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Prediction method of boundary layer transition in 3-D compressible flow

Yoji Ishida
National Aerospace Laboratory
Aircraft Aerodynamics Division

1. Introduction

The requirement for a highly accurate method of predicting the 3-D
compressible boundary layer transition location over a wing and body of a
real aircraft is now increasing in relation to the worldwide trend of
developing a so called “next generation” high speed civil transport (HSCT) or
space plane with a large drag reduction.

Accurate prediction of transition location is crucial to the successful design
of drag reduction techniques such as laminar-flow-control(LFC) and natural
laminar flow(NLF). Direct numerical simulation of the transition process
with the Navier-Stokes equation , the most rigorous treatment, is however
still far beyond the capability of current computers, and is not practicable in
the design phase. We must therefore rely on some approximate methods. The
eN method ,for example, is one of these and is a semi-empirical method in the
sense that the factor N for the transition is determined only empirically
about 9. But its less empiricism than other methods stimulates us to apply it
to the three-dimensional boundary layer, although it is not so
straightforward.

The numerical system for predicting the transition location of the
boundary layers over supersonic wings described in this report consists of the
calculations of the three-dimensional boundary layer , its linear stability
characteristics and N factor. Each of the three calculations requires a lot of
computing time and a rather complex interference procedure (interpolation
or extrapolation of the data) between each calculation. Therefore to save
computing time and make the resultant numerical system as simple as
possible an efficient algorithm must be adopted: we have used the same
computing algorithm for both the boundary layer and the linear stability
calculation. The outline of the system will be described in this report.

2.  eNmethod
2.1 Governing equation
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We examine if small disturbances (u,v,w,p,T,p) superimposed to 3-D

compressible laminar boundary layer — the basic flow — would spatially
grow or decay. The fundamental assumption in the analysis is that the basic
flow is parallel, i.e. a function of only the y ordinate and the resultant
governing equation for the disturbances derived from both the Navier-Stokes
equation and the energy equation can be linearized because of the small
disturbance assumption. The disturbances are written as
(s, v, w) = [i(y), "(»), () Jexpli(ax + Bz - wt)]

p = p(y)expli(ax + Bz - wi)]

T= T( y)exp[i(ax + Bz - mt)] (1)

p = B(y)expli(ox + pz - wr)]
in which all variables are non-dimensionalized by some reference velocity
and length. Then the disturbance equations are described in term of

~ o~ A A

(@,v,w,p,T,p) , their y derivatives , wave numbers a and B, frequency
and basic flow velocities U(y),W(y). The boundary condition is

T-0, at y =0

wyw Tl — 0 as y—® 2)

=2
1"
i
3
1
ﬁ
I

Following Mack?, the disturbance equations are transformed into a system

of first order ordinary differential equations
dp. ¢ |
i _Sao, i=12,-8 3)
dy JZ yvl ( )

where
¢1~=C117+I3‘7’> o, = do,/dy, ¢,=V, ¢,=P,
¢5:T’ ¢6=d¢5/dy’ ¢7=aw—ﬁl’7, ¢s=d¢7/dy: (4)

and then the boundary condition equation (2) becomes

b, =0, =¢;=¢,=0 at y =0

¢17¢3’¢)5’¢7 - O as y—)OO_ (5)
We solve equation (3), following Malik?, by the Euler-Maclaurin finite
difference scheme:

k k-1 2 k 2 k-1
lyk —‘“I!k_] - Al + dqj —A2 d II: + d lp2
dy dy dy dy

where A =h /2, A, =h}/12. To apply equation (6) to equation (3), we put
8 8
v={¢ }, d‘P/dy={2aij ]], dlef/dy2={2b,.j¢]} )
7=] j=

)+o(hz>, ©)

where
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8

b, =da, /dy + Za,.,a,j .

Substitution of equatlon (7 1nto equation (6) yields

0" - AZaUcb + A Zbgmb
_ k}_ Aza:1¢)kl+A2bk_lkl} 0’

which is rewritten as

2& 20**'—0 : ®)

where
j —A]a; + Azb,.f a#j)
})Uk —
[ 1-Aag + Ab; i=y)
—Aa)” + ADT G#j)
0, =
1-Aa;™ + A,b} a=p.

