than that of Case 4. This tendency also can be seen
at the difference of the dissociation of N, between Fig.
5-a and 5-b.

The free stream pressure in Case 6 is heighest among
these cases. Therefore, there is the smallest difference
between distributions of T and distributions of 7y in
Case 6. From Fig. 5-c, N, dissociation in Case 6 is
least because of the relatively lower temperature after
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the shock wave.

5.2 Problem IV Spherically Blunted
Cone

Figure 6 shows a computational grid for Problem IV.
The number of grid points is 90 points normal to the
surface times 163 points along the surface. A mini-
mum grid length is 0.0026mm. Hence Cell Reynolds
number is about 2.
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Fig. 6 : Computational grid around the Spherically
Blunted Cone

Figure 7,8 and 9 respectively show the temperature
contours (Fig. 7), vibrational temperature contours
(Fig. 8) and pressure contours (Fig. 9) for Case 2. We
can see strong bow shock at the front of the body and
share layer starting from the shoulder of the cone.

Fig. 7 : Temperature contours (Case 2)

Fig. 8 : Vibrational temperature contours (Case 2)
Fig. 9 : Pressure contours (Case 2)
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Fig. 10 : Heat flux distribution (Case 2)
Figure 10 shows the heat flux distributions along the
body surface. The values of heat flux at the stagna-

tion point are 2.23 for fully catalytic case and 2.68 for
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non catalytic case, respectively. The heat flux distri-
butions have maximum value at the stagnation point.
local extreme value at the shoulder of the cone and in-
crease at the aftbody. The re-attachment point and re-
compression shock wave cannot be seen clearly in Fig.
7, 8 and 9. However. the increase of heat flux at the
aftbody in Fig. 10 means a existence of re-attachment
point and re-compression shock wave.

Finally, Figure 11 and 12 show stream lines at the
wake region.

: Stream lines

Fig. 12 : Stream lines at the wake region

From Fig. 11 and 12. there are some eddys at the
wake region. One large first eddy. one middle eddy and
three small eddies can be seen.

5.3 Conclusions

Numerical analysis of thermo-chemical nonequilibrium
viscous flow are carried out for the problems of High
Enthalpy Flow Workshop.

Dunn & Kang's seven species and eighteen reaction
model is used as a chemical nonequilibrium model and
Park’s two temperature model is also used to take ac-
count of thermal nonequilibrium effects.

In the high speed flow analysis, it is still difficult to
validate CFD code because we can not get a plenty of
high quality data from the experiment. However, it is
necessary to validate CFD code to make CFD be useful
tool for the design of high speed or space vehicles.
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1. Problem I Sphere BP9
= T o+ — <= > kR

FEFEHERAFLERI DV TR, REFSHI T T OHNEOREMEKRL. &
HEPbREFIRBAMKEBIFREINT S, RESOHTHRR. .23
FEROFRERROBAICIIREEES D Poblem-1-1 L RFSOQ XM S

4 b T Problem-1-1- @ £ 3 3,

FHEHBK (Problem I-1,1-3,1-5, IEM 7 — 23 L T)
EAPRER—HBRREDOFEHEo-. —BRROEBEUZHOTHERTEP(0-U=?)
70y b95, FEHOMBE 0005 100 TEMB T2 28T 3,
N, FEOAMERL oy PT B &,

FHEEMRK (Problem I-1,1-3,1-5, JEM i — 2% L T)
BETRISINVEVHEL, —BROBEET-TERTILELDDE T D v b
T35, HHFABAOREEE Tmax SHPIKZOEEWHETE I &,
2REETFNVERACEFETEIRHEBEEICODVTORBEL I +—<y TS
oy FEITV., Tvmax DEZXMWHELT 5,

ZWEHES 53 (Problem I-1,1-3, [-5, M & — 212D T)
XHEEDZHE. REAENDOREH Pmax TERIT/L L. D50 Bric E
HERERBIIHR-TZORHE27T oy M5, MMZEZEH. BWZEEME L.
BERESYROBRRKFEETERRTET Y. B, EHORKEZEP(p-U?)
THERRTALLET,. HPIKZTO@EEHET S I &,

