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1. INTRODUCTION

Adequate inspection schedules are considered to play increasingly an important role in maintaining
the structural integrity of advanced aircraft designed by the damage-tolerant method 1 -4 A rational
determination of inspection schedules, sample size, first inspection time and inspection intervals is the
key to effective detection, repair and replacement of fatigue cracks, and the resulting failed elements in
order to maintain the required reliability of aircraft structures. Structural reliability analysis is realized
to be a useful tool *! for developing adequate inspection schedules because several primary factors, such
as initial crack length, fatigue crack initiation time, fatigue crack propagation, service loads, residual
strength, and crack detection capability, are probabilistic and need to be treated in the analysis.

For the reliability analysis to be performed with a high degree of engineering soundness, the
probabilistic models used for the analysis must be defined reasonably well. However, the usual paucity
of pertinent data makes it difficulty for the probability density functions of those factors and of their
respective parameter values to be determined. Although actual data collected during in-service
inspections is limited in quantity as well as quality, it is a valuable source of highly useful information
that will be utilized not only to determine reliability-based inspection schedules but also to estimate
uncertain parameters in the physical model.

From this point of view, this research concentrates on the development of Bayesian reliability
analysis > ~®, which can estimate subjectively appropriate values of uncertain parameters with
decision-making on the basis of posterior probability and can develop optimal non-periodic inspection
schedules utilizing small sample field data collected during inspections.

A fatigue-critical element model used in the present study is a two-bay fail-safe structure in the
fuselage which consists of multiple components, namely, three frames and a skin panel. This element is
subjected to cyclic stress due to differential pressure and is designed in accordance with the
damage-tolerant method. Monte Carlo simulations are carried out to generate the failure process in the
structural element and to demonstrate the validity of the proposed Bayesian reliability methodology.

2. FATIGUE-CRITICAL STRUCTURAL ELEMENT MODEL

2.1 True Element Model

For a fatigue-critical structural element in Figure 1, the materials of skin and frames are 2024-T3
and 7075-T6 aluminum alloys, respectively. The failure process consists of crack initiation, propagation
and unstable crack growth. Fatigue cracks in the element propagate to the longitudinal direction of
fuselage.

1) Applied load
Aircraft fuselage structures are subjected to several kinds of loads. In this analysis, however, it is
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considered that the structural element is only subjected to cyclic constant stress As due to the cabin
differential pressure for each flight.. This stress depends on a location of the element, and As is assumed
to be a random variable normally distributed.

2) Fatigue crack initiation

Fatigue cracks initiate simultaneously at both sides of rivet holes in the skin and the center frame.
The initial half crack length a, is assumed to be the sum of the hole radius r, and the initial through
crack length a; shown in Figure 2. The time to crack initiation (TTCI) t,is a random variable governed
by a two-parameter Weibull distribution:

fo(to) = & (229)* exp(-(12)*) (1)
BB B

3) Fatigue crack propagation

Fatigue cracks on both sides of the rivet holes of a skin plate ag and a center frame a; subjected to
cyclic . loadsing propagate under the Paris law with the stress intensity factor range modified by
coefficients P

(1) Skin a: 43 _ C5(AKs)"S [¥))
dt

AKs = AsYras BrramePBulge

3)
Cs = 10°8
(2) Frame a;: 4 _ Cr(AKF)F @)
dt
AKF = AsYrar BwiPsi
F F Skin b ®

Cr = 10°F

in which parameters zg and z, are random variables assumed to be normally distributed. The period of
skin fatigue crack propagation lies between t, and t; shown in Figures 2 and 3. During that period, the
crack propagates from a, to a,. The variables, t; and a; denote the time and the crack length when the
element fails as mentioned below.

4) Element failure criterion

An element can fail either before or after fatigue crack initiation. Before crack initiation, the
element is considered to have failed when the stress due to differential pressure exceeds the strength of
the element. After crack initiation, the following two failure modes are considered to exist.: A failure due
to unstable crack growth occurs when the crack length reaches a certain level a; which is derived by a
failure criterion. This unstable crack is arrested at both sides of frames because the residual strength
increases near the frames. The other failure mode arises when a fatigue crack reaches the 2-bay fail-safe
crack length which is equivalent to a, Feddersen's criterion of residual strength is adopted for the
condition of unstable crack propagating. This criterion involves yield stress Sy and fracture toughness K¢,
both of which are random variables governed by two-parameter Weibull distributions.

