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ABSTRACT

To develop an aerodynamic design system applying supersonic laminar flow control (SLFC) .
numerical study on a transition prediction method and experimental study on the effect of SLFC
were performed . In the first phase of our study , we developed an analysis system of linear
stability and then obtained good validation for the estimated amplification rate in several
typical cases . In the second phase , we developed a transition prediction system by applying
anempirical e"method and then obtained good validation for the estimated N-factor in two typical
cases . In the third phase . we carried out wind tunnel tests using anoriginally designed warped
delta wing mode! , to obtain some data of transition and the effect of SLFC under supersonic
flow condition . And finally we tried to analyze the transition characteristics of our medel

and obtained the useful resuit of N=7 at transition at Mach 1.4

1. INTRODUCTION

It is well known that 1aminar flow controi (LFC) is one of the most effective technologies
for improving aerodynamic characteristics of a transport aircraft . for example . a next
generation SST . To develop the aerodynamic design system with supersonic laminar flow control
(SLFC) , itis, first of all ., necessary tounderstand transition phenomenon in a 3-dimensional
compressible boundary layer . But such phenomenon is more difficult than that in a low speed
boundary layer . The reason is based on the complexity due to the compressibility , 3-
dimensionality . and nonlinearity . Even now there is little useful experimental data and
information on SLFC ., because of such difficulties .

As a first step . therefore . we started to investigate such transition phenomenon of a
3-dimensional compressible boundary layer numerically and experimentally . In the numerical
approach ., to understand the physical mechanism of the transitionphenomenon, we analyzed | inear
stability characteristics and estimated transition position by using the empirical e*method .
On the other hand , in the experimental approach . to obtain some ¢ data in developing the design
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system with SLFC , we carried out wind tunnel tests on SLFC in cooperation with NAL , using
a model with a suction system .

Our study consists of 3 phases . In the first phase ., we derived the formulation on |inear
stability of a 3-dimensional compressible boundary layer ¢ to the spatial theory“? , and
developed a system for calculating the eigenvalue and amplification rate of small disturbances .
Then we validated it in several typical cases by comparing our estimated amplification rates
with those by other workers . In the second phase , we investigated the spatial growth of
amplificationrate and developed a transitionpredictionmethod based on the empirical e"method .
This method consists of calculating the “N-factor” through the :integration of several
amplification rates and comparing it with the empirical ly obtained N-value which corresponds
to the transition of the boundary layer . In the third phase , we carried out wind tunnel tests
using an originally designed warped delta wing model and obtained some usefui data for the
transition and the effect of SLFC . Then we tried to analyze the transition characteristics of
our test model using the present prediction method .

The purpose of this paper is to summarize the principal results of our study . The results
of the first , second and third phase are described in section 2 , 3 and 4 respectively .

2. STUDY ON LINEAR STABILITY OF 3-DIMENSIONAL COMPRESSIBLE BOUNDARY LAYER

2.1 Formulation
1) Basic equation

Present formulation is based on the following assumptions .
@ simple plane wave disturbances

{“"V',W',P': T’,p’,u’} =q'(x,y,2,1) = G(y) e *Pe
Here (x,y,z) are the coordinates of streamwise direction , thickness direction of boundary
layer and spanwise direction , (w,v,w) the (x,y,z) components of velocity , (p,7,p,n) a
pressure , temperature , density and viscosity respectively . And w is a circular frequency
(real) and a,B the components of wave number vector (complex) .
@ parallel mean flow

Uy w.p,To,ut={UG),0,W(»),1,T(), p(), u(»)}

Then the basic equation generally can be summarized in the following form'? .

g
@=2%¢, , 1=1,8 m
dy &
d
where @, =au+Bw |, q32=& ., 9s=V , @, =p ,
dy
. do. 3 3 d
os=T1 , (96=i . @y =ow-fi CP8=_(p7

dy

Here these quantities are non-dimensionalized with boundary layer thickness and reference
quantities at the edge of boundary layer . And the matrix a, is related to the boundary layer
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profiles of velocity , temperature , etc. . Those details are described in Appendix | .