2.2  Solution of eigenvalue problem and calculation of the N factor
As is well known , equation (8) and boundary condition (5) constitute an
eigenvalue problem. To get its non-trivial solution we first drop the
boundary condition ¢,=0 and instead impose ¢,=1 (this means that p is
normalized);
¢ =0, =0,=0,0, =1 aty=0, (9a)
¢, 05,45.0, 0, as y—, (9b)
and then determine the eigenvalues to satisfy the dropped condition.
Numerical treatment of the boundary condition,equation (9b), is not easy
in this form and so, following Mack? ,we replaced the condition by analytic
solution of equation (3) which can be obtained by using the fact that as at y
— oo the characteristics of the basic flow are constant and y derivatives of
flow variables are zero, a; in the right hand side of equation (3) becomes
constant aj.
Now equations (8), with boundary condition (9), are expressed in matrix-

vector form
I =r (10)
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where I1,6 and r are .
AO CO 6O r()
Bl Al C] 61 rl
Il = B A4 C d =139, r=1|r (11)
Bj—l A} -1 CJ-l d 31 j-1
0 r
> L L7
where

(¢8), (rS)J

and A4,,B,,C, are the 8 X8 matrix (details are omitted here).

A A

The solution of equation (10) which can be obtained by the block-
elimination method depends on o, f,w, R 1.e.

0 =9(a,B,w, R) (12)
which in the spatial amplification theory (i.e.w =real) means that 4 depends
on six scalar quantities (a,,a]., 8.8, w, R). The dropped boundary condition
o,(a, B, w,R)=0 at y=0 (13)
can determine only two eigenvalues. In the spatial amplification theory w:
and R are given and thus a relationship between two wave numbers a and
B is required. The relationship can be computed by making use of concepts
based on group velocity using the saddle-point method (Gaster?, Cebeci-
Stewartson4).
According to this method; let us consider an oscillatory disturbance with.
period2n/w generated at the origin so that the disturbance at large finite
values of x,z may be assumed to be of the form

Ox,y.2.1)= 7 [0(t, p.w)e @+ ) g (14)
c
where ¢ is a contour in the complex plane of B extending to ° in either

direction. Q is a determinate function whose properties are such that the
integral converges. a in equation (14) is a function of 8 and o found by

solving equation (10). Now for any ray in the (x,z) plane and passing through
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the origin, we can write

z =Xxtany (15)
with y denoting a constant, and look for the dominant contribution to Q
along this ray as x — «. This comes from the saddle point f of ax + Bz,
regarded as a function of B , which occurs when

(a_a) x+z=0 . (16)
B/ ..
Since x and z are real, the imaginary part of dc/9f must be zero to satisfy

eqation (16). Combining equations (15) and (16) we can write the relation

da z
(E)M = - — = —tany 17)

x
which gives another relationship between o and  and the wave orientaion

and growth direction of the disturbance. Now we can solve equation (10) with
equations (13) and (17). Before describing details of the solution procedure,
we describe how to use the solution in the eN method.

2.2.1 Neutral stability curve — Zarf 93
The grthh rate of spatially developing disturbance I is given from
equation (17) as
F=a,-B,tany =a, - B,(60/0B) (18)

i

where I' <0 means amplified, T >0 damped and I =0 neutral. In order that
I'=0 for any vy , the conditions

a,=B,=0 and da/op =real (19)
must be satisfied. The neutral stability curve on which the condition is
satisfied is refered to as Zarf by Cebeci. In the eN method the integration of
the growth rate starts from the neutral point, so we must first determine the
Zarf.

First fix the starting point of calculation (x,z) near the leading edge. The
velocity and temperature distributions of the basic flow and Reynolds
number are now given. Then equation (13) is written as

¢,(a,B,0)=0. (20)
a,,B, being zero from equation (19), the relation contains three unknowns
(,,B,,®) . The second equation in equation (19) and equation (20) can now
determine o, B, and o as follows. When o is constant in equation (20), it

gives
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_ (9% 9} s -
d¢1—(aa)ﬂda+(aﬁ)udﬁ 0 (21)

Therefore da/af/in equation (19) is given by
o (30,/0p),
(30, /0a),

As we use an iteration method to get the solutions of a, B, , it is necessary to

calculate the corrections (3ct,88,8w) to initial guesses of ‘(a”, Bv,mv)  If we

22)

expand equation (20) about (a", B”,w") and neglect higher order terms, we

get
99, 99, 99,,
o, +iﬁa+—;—g—6ﬁ +%6m =0 (23a)
99, 99, ¢,
—Lda + 1B + 8w =0 . 23b
O+ b L (23b)
Similarly if we expand equation (22), we get
e+ P 80+ 58+ 950 - 0 24)
da. ap 0w

The imaginary part of a,p are zero and so is that of da/dB or e. Therefore
we must seek the values of «,f,0 which makes the imaginary part of

equation (26) zero, i.e.