2.2 Element Model for Bayesian Reliability Analysis
External detailed visual inspection is implemented in order to detect skin cracks in the element
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shown in Figure 1. Therefore, a skin crack a;is only used in the analysis. As shown in Figures 2 and 3,
a, is visually detectable when it exceeds ag*= 1, + an;, . The variables r, and a., denote the rivet head
radius and the minimum detectable crack length due to visual inspection respectively. The detectable
crack propagation period lies between t,* and t,. The TTCI of this model to* is much longer than that for
the true model t,.

1) Fatigue crack initiation
The TTCI of the model is assumed to be a random variable with the density function of a
two-parameter Weibull distribution:

fo(tolB*) = & )™ exp(12)°) ©)
B+ B pe

Uncertainty is introduced in the TTCI through the scale parameter B* which is a random variable.

2) Fatigue crack propagation
The period of skin fatigue crack propagation is defined between ty* and t, when the element fails.
During that period, the crack propagates from a,* to a,. The following Paris equation is used to present a
skin fatigue crack propagation:
& - c)™” ()
dt
C = 10°
Integrating Eq.(7) from a,* to the current crack length as at time t, the following expression is obtained:
as(t-oz) = (D10°R-a6" 1" (®)
= (b-2)/2
a:) = TIh + 3min

Uncertainty in fatigue crack propagation is introduced by a random variable z.

3) Inspection

All structural elements are inspected by external detailed visual inspection at the time of each
inspection. It is assumed that element failure can be detected always if it exists during the inspection
process. Therefore, the probability of detecting the element failure is equal to unity.

4) Probability of crack detection for visual inspection
Information on the probabilities of crack detection (POD) is necessary in the present analysis.

(1) Probability of detection for a crack
The probability that a crack will be detected, D(as*ld), by visual inspection depends on the crack
size in excess of the radius 1, of the rivet head shown in Figure 2 and is assumed to be given by a
three-parameter Weibull function as shown below:

D@id) = 1- exp(-@Bniny®}  (9)
d-amin

Then, the probability that the crack will not be detected is given by:
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D(ayd)=1-D@@sid)  (10)
where ag* = as - 1, and a,, denote the inspectable and the minimum detectable crack length.

(2) Probability of detection for cracks at a rivet
Both sides of the rivet head are inspected for cracks. As it is assumed that the skin crack is always
symmetric about the central axis, the probability D, (ag*ld} that at least the crack on the one side is
detected is given by:

Dy(asid) = 1- Dy(ashd) (11

wherest (ag*ld) is:

Dy(asld) = [D(asld)]> (12)

5) Repair or replacement
If a crack is detected in the skin of the element, the skin and frame are repaired or replaced and the
element regains its initial strength.

6) Failure rate and element reliability
Based on the element failure criterion, following two failure rates are defined.

(1) Before crack initiation
The failure rate at time instant t before crack initiation is a very small constant and given by:

Failure rate: h(t) = exp(r) = ho (13)

T

U(t-Ty) = expf- ! h(t)dt} = exp(-(t-To)eexp(r)} (14)
0

Reliability:

(2) After crack initiation
A two-parameter Weibull function is adopted for the failure rate after crack initiation at time
instant t:

Failure rate: h@) = 22 () ! + exp(r) 15)
Br B

Reliability:
v
V(t-to) = exp{-f h(r)dt) = exp(- E}f,f- (t-t0)* - (t-to)exp(r)}  (16)

0
7) Uncertain parameters

Two parameters B* and z are estimated from inspection data such as the number of cracks, crack
sizes and whether or not failures were observed. Other parameters are assumed to be known.

3. FORMULATION OF BAYESIAN RELIABILITY ANALYSIS

3.1 Possible Events at Time of Inspection
At the time of the j-th inspection performed at time T; on a certain element, one of the following
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five events may occur (knowing that this element was repaired or replaced during the / -th inspection
performed at time T, with I<j ):

1) { A:], I): event that the element is found to have failed at the time of the j-th inspection T;.
This event consists of the following two mutually exclusive events:
[1]1 E,; : event that the element failed before crack initiation, sometime during the time
interval [T, T)].
[2] E,; : event that the element failed after crack initiation, sometime during the time
interval [T;,, T|].
2} { Byi(a):], I} : event that a crack of length between a; and a+da, is detected in the element : E,;.
3} [ B;:j, !} : event that no crack is detected in the element. This event consists of the following
two mutually exclusive events:
[1] E,; : event that the element did not fail in the time interval [Tj,, T;] and no crack exists
in the element at the time of inspection T;.
[2] E;; : event that the element did not fail in the time interval [T;,, T;] but a crack exists
in the element which is not detect at the time of inspection T;.