2) Boundary condition
Generally the boundary condition in linear stability analysis is that all disturbances
vanish at the wall and the edge of the boundary layer as follows :
P =@, =@s =9, =0 , ary=0 @
@, P, @5, 9, >0 , asy—>»
Here the combination of the above homogeneous basic equation and such boundary condition leads
to trivial solutions , except for only one case where each parameter of the matrix is equal

to the eigenvalue respectively . Therefore we must solve the so-called eigenvalue problem .

2.2 Method of Sclution
To solve this eigenvalue problem , we adapted the method described in ref.2 . The details
are summarized in Appendix |1l and the main features are as follows :
D Integration from edge to wall by the 4th order Runge—Kutta-Gill method
@ Application of analytical sofution on the initial values at the edge (see Appendix {1)
@ Use of the orthonormalization technique by Gram-Schmidt® to remove the errors due to
numerical integration (see Appendix IV)
@ lteration by the Newton method with a “pseudo” boundary condition

2.3 Validation of Present Formulation
As a first step . we tried to validate present formulation in two typical cases .

1) 2-dimensional incompressible viscous flow
First of all , under the assumptions of 2-dimensionality and incompressibility . the

following relations are obtained :
dw

=0 , w=0 = @ =ai , @,=-Pu @)

W:
dy _
=0 = @,=¢,=0 4)
ar ' '
T, - lunnecessary = , =, :unnecessary ®)
Ly
Then we can derive the governing equation for @, =V from eq. (1) as follows :
1 dl , E 2 , alZ
— -—-a” —MaU—m)g7—a”+k1 ?(m=0 {6)
Ridy” dy - dy

This is completely equal to the'well—known Orr-Sommerfeid equation
2) 2-dimensional compressibie inviscid flow

Next , under the assumptions of 2-dimensional ity (3) and 3-dimensional disturbance (P = 0) .

the following inviscid condition is added :
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=— =— =0 R— V)

Then we can derive the governing equation for @, = p from eq. (1) as follows :
2

{d (i ) Lo +BZ)(1—MZ)}CP4 0 g GUZOM.

dy dy V(@ +BHT

ay’
This is completely equal to the equation derived by Lees & Lin ¥ and Mack ¥ .

(8

2.4 Numerical Validation
As the next step . we numerically investigated eigenvalue characteristics in some typical

cases .

1) 2-dimensional disturbance on flat plate boundary layer

First of ali , we analyzed a case of incompressible flat plate , namely Blasius boundary
layer , and obtained the result summarized in Fig.1 . This figure shows the comparison of a
neutral curve between the present estimation and the famous solution by Tollmien-Schlichting .
Here the abscissa indicates Reynolds number based on displacement thickness 8" and the ordinate
denotes the wave number of disturbance which is non-dimensionalized with 8 As seen in this
figure , we obtained good agreement .

Next we analyzed some compressible cases and summarized the results in Fig.2 and 3 ,
comparing with the results by Arnal® . Fig. 2 shows several eigenvalues corresponding to stable
or unstable states of the boundary layer at Mach 2.2 in the plane of Reynolds number and wave
number . And Fig. 3 shows the neutral curve on the boundary layer at Mach 3.0 . As seen in these
figures , we could mostly obtain good agreement .

2) 3-dimensional disturbance on flat plate boundary iayer

As a typical case including 3-dimensionality , first of all , we investigated the maximum
amplification rate of 3-dimensional disturbance on the 2-dimensional compressible flat plate
boundary layer , and obtained the result shown in Fig.4 . Here the abscissa indicates the Mach
number of the mean flow , and the ordinate denotes maximum amplification rate . And ¢y is the
angle between the directions of mean flow and propagation of disturbance . As seen inthis figure,

we obtained good agreement with the result by Mack® .