0 0 d
“ o + iﬁﬁ + %
aa ap dw

If we solve equation (23) and (25) forda, 38, 0w , we get
St =[¢1,(¢,Me,ﬁ = 01580 )+ 01 (01500 — P10 ) =€ (01 000 — 01001 )]/ A (26a)
8 = [0, (0100 ~91.00) = 010 (01,00, — €1 ) + € (01,00, - 0,01, )]/ & (@6D)
S0 = [cp,m (61616 = 015 )~ ria (61,85 — €010 )+ €0 (01,01, -¢I,B¢,,)]/ A (260)
where

A= elu(¢1rﬁ¢]1w ‘¢1,5¢1,w)_em(¢1m¢1,m —q)l)u(blrm)_elm ((b]ra(plrﬂ _¢1:a¢lrﬁ) 27

and suffix / and» means imaginary and real part, respectively and suffixa,

e +

ow =0 (25)

and o means partial derivatives for each variable. The iteration will be
continued until these correction terms &a,8B,8w becomes less than ¢, a

specified small quantity. When 8o =88 =8w =0, equation (25) certainly
gives ¢ =0.
The derivatives ¢1..9,, and e,,e; in equations (22),(23) and (24) are

obtained as follows. From equation (22)
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T
¢'1a
we can get the partial derivatives of ¢ as follows:
L (28a)
¢Ta ¢'lu
¢ ¢
=t Dy (28b)
la la
oy - -t Sy (28¢)
q)la ¢la

The o,f and o derivatives of ¢, in equation (28) are calculated as follows:
for example in the case of ¢, , if we first differentiate equation (10) with «
and then with, we get

2 2
As the coefficient matrix IT of this equation is the same as that of equation
(10), we can use the solution algorithm of equation (10) when the right hand

side of equation (29) is known. The derivatives of II can immediately be
obtained from equation (11) and 98/da,38/9B can be obtained by solving the

following equations
38 oIl

II—=-—"-8, and —=——8 (30)
aoL aa ap ap
In the same way the aa,pp,aw, pw derivatives can be obtained.
We now summarize the first step of eigenvalue calculation on Zarf :

(1) solve equation (10) for some initial guess of o,B,w .
(I) if the value of ¢, at y=0 does not satisfy equation (20), the correction
terms da,d8f,0w are calculated from equation (26).
(IN) if 8ax,8B,8w < ¢ the iteration is stopped, and if not, return to step (I)
and repeat the same procedure. When the iteration finishes, ¢ is the real
value which gives the direction of wave propagation.
(IV) repeat the calculation of the eigenvalues for various (x,z) positions.

In practical calculation some care is required because, although in this
method a good initial guess for the eigenvalues is required to give a
converged value, it is rather difficult to give such a value. Thus we start the
calculation from the basic flow whose eigenvalue is already known, for
example the flat plate flow, and then vary the flow gradually to the target
flow with gradual change of eigenvalues.
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2.2.2 computation of eigenvalues for general point
For the basic flow at a general point on a supersonic wing surface a,,a,,

and B, in equation (13) and (17) are solved for a given frequency w and
Reynolds number R by Newton’s method. The solution procedure is almost
the same as that for Zarf except that the corrections are obtained in the

following manner. First expanding equation (13) about some initial guess of
a,,a,B,,. B, weget

0, + b, + 20, 4 gy 4 2Bgp, -0
(11

aa, aBr aBl
o, + aq)—“ﬁar + 9, da, + 9, o8, +‘%6Bi =0
aar aal aBr aﬁ;

and then from equation (17) and (24),

d
g, 6(x,+ae’ da, + r 6Br+ae’6[3,=—z/x=y
aer aa’i aBr aBl

d de.
e, +—e‘ da, + 9, oa, + ¢ op, + 9, o8, =0
oa oa., ap, ap,

r

e, +

We can now solve these four equations for the corrections da,,dc,,88,,8,to
the initial guess values.

At any downstream position x the initial guess may be given by the values
of the previous calculation step x - Ax.