The probabilities of these five events will be evaluated for a particular element in terms of the
probability density and distribution functions f*(ti*) and F,*(tIp*) of the TTCIL a skin crack ag ,
reliability functions U(t)} and V(t) and probability of crack detection D,(aid}. :

3.2 Reliability of an Element After the Latest Inspection T,
The reliability of two types of elements at time instant t* after the j-th inspection is calculated in

the following:

1} Elements repaired or replaced at the j-th inspection )
Elements are repaired or replaced at the j-th inspection in the case of events {A: j, I} or {B,(a): j, {},
respectively:
Reliability:

*
t

R(t"; Repair) = {1 - Fo(t -Tjp")}*U"-Ty) +J fo-TIR PURTY V(I -Dde  (17)
Tj

2) Elements not Repaired at the j-th Inspection
An element is neither repaired nor replaced at the j-th inspection in the case of event {B,: j, I}:

Reliability: R(['; No Repair) = —-&— (18)
P(Bz: j, i}

*
L

Q= {1 -Fy-TUpH}UE-T) +[ fo(t-TaB ) UE-Toe V{ -t)dt

Tj

i+l :
+ Z‘J £o(t- TR Y U T V(L -1) '[k=lj_11 (1 - Dy(as(Ti-tlz))} 1dt 19

3.3 Uncertain Parameters by Bayesian Analysis
1) Prior joint density function of uncertain parameters
Initially, it is assumed that b* and z are jointly and uniformly distributed according to the following
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prior joint density function:

B, 2) = 1 (20)

(B*max-B* min)(Zmax-Zmin)
where:

B'min < ﬁ' < B.mlx v Zmin S Z < Zmax (21)

2) Likelihood function resulting from j-th inspection
The likelihood function LF, for the entire structure as a result of the j-th inspection is calculated as:

LF;= fi LE™ (22

where LF,™ is the likelihood function for element m resulting from the j-th inspection and M is the total
number of elements in the structure.

3) Posterior joint density function of uncertain parameters
The posterior joint density function of the two uncertain parameters b* and z immediately after the
j-th inspection, is given by:

LFjf°

f@*, 2) = (23)

[ P [:: (Numerator) dB*dz

B*min

3.4 Reliability of Entire Structure at Time Instant t* After the Latest Inspection T,
The reliability of the entire structure consisting of M elements at time instant t* after the latest
inspection T, is denoted by Ry(t*) and calculated as:

e B*max rZman .
Rue) = [ [ Ru B, @R PR 9
where:
Mj M2
Ru(t*1B*, 2) = [T] Rm(1*; Repair)]4{ [T Rm(t*; No Repain)] (25)

where M, is a number of elements either repaired or replaced at the j-th inspection, M, is a number of
elements found intact at the j-th inspection and M, + M, = M. In Eq.(25), Ry(t*: Repair) and R(t*; No
Repair) are identical with the reliabilities R(t*; Repair) and R(t*; No Repair) defined in Eqs.(17) and
(18), respectively. Note that R (t*; Repair) and R, (t*; No Repair) are conditional to given values of B*
and z.

3.5 Calculation of Time T,,, for Next Inspection
Assuming that the entire structure must maintain its reliability above a prespecified design level

throughout its service life, the time T;, for the next inspection after the latest one performed at T; is
calculated using:

Rm(1*) = Resign (26)

where R, denotes the prespecified design level of reliability for the entire structure. The time Ty, of

Thic dociiment i nrovided hv TAXA



The Advanced Aircraft Component Technologies 141

the (j+1)-th inspection is then estimated as the maximum value of t* that satisfies Eq.(26} as follows:

=-1
Tj+1 =t* =Rm (Rdcsign) (27)

It is obvious that the reliability of the entire structure remains above the prespecified design level
R gesign. through- out the service life of the structure.

4. NUMERICAL EXAMPLE

All the values of a true structural element model and a Bayesian analysis model listed in Table 1 are
approximately corresponding to these applicable to an actual fuselage structural design. Monte Carlo
simulations are performed to generate the failure process in the true structural element.