3) 2-dimensional disturbance on Falkner-Skan—-Cooke boundary layer

As the next case on 3-dimensionality , we investigated 2-dimensional disturbance on the
boundary layer of simple 3-dimensional flow over an infinite swept wing with a wedge-shaped
cross-section . Usually the characteristics of the boundary layer on this wing are predicted
by the solution of the well-known Falkner-Skan-Cooke boundary layer equation” .

Fig. 5 shows the relation between maximum amplification rate and sweep angle , compared with

the result by Mack” . Here the abscissa indicates sweep angle and the ordinate denotes the maximum
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amplification rate divided by the value for the Blasius boundary layer . As seen in this figure,
we could not obtain good agreement quantitatively but found it quatitatively . Presently we
are considering that the quantitative difference originated in a numerical error in the

calculation of boundary layer profiles .

3. STUDY ON TRANSITION PREDICTION METHOD

Recent!y it is well known that the current e" method is widely used to predict the transition
position. This method consists of the following twoparts. The first part consists of estimating
the amplification rates of several disturbances , and the other consists of comparing the
integrated amplification rates called “N-factor” , with a specified value derived empirically
according to a lot of experimental data on transition. In this study , we first investigated
the formulation of the e" method and then validated it through typical numerical analysis

3.1 Formulation of the e" Method
1) Definition of amplitude of disturbance

According to the assumption of small plane wave disturbance , the amplitude A4 on 3-
dimensional disturbance is defined as follows :

1n[§) - [(~ads, -Bdy,) - |do ©

o v ..

where A4, is the amplitude at the neutral point . Here in this formulation . for convenience
we adapted the so-called streamline coordinate . which is different from that in previous
stabi!ity formulations . That is, the direction of the streamline at the edge of the boundary
layer is indicated by x_. the direction of cross-flow y_.

2) Assumption for the amplification of disturbance

Unless the path for integration is specified . we can not calculate the above integration .
Moreover some supplementary relations between wave number (a, ,3,) and amplification rate
(o, ,B,) are necessary . Presentiy some models are suggested to solve this probiem . Through
detaiied investigation of these models ., we decided to adapt the following approach :

According to the assumption of specifying the amplificationdirection (8) suggested by Mack ,
first 2; all , we can simplify the formulation as follows :

'y

d—*’ =tanf , B, =atany = do= —a, (1+ tantyp tan 8)dx, ao
x

Here {5 is treated as a parameter .
Then we assume 6 =0 , because this assumption simplifies the present method and it is
physically reasonable to consider that the most dominate direction is the streamline direction.

And finally we obtain the following relation .
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do = —adx, = ———dx. (1)
coso,

where x stands for the coordinate in the chordwise direction normalito:the leading edge and
¢, the local sweep angle at the edge . On the other hand , {ﬁ is not explicitly included in
this expression , but the influence of {E , namely B. is implicitly reflected by

o, (9.0, /,R(x,)) . Here wstan-l[ﬁ—f) S

o, 21
3) Nethod to estimate N-factor
Presently it is known that there are several methods to estimate the N-factor based on the
above definition of the amplitude of disturbance . Among them, we adapted the fol lowing Envelop
Method® .

A
N = Max Max Max h{—‘) (12)
v P I An WS
. Yo Aty Al & -
m(ﬁ) - [do= [TRONRS) TSG04 )
(§] YA C Xeo Cosq)e(xc) Eqo cosd)e
— — X
S, f) =—a,(x 9,9, /)-8(x,) ECEBC—
Here Max ,Max, Max stand for choosing local maximum values for 1p,{ﬂ,j" at each x_
Wy Y I

respectively . Therefore N corresponds to the envelop for every curve .

3.2 Validation of Present e" Method
To validate our e" method , we investigated transition characteristics in the following

two cases .

