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1. Introduction

Development of high-accuracy schemes and improvement of computers in the aspects of both operational speed
and memory have enabled Navier-Stokes code to compute boundary layers for stability analysis insiead of a
boundary-layer code. It is therefore important to verify how accurate the boundary layers computed by
Navier-Stokes code are.

For numerical simulation of the supersonic flow around an infinite swept cylinder, the number of cells needed in
order to eliminate the dependence of the boundary-layer flow on the computational . grid is investigated. In
comparison between the boundary-layer flow converged by the diagonalized ADI scheme and that converged by the
LU-SGS scheme, the way the two kinds of time-marching methods affect the flow is also investigated. And
furthermore, the linear stability analysis of the boundary layer at the attachment line is performed.

2. Navier-Stokes Code
The governing equations are the conservation form of the thin-layer Navier-Stokes equations, which are
numerically solved by the finite-velume scheme.
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2.1 Numerical Fluxes
The inviscid fluxes E, £ and G are computed by the Chakravarthy-Osher TVD scheme[1]. The first-order accurate

flux at the cell interface is given by
By =g (B B )= Ty pin (A i Ag ) Ty o (Qui= Q).
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A¢ is the diagonal matrix that consists of the eigenvalues A; of the Jacobian matrix A, and T;is the
similarity-transformation matrix that consists of the right eigenvectors of A. A; is the matrix where A in A; are
replaced by A;,and A¢ is the matrix where A in A, are replaced by Az. Density, velocities and enthalpy at the cell
interface are computed using Roe's special averaging procedure. The accuracy of the above flux can be raised to the
third order by adding the correction terms with the minmod limiter.

The viscous flux £, is compuied on the basis of Gauss's theorem.

2.2 Diagonalized ADI Scheme
The diagonalized ADI scheme by Pulliam and Chaussee[Z} can be written as
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D is a difference operator. The left hand of the ADI scheme is a block-tridiagonal system, and meanwhile the left
hand of the diagonalized ADI scheme is a scalar-tridiagonal one. That makes the fast inversion of the left hand

possible.
2.3 LU-SGS Scheme
The LU-SGS scheme by Yoon and Jameson[3] can be written as
LD'UM)=- % R,

Ya's - T+ - At -At - 5 A
L=1+7 (DA +D,B'+D, C"-A -B - (),
D=1+ G(A-A+B-B+C-C),

V' + - + 5 + A .t at . A
U=1+7(D§A +D,,B +DCC +A+B +C),
Eizé[jipgl],gizé[Etp,,l],ﬁ:%[fipgl],

pe=kmax{ | A1), py=xmax{|A,1], p,= kmax{124,1].

K is a constant that is greater than or equal to 1. D™ is a backward-difference operator, and D* is a
forward-difference operator. The approximation of the Jacobian matrices not only improves the stability of the
scheme but substantially removes the inversion of the left hand.
2.4 Computational Grid

Three kinds of C-type grids, which differ in density, are generated for the infinite cylinder with aswept angle of
60° shown in Fig. 1. Grid B of medium density is shown in Fig. 2. The grid generator is based on Takanashi's
method[4]. The number of grid points, the minimum spacing in the attachment-line boundary layer, the Courant
number and the time steps for convergence are tabulated in Table 1 for each grid. The time-marching method used is
the diagonalized ADI scheme.

The Mach number of the free stream is 3.5, and the Reynolds number based on the diameter of the cylinder is
1.05x10°,

3. Linear Stability-Analysis Code
The nonconservation form of the Navier-Stokes equations in Cartesian coordinates is linearized by substituting

fluctuation quantities into it, and then the parallel-flow approximation is made. Assuming the fluctuation
quantities normal-mode, stability equations are obtained that can be written as

[ 40, V), W), PO), T0) 1€ 77,

(AD’+BD +C) $=0, ¢=(au+Pw,v,p, 7,aw-fu) ,D=ddy.
Tis temperature. A, Band C are 5x5 matrices computed on the basis of the velocity profiles and temperature one in
the boundary layer. Here the temporal stability is dealt with. a and 8 are the real wavenumbers specified, and @ is
the complex frequency unknown. The Malik-Orszag global method[5] is applied to the stability equations, and then
 is obtained.