2.2.3 Prediction of the transition point
In three-dimensional flow, the N factor is calculated from

N= - (Tdx (1)
where
F=a,-Br. (32)
w
! -

Ve

/

¢ 1

2

3

\ x/c

Fig.1 Schematic curve of zarf
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The detailed procedure of the transition point is as follows:
(D First calculate the neutral stability curve (zarf) for some x positions
(figure 1)
@ Start the calculation from, for example, position 1 in figure 1, xi/c . At the
next x/c step solve the eigenvalue problem with the frequency o =, at xi/c
and the relation

d0,/3B = (6a/ap) = -t
to get o and B which give I' from equation (32). Repeat the eigenvalue
problem for various t"’and find T =t__ for which I'=T__. Then proceed to

the next x/c step.

® The values of T =T,__ which corresponds to T =t_, at each x/c step give

the N factor for the frequency , from equation (31).
@ Repeat steps @ and @ for other frequencies w,,w,,---. (we do not
consider a negative o because its growth rate is smaller than that of a
positive ®.)

® Finally we can obtain a family of N factor curves as is shown in figure 2. If
we choose nine as the value of N as a criterion of the transition, the

transition point is given by (x/c). in the figure.

(X/C)er xX/c

Fig.2  prediction of transition point by e™ method
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2.3 Result

We have already finished the mathematical formulation of the linear
stability calculation and now are developing a program code. Final results
will be published in the near future. However as an incompressible version of
the method is now available, we have executed a spatial linear stability
calculation for the incompressible laminar boundary layer on the NACA0012
airfoil with suction (o =0°, R=7X1085) to check the accuracy of the Euler-
Maclaurin scheme. The result in figure 3 shows a comparison of
amplification rate -a, between the Itoh (ref9) and E-M schemes. The

agreement is good and the E-M scheme has a good degree of accuracy.

3. Boundary layer calculation

As was stated in the introduction, we have used the same algorithm as
that of the linear stability theory stated in §2 for the solution of the
boundary layer equation. Thus only the outline of the solution procedure will
be described. Following Iyer!® the 3-D compressible boundary layer equation
written in the body-fitted non-orthogonal curvilinear coordinate system is
transformed into a system of partially differential equation:
continuity equation;

W, =A4F +A4F+ 4G, + A,G (33)

£ - momentum equation;
M-Wm;dﬂﬁk+&GGL+&ﬂ+3ﬁ6+@@+&e (34)

7 - momentum equation;
(mﬁwﬁl=qU@k+Q@fL+QP+ch+QG%{w (35)

energy equation;
(/P -WH) = D,(FH), + D,(GH), + D,FH + D,GH + D, (36)

where F=u/u,,G=v/v, and

F=1 (37)
G, =M (38)
H =1 (39)

(for the nomenclature see original paper). Equations (33)~(39) can be written

in the vector form as
O, =R (40)

where
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0 =(Q,) = (W,IL -WF,IM -WG,1 ] -WH,F,G,H) (41)

Equation (40) has the identical form as equation (10) and thus the same

solution algorithm can be used. In real calculation, equation (40) is further
transformed into the equation of the solution vector S,

S =R (42)

where

S=(8)=W,F,G,H,L,M,T) (43)
and then 1s solved for §,. Of course there are some different points between
the system of equation (10) and of equation (40) or (42). The first difference
is that the latter is a nonlinear system. The second is that the nght hand side
of equations (33)~(36) i.e. (42) contain £ and 7 derivatives and thus the
former term is approximated by a finite difference scheme with second order
accuracy and the latter by a second order or zigzag scheme respectively,
depending on the sign of the cross flow velocity component. The third is that
the boundary condition is different, it is homogeneous and non-homogeneous
in the stability and boundary layer calculations respectively. However it is
only an apparent difference, because the stability calculation also uses a
non-homogeneous boundary condition as a technique for getting a nontrivial
solution. In this way the system of equation (42) can now be solved with the
same algorithm as equation (10) except that as the former is nonlinear about
the solution vector it must be solved iteratively by using Newton’s method,
the calculation in each iteration being, of course, the same.

4. Conclusion

In this report we propose an efficient numerical calculation method of the
transition location of the boundary layer over a supersonic wing which
consists of the boundary layer, its linear stability and N factor calculations.
We have used the same solution algorithm for both boundary layer and
linear stability calculations to save computing time and make the calculation
system as simple as possible.
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