1) 2-dimensional incompressible flat plate flow (Blasius flow)

First of all , we analyzed the relation between amplification rate (—c,0)and frequency
(f) in the range of various Reynolds number based on boundary layer thickness (Rd) , using
our linear stability formulation . One of those results is shown in Fig.6 . Then using these
relations , we summarized the estimated N-factor as shown in the lower part of Fig. 7 . Here
the upper part of this figure shows the result by Arnal® . In a comparing them , we obtained
good agreement . And since it is experimentally observed that the natural transition exists
in the range indicated by the black arrow in Fig.7 , we can estimate that the N-factor

corresponding to the transition is about 8 to 10 .
2) 3-dimensional incompressible infinite swept fiat plate flow

For another validation, we investigated the wind tunnel test on a swept flat plate carried
out at DFVLRY . In the analysis of such a flow field, the so-called Falkner-Skan-Cooke boundary
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layer approach is approximately effective . Therefore, using this approach ., we estimated the
N-factor and summarized the result in the lower part of Fig. 8 . Here the upper part shows the
result estimated by DFVLR using temporal theory . As seen in this figure ., we obtained good
agreement except for lower frequencies

Since in ref. 9 it is stated that transition was not observed in the test because of a weak

adverse pressure gradient ., we can estimate that the transition N-factor is more than 12

4. STUDY ON WIND TUNNEL TESTS FOR SUPERSONIC LAMINAR- FLOW CONTROL

The main objective of our wind tunnel tests is to obtain some useful data for understanding
transition phenomenon at supersonic speed and developing a tran;ition prediction system
including the effect of SLFC . Therefore we originally designed a wing mode! with the suction
system for SLFC and carried out the tests at the 2mX2m transonic wind tunnel of the National
Aerospace Laboratory (NAL) . Then we analyzed the transition characteristics using our

prediction system and compared the estimated result with the test result

4.1 Wind Tunnel Test
1) Outline of present wind tunnel tests

Our tunnel model is a half-mounted wing mode! ., as shown in Fig. 9, and it has a special
upper surface with about 60, 000 tiny holes (0.1 mmdiameter ) for suction of air. Its planform
is asimple one , namely delta shaped . but its surface is a little complicated , because the
“warped surface’ , which was designed originally for minimizing lift-dependent drag, is applied
to this model .

We carried out wind tunnel test twice . As our attention is directed to supersonic speed ,
the test case at M=1. 4 was emphasized . In those tests , we measured force and pressure on the
surface and in the wake . Also we tried to obtain the transition characteristics by using two
visualization techniques , that is , monitoring by an infrared camera and a liguid crystal .

Qur wind tunnel tests consist of the foliowing three parts. The first part is a “fundamental
test” to obtain the fundamental characteristics of our model . The second part is a “suction
test” to investigate the effect on the suction of the boundary layer . And the third part is

a “visualization test” to understand the transition characteristics .

2) Summary of test results
In the fundamental test, since we obtained good agreement between the estimated and measured
pressure distributions under design conditions , we validated our warped surface designmethod .
However , the influence of the tunnel walil was made clear by the reduction of 1ift slope
In the suction test . we couldn't find any significant effect in either the characteristics
of total drag or the distribution of total pressure loss in the wake . And presently we are

considering that the reason is based on (1) a stronger cross flow instability than we had
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predicted and (2) the small suction surface . Therefore we need to improve our model to obtain
useful data on SLFC .

In the visualization test , using the liquid crystal technique , we observed 'the natural
transition in the condition of the existing accelerated region on the forward part of the lower
surface . This condition was chosen to realize the delay of the natural transition. (Here the
reason why we didn't give the upper surface a coat of liquid crystal is based on the existence
of the suction surface . ) The natural transition characteristics obtained through the other
pattern of liquid crystal is summarized in Fig. 10 . As seen in this figure , we found that the
location of transition was about 6% local chord length at the condition of N=1.4 and «a=8"

On the other hand . in the test with an infrared camera . we couldn't clearly observe the
natural transition . Presently we are considering that the reason is based on the influence
of other sources , for example , lighting ., porous wall , beams , etc.. Therefore at the next

step , such surrounding should be improved as much as possible .