4. Results

The dependence of the boundary-layer flow on the computational grid is investigated, and the effect of the
time-marching method on the flow is also investigated. And furthermore, the linear stability analysis of the
boundary layer at the attachment line is performed.
4.1 Dependence of the Boundary-Layer Flow on the Grid

The boundary-layer flows computed with each grid are compared. The time-marching method used is the
diagonalized ADI scheme that includes the local time step with the constant Courant number shown in Table 1.

The velocity and temperature profiles at the position of 8= 0° are shown in Fig. 3. Grid A has 8 cells between the
wall and the boundary-layer edge, Grid B 14 cells, and Grid C 28 cells. Though Grid A appears coarse, the physical
quantities at the cell centers coincide with those obtained with the other grids except near the wall. There is no
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difference between the profiles of Grid B and Grid C.

The velocity and temperature profiles at the position of 8 = 90° are shown in Fig. 4. Grid A has 9 celis -between
the wall and the boundary-layer edge, Grid B 17 cells, and Grid C 32 cells. The velocity profiles of Grid A slightly
deviate from the others. The temperature profile of Grid A is alittle higher near the wall than the others. There is
no difference between the profiles of Grid B and Grid C.

In consequence, Grid B appears to have enough density to eliminate the dependence of the boundary-layer flow on
the grid.

4.2 Effect of the Time-Marching Method on the Boundary-Layer Flow

A comparison is made between the boundary-layer flow converged by the diagonalized ADI scheme and that
converged by the LU-SGS scheme. The LU-SGS scheme includes the local time step with the Courant number of 1,
and the time is marched by 4000 steps. Grid Bis employed in both cases.

The velocity and temperature profiles at the position of 6= (° are shown in Fig. 5. There is no difference between
the two velocity profiles, and meanwhiie the temperature profile converged by the LU-SGS scheme is aiittle higher
near the wall than that converged by the diagonalized ADI scheme.

The velocity and temperature profiles at the position of 8 = 90° are shown in Fig. 6. The two velocity profiles
coincide with each other precisely, and the same can be said of the temperature profiles.

In consequence, the usage of the two different time-marching methods yields very little difference between the
converged flows.

4.3 Linear Stability Analysis of the Boundary Layer at the Attachment Line

The temporal stability is investigated for the laminar boundary layer at the attachment iine. The boundary layer is
compuied using Grid B and the diagonalized ADI scheme. The wavenumber vector of the disturbances is inclined at
60° from Z coordinate. The obtained ranges, where the disturbances grow, are shown in Fig. 7 with the
neutral-stability curves by Malik[6]. Both are in good agreement, which shows that the boundary layer is accurate

enough to perform the stability analysis. F, R and {in Fig. 7 are defmed as

erzv - W(C[
W

z

F=

du, IdX
where e refers to the conditions at the boundary-layer edge.

5. Conclusions

The compressible boundary-layer flow on an infinite swept cylinder is computed by Navier-Stokes code with the
grid density changed or with the time-marching method replaced. The dependence of the boundary-layer flow on the
grid appears to be eliminated by employing a grid as dense as Grid B. There is very little difference beiween the
boundary-layer flow converged by the diagonalized ADI scheme and that converged by the LU-SGS scheme. And
furthermore, the results of the stability analysis of the boundary layer at the attachment line agree fairly well with
those obtained by Malik.
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Points( £xm )| Min. spacing( y*) | Courant po. | Time steps
Grid A| 112x 46 1.658471 1 4000
GridB| 224x 91 0.4233750 2 4000
GridC | 448x181 0.1064922 8 6000

Table 1: Computational grids

2D grids

M- =35

&3

R-» = 1.05x10°

Fig. 1: Infinite swept cylinder

Fig. 2: Grid B (224 x91)
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Fig. 7: Unstable ranges
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