FEEIMBYH
FMMBHAD Y — 2D TR, ZHMB Q" BREHMBAOREE Qmax
THERTALEZTV. ChE27D0y bT5, ERFEHEBOOENRGDOHAE
REET B, 2L, Qmax D% W m TRPICHET S &,
MBEHDOSHLIERIIDOTR., FMEHOZIMBRIHFRICAKRICT oy b
TS5, CDH, BMOREMEIL 1028308, 20, £#H&T 3,

LEHLERBICHOERDE
HES2XEZ, AORALFEREEOIXNTORF%* I KORIcSoy b33 2
Eo MMBYHEAINS., WHREIZHR-> THEFROBRAMO EE TLE b,
BAMOEEM»R10ELZLIICERTILET Z, MMIHERSET
0005 10DFEHEM S, £/, hEmHOoHEHARBRAMNO S E TOE
BMERPICHET S &,
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® IEHEAMBICHBRIBELS

REMBOLFEEEL. WM. BEEZOLDETNVEV BN TS Dy FT 3
CEo EHPIC Tmax DEE X IIVE UHBAL (K) THRT B I &,

CREETNVERVIEHATRRYEEOEZOLOLELE. OERAEOR
7oy UL FIVEVBHETERRT S, Tvmax DELBET 5,

BEF+Tarv,. HES. ERAEOHEIFEETLEMTT,

BRERECEXAAREOHFER., SHHFE, LHBILAVLZRO
DRETRETORCZHFHOEELIHARLTT I,
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2 . Problem I OREX B P9
= Js 7 o4+ — == > R

PR, FHRRVUZLIBHELE ROV TR, ThZhOHBEOR %
EERLU. BHEDBREIRFMITBEIFTELH9T3, IBERBOMIT Hi.

REAREFHROFEHERHOBAICIIBEE S D Problem-11-1 - R E S
D% HHEDE T Problem-1I-1- @ & T 3,

EERK
ENPR—BEOEE o, ~BAOEFU-ZACTERTEP(0-U.7)
270y bT3, EEROMBIIE 0005 100 TEMBET20 483 5,
B, FEOAMER LTy T 5 &,

FEHERK
BETR7VECHEE L, ~BHROEET-TERTLAL, FEABRNOR
SEE Tmax FHPICZDOEEBET S &,
CREETNVERCLHETCIEYRAEIISDLTOREL T oy FEF S,

XHEN W
RHENFHIRI. EMENORE M Pmax TERITIL L. Wik Brwiic &
ERERIIB-TZOS4HE2T 0y b5, MEEH., HEsEEms L.
BERCUGRORAYLETERRTIET Y Wb EHOBKMEEP(0-U?)
TERTALLET, P Z0EERNLTE &,

XHEOMBIH
ZhHm#  Q BREAKE Wo)TEL. ZHMBOREE Qmax T
WRTALZETO. ShETo0y b T3, ERHERQOOEHNFIGOARER
BRET D, 7oL, Qmax D2 W or TR$PICHETZZ &,

SESLTMBICIBIHEBESHR (8 Problem-11-1 ~ Problem~II—4 1% L T)
HESERR, AOL¥ERIEEOIXTORA* 1 KORIC Ty b4 3 =
Eo RBMBUMEEIS., AR - THEAROBAMNDOE T TE b,
BAMOERGI10ENILIICERTILT S, RMIERSET
0 0205 10DHBMEMS, o, HRAI»SHEFARBENMO S E TOME
BERPICHET I L,
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® &R HERICHBOBESS
BEHMEIOLRAKE L, WM. BEZOLOXEHIVE VBN TTDY bT 5
& FREPIC Tmax DEX S IVE VB (K) THETSIZ &,
2REETNERACIHETCREHEEOEZOLO X £, MERESH
M7 VEVBUTETRT 5,

@ ConeBEHOEAALOCEBAMICOT LILEBLICBIZ2EFEEIN
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