4.2 Study of Transition Characteristics Based on Test Results

As one validation of our transition prediction method , we investigated the transition
characteristics of the present wind tunnel model . First of all , we analyzed the 3-dimensional
compressible laminar boundary layer based on the measured pressure distribution , using the
method described in ref. 10 . Then we soived the eigenvalue problem and estimated the N—-factor .

The results are as follows .

1) Influence of v

As there are some parameters such as f,1 and v in our method . the influence of these
parameters on the amplification rate of disturbance should be investigated in detail . First
of all , we investigated the influence of ¥ .

General ly we have supposed that the transition phenomenon of our model is mainly dominated
by cross flow instability , because of its highly swept leading edge . Therefore we paid
attention to the case of ¢ =70~90° . Consequentiy we found that the amplification rate had
the largest value at the condition of Y =0" .

2) Influence of
Next we investigated the influence of ¢ in the condition of {p =0" . And we ascertained
that the amplification rate at {y >0° was larger than that at {y <Q° . This is easily

understandable when considering the relation between the sweep angle and the direction of cross
flow . Therefore the condition of 0° <1 <90° is enough for the present analysis .

3) Estimation of N-factor

Fig. 11 shows the estimated N-factor on the lower surface of our model at the condition of
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M=1.4. a=8" and 40% semi-span position . As seen in this figure , the disturbance with f
=60 kHz generates the largest N near the region of the leading edge , and the disturbance with
f =40 kHz does so at the rear part

Generally , in the e" method . the location of transition is predicted by comparing the
estimated N-factor with the empirical N value corresponding to the transition . For a 3-
dimensional compressible boundary layer . however , the reasonable value of transition N-factor
has not been estimated empirically yet . Therefore, in this stage, we can't completely predict
the location of transition. it is very important to gather a lot of experimental data to estimate
the reasonable N value . And from this standpoint , we tried to estimate the N value based on
the present test result .

Inour liquid crystal visualization test ., it was observed that the transition was iocated
at a position about 6% local chord rearward from the leading edge . Therefore we can estimate
that the transition N value is nearly equal to 7 . This value is less than the N value of 8
to 10 usually used on 2-dimensional incompressibie flat plate fiows , as we mentioned above .
Here we consider that this value is roughly vatid . because of the fact that the transition
Reynolds number on a compressible boundary layer is generally iess than on an incompressible
one

But present estimation is not extremely precise because of the existence of some factors
influencing transition . such as turbulence of the freestream . the number in the porous wall
the boundary layer on the tunnel wall . and so on . Therefore a lot of wind tunnel tests should

be carried out using several modeis of which the transition position is well known

5. GONCLUDING REMARKS

As a first step in developing a design system for supersonic Iaminar flow control (SLFC) .
we first investigated the linear stability of the 3-dimensional compressible boundary layer
and then developed a transition prediction system according to the current e' method . Next
we carried out wind tunnel tests using the model designed originally for SLFC . to understand
the effect of SLFC and to obtain useful data for it . Unfortunately , though the effect of SLFC
wasn't made clear because of the large swept angle and small suction surface of our model .
we could obtain information on the natural transition through the visualization test using a
liquid crystal . Then comparing this test result with the analysis for the transition of our
mode! by the present method . we ascertained that the transition N value was about 7. To improve
the precision of present estimation . however ., it is necessary to continue further study in

wind tunnel tests .
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APPENDIX | . DETAIL EXPRESSION FOR THE MATRIX {a,. j}

In the following expression, R denotes the Reynolds number based on velocity , density .
viscosity at the edge of boundary layer respectively and boundary layer thickness , and y
o and M, indicate the ratio of specific heat (=1.4) . Prandtl| number and Mach number at

the edge of boundary layer ., respectively .

0 1 ¢ o o0 0 o0 0

Ay Ay Gy Gy Ay 4 00

-i 0 a; a, a, 0 0 0O

a, 4, 4, a, d,. 4 0 0

la, p= | 0 Tn e te e T (A1)

o o o0 o o 1 0 ©
0 a, ay Ay dyx a 0 ag
o o0 0O o O o0 0 1
0 0 a3 0 as ay ay ag

o L
wdy
a, = ﬁ(ad—qmﬂJ (o +,[53){-f£—i@]
wi dv  dy 37dy wdy
, L iR (aU+pW-w)y M’
dyy =(a“+BH){_-( { o )Y }
3pT
o (U B o) +8%) 1 8 [du( dU  dW
8 37 way |dI'\  dy dy
Vdu( dU _dw
avf =-——10a—+ ——
Tooowdr\ 4y dy
1 dT"
dy, = ——
323 Tdy
a,, =—i(aU+BW—u))YM"ﬂ
P
aj,=]—T(aU+BW—w)

Thic dociiment i nrovided hv TAXA



70

(N

41

SPECIAL PUBLICATION OF NATIONAL AEROSPACE LABORATORY SP-31

L{_L(‘_‘_B zd&)dT} _ 4iy M u(al +BW - w)
l+c| R\3T dr)dy| ’ 3 pRT

1 m

1+cl R

1+c|3RT |d* wdl\dy

o1 4”,{d2T+1d_u(ﬂ’f)“}_,p(aUﬂuﬁW—w)_;(az+Bz)}

PpRT wdl T)dy dy dy

C
! i'(“U+f‘W‘w)5{&5{Z+,-( 4u +gd_u) o4V g
3 RT  dTdy d ' dy
1 iiu(aU+BW—w)
3 RT

/ : d d
- gwMeu{[id_u]d_fxamw_m)m_v+B_W}
)

3RT RdT

l+c

2y -DoM, ( dU+Bﬂ)
a” +f° dy

a__
+p dy

oRp dT

. = —-—“———21'(\'—1)0]\462 agg+ﬁd—w
a dy dy

u ay
» OR

= -i(y-O)M,— (aU +BW -w)
n

. = lm(aU+ﬁW—w)—(Y_l)0A/fez‘ﬁ‘{[w)_+(ﬂ)-}_(az+ﬁ:)_ldzu
u u u d

2

dTl

dy dy

_2du
u dy

1 aw dU
. = =2(y-1oM, ——— (a —ﬁ—]
o +f

wl dy ~ dy

pR( dw dU)
=
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APPENDIX 1. ANALYTIGAL SOLUTION AT THE EDGE OF BOUNDARY LAYER

At the edge of boundary layer , the following relation is generally specified .
luw.Tpul={1,W 1,11} (A2)
And al| derivatives on y are equal to 0. Then all components of the matrix {a, }.} are constant

and simplified as follows :

0 1 0 0 0 0 0
G, 0 0 &, a, 0 0
i 0 0 &, a, 0 0
{ai_;(y = 5)} = {_U} = g agz a: 2 g a;S 2 g = const. (A3
0 0 0 a. a, O 0 0
0 0 0 0 0 0 0 1
0o 0 0 0 0 0 & O

If we consider the basic equation above the edge . we can derive the next equation .
dp, « _
ECL a, g, , i=1~8 (A4)
3
where @, = @, (y = 98) .
Using the eigenvalues and eigenfunctions of the matrix {a‘,.j} . we can obtain the solution

1=

@, of this equation analytically in accordance with the following procedure .

First of all ., introducing Equation (A4) .
Y, =@. , P,=9, , V,=0; and 1, =@, is rewritten as follows :
Y, A, 4, 4 0\ v,
ale | Lo 4, 4, 0w,
5 W = - . b (A5)
dy” | W, 0 4, 4; 0 v,
WP, 0 0 0 A, \w,
where
An =d, A12 =d,, , An =y
Ay = A0, + 0505, + A, 0, Ay =000 + 505 + s
As: =dg, Azs = dgs
A44 = An

Next if we assume a typical solution such as xe™ | we can analytically obtain the
eigenvalues A, of the matrix {Ai.]} through the following eigenvalue equation .

iAu - N A13 A13 0 :
0 A4, -N A4 0 |
, - S =0 (A6)
Asz A33/-‘_ W 0
0 0 0 A, =N
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A = _\f;iT

p = s Ay ,"1(A7,-A Vada, 0 eTTh
oo\ E RN BER O A =M,
N LY P b
=T Ve A Ty e m s SE T W

—
hy=-yA,
Here since the solutions with eigenvalues of A, A, A, ,A, increase exponentially

as y increases , they are invalid . Accordingly there are four independent solutions in the

above equation .

On the other hand ., the following solution v, is usually assumed to obtain the
eigenfunction .

8
wz(y)=ZBlid1ekly 3 1=1~4 (A?)

And by inserting (A7) into Equation (AS), the expansion coefficients {13 } are obtained as

17

follows :
1 B, B; 01 B¢, B, 0
0 1 1 0 0 1 1 0
{B,j}= (A8)
O BS’,‘ 33 O O B36 BS7 O
0 0 0O 1 0 0 0 1
where
3 415 2_ 91 A"
B, = Aednt O —A)As -y 5564
(}"1 _An)Azs
B, =1
2—A'n
B”:?\l_d,_‘-:
AZS
B, =0

Here d, is constant numbers determined by the condition of normalization .
Finally , the four independent solutions ¢, are summarized in the following form .

¢ () =AM L I=1~4 | i=1~8 (h9)
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1 Ayn A 0 1 A}s Ay 0
}-1 Ay Ay 0 ";‘-1 Ay Ay 0
Asl A32 As; 0 "A31 Ass A3? 0
(A) 0 Ay, Ay 0 0 A, A, 0
T AL, Ay 0 0 Ay Ay O
0 Ag Ag 0 0 Aﬁ6 A67 0
0 0 0 1 0 0 0 1
0 0 0 A84 0 0 0 A84
N
31 7'..]
a
Age =21
84 }..4
*B,=0 , 1=2,36]7
as B, +a,B,, +abB;,
Au:l > A?,l=>\'l > Au: K,.B” >
B B
A4 = Asz_—éi Aﬁ:‘_}\'IASI
1! Bu
*B”=0 , 1=2,3,6,7
a,, B, +a;.B;
A”—A2,=0, Aﬁ=34 21 358037 ,
A
A4 =le A5:=Bﬂ > Am:}“:By
APPENDIX 111. QUTLINE OF THE PRESENT METHOD OF SOLUTION

Usual Iy because of four independent eigenvalues and eigenfunctions , a general solution

of the present basic equation is composed with the four independent solutions as follows :
4
@, (») = 2 koo (p) (A10)

Here each independent solution cp,.“:’ () is obtained by integrating the basic equation from edge
towall . Andonthe initial values inthis integration, we apply the following analytic solution

derived in APPENDIX 11 .
0,78 =9,"(8) A1)

By the way . those independent solutions generally have non-zero values at wall , namely
@, (0)#0 . Therefore the four expansion coefficients 4, satisfied with the fol lowing equation

are completely equal to O .

1
cp,v(0)=2kg ¢.7(0)=0 , i=1357 (A12)
=}

To avoid such trivial situation , we assume the following “pseudo” boundary condition .
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At first , let's consider to relax one of the boundary conditions for above four physical
quantities . That is , in our method , we tentatively selected the condition for ¢, . Then
we replace it with the following condition for ¢, = p . Because we have no boundary condition
for @, .
9" (0) @7(0) @7(0) @, (0))(k
2.0 9.70) 0,70 @O k| s
2" (0) 9,7(0) @.7(0) @7(0) ) K
%, (0 9,70 9,70 o, (K, 0
Here we convenient|y assumed that the value of @, at wal | was equal 1 without lack of generality.
Accordingly the expansion coefficients k, are obtained as follows :

0
r k)|, ae

4
k=N0T "8 .=, , I=1~4 (A14)
! ]Z 1) J2 12

where I, =U,+iV,

Next we compose a general solution using these coefficients . At that time , the solution
for ¢, must be satisfied with the following true boundary condition .

E
¢,(0) = Zk, 0"(0)=0 (A15)

Therefore to keep this condition , we must improve the values of parameters in the matrix {a,j}

such as (a,p,w, R) and estimate the four converged independent solutions through the iterative

process and the fol lowing Newton Method . After the convergence in this process, we can finally
obtain the eignevalues (a,f) and eigenfunctions ,(y) for stability characteristics .

To simplify our iterative process , first of all , we assumed certain values for
R,w,B(=P, +iB,) . and tried to improve the value of a(=a, +/0,) only . Generally the
solutions at the (n+1)-th state in the iterative process can be expressed as follows :

n+l

o, =a +0a

y

(A16)

n+l

a"" =a,” +0a,”
where (a,‘",a,") stands for the solutions at the n-th state and (6a,",6a,") the modification
quantities .
If the (n+1)-th solution satisfies the above true boundary condition . those modification

quantities can be estimated under the approximation of neglecting the second order of them as
follows :
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da,”
da”

where

‘[pﬂ ) Re q)ln(o)
Py P/ {Im cPln(O)

aRe(o,"(0) 8 1m(,"(0))
Pn = —a_ =Pn > Pp=|—7T =—Pn
% (u ".a‘") ¢ “r (a ",a-")

In calculating the derivatives p,, . we used the numerical approach based on the approximaticn

of the modification Ac, =ea, and £¢=10" ~107 .

APPENDIX 1V. ORTHONORMALIZATION TECHNIQUE BY GRAM-SCHMIDT

Since numerical integration generally produces an error ., the orthogonarity of our
independent solutions in our method is reduced . To remcve this reduction . that is. to keep
the orthogonal ity of the soluticns , it is well-known that the following replacement at each
integration step for y is effective®

EX(aal
(Xzz) —Cl,_,Ym)
éX(Z) —Cle“)’
o (x®-C,r® - CzaYm)
= IX(S) - Cry(l} _ C'VYO}[
(Xf'-'?) _ CMYU) _ CTM}/(Z) _ C34Y(3))
iX(-‘b) _ CHY(I) _ C24Y(2) _ (;'34},(3):
C = Y(’-)*XUI'
ij

(2}

4 _

where * denotes complex conjugate .
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Fig. 2 Stability characteristics of flat plate boundary layer : N = 2.2

a8 |71 :

oef 1
I

.2 T N

‘ Neutral Stability
: =0

O Present
N S R

— Arnal i

.
1

7

Fig. 3 Stability characteristics of flat plate boundary fayer : N =3.0
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(Ref : Mack,L.M., AIAA J. Vol.13, No.3, 1975, pp.278-289)

Fig. 4 Naximum amplification rate of compressible flat plate boundary layer
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(Ref : Mack,L.M., AGARD Special Course on Stability and Transition , 1384)

Fig. 5 Maximum amplification rate of Falkner-Skan-Cooke boundary fayer
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Fig. 6 Estimated amplification rate of Blasius boundary layer
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Fig. 7 Estimated N-factor of Blasius boundary layer Fig.8 Estimated N-factor of Falkner-Skan-Cooke
boundary layer
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Max. Chord : ¢=1072.25 mm

Semi-span : $=500 mm

L.E. Sweep : A, =65°

hick. Ratio: 7/¢=0.05

Suction Area: 0.03<x/c=0.3
0.2=y/s=0.6
dia. d=0. 1mm

About 60, 000 holes

Fig.9 Wind tunnel model for supersonic laminar flow control test
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Fig. 10 Sketch on visualization of surface temperature
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Fig 11 Estimated N-factor on NAL-SLFC wind tunnel test
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