Two essential uncertain parameters p* and z are set to be jointly and uniformly distributed
according to the following initial prior joint density function shown by Eq.(20). The minimum and
maximum values of these parameters, and their ranges and increments are given by the engineering
judgment as follows:

B* . = 17,000 flights ; B*,... = 66,000 flights ; B* = B* .y - B*mn = 49,000 flights;
AB* = 3,500 flights

Zoin=-41: Z,,=-27; Z=2_,,-Zn,=14 Az=0.1

The aircraft is assumed to have 100 or 200 fatigue-critical elements. The service life is 50,000
flights and the minimum reliability level for the entire structure throughout its service life is set equal
to R4 g = 0.8. This indicates that the reliabilities of one element for both 100 and 200 fatigue-critical
elements are 0.998 and 0.999, respectively under the assumption of independence. The standard
deviation o, of z for the parameters of fatigue crack propagations of skin and frame in Eqs.(2) to (5) is
set at 0.154. This indicates that the speeds of fatigue crack propagation between twice and half the
mean crack propagation speeds of skin and frame account for 95% of all fatigue cracks. The values of
the parameters € and a,,,, in the POD of Eq.(9) are given as € = 1.4 and a,, = 0.04 inches based on the
field data ? of fatigue cracks visually detected. A parametric study on the parameter d in the POD is
performed for d = (1.2, 1.4, 1.6, 1.8) inches, in order to investigate its effect on crack detection
capability.

The reliability curves of the entire structure as a function of time for each combination of M =

(100, 200) and d = (1.2, 1.4, 1.6, 1.8) inches are depicted in Figures 4 and 5 with numbers of failed
elements and of detected cracks. It is shown that the inspections are implemented non-periodically.
The reliability returns to the unity after inspections and decreases along operation. The following
inspection is implemented at the reliability equal to Rg;, = 0.8 and shorter inspection intervals are
given with the progress of operation. The first inspection times T, for M = (100, 200) and d = (1.2, 1.4,
1.6, 1.8) inches are performed after approximately 30,000 flights due to the ranges of the parameter
values, B* and z, introduced by the engineering judgment in this analysis. In the case that the number
of critical elements increases, the number of inspections during service life for each parameter d in the
POD increases in order to maintain the same target reliability Rg,, and the numbers of failed elements
and detected cracks also increase. When the value of the parameter d in the POD gets larger, namely
the crack detection becomes less efficient, the number of inspections increases, and the inspection
intervals become shorter to keep the minimum level of reliability Rgyq, for the entire structure. When
the number of critical elements and the value of the parameter d become large, several elements would
have failed before they were detected by external detailed visual inspection.

The posterior joint density functions of the uncertain parameters, B* and z, after the third
inspection are plotted in Figures 6 and 7 for M = (160, 200) and d = (1.2, 1.4, 1.6, 1.8) inches,

Thic dociiment i nrovided hv TAXA



142 SPECIAL PUBLICATION OF NATIONAL AEROSPACE LABORATORY SP-31

respectively. The concentration of posterior joint density at the modal values for M = 100 is sharper
than that for M = 200, because the number of cracks found at the third inspection for M = 200 is
smaller than that for M = 100. It is anticipated that the concentration is around the reasonable modal
value.

5. CONCLUSIONS

The damage tolerant fuselage structure of an aircraft is analyzed and the usefulness of the Bayesian
reliability analysis has been demonstrated. The results of the numerical examples verify that this
analysis can indeed generate appropriate non-periodic inspection schedules with the estimation of
uncertain parameters even if a large number of crack data could not be collected during inspections. If
a fleet of aircraft can be inspected as in the actual case, alarge number of cracks and possibly failures
will be found and it makes the Bayesian analysis even more practical. It is also pointed out that the
present study has evaluated the generation of the failure process consisting of fatigue crack initiation
and propagation and final failure in the structure element.
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Table 1 Values of Parameters in Numerical Example

Bayesian analysis

Item Values for Range for
true model Model value estimation
-Service life (flights) 50,000
-Minimum level of reliability Rdesign 0.8
-Total number of critical elements M 100, 200
-Parameters of TTCI in Eq.(1)
2-parameter Weibull o 4 4
B(flights) 40,000
B* (flights) Unknown 17,000 to 66,000
-Rivet head radius r,{in) 0.18 0.18
-Initial half crack length
for true model ap(in) 0.1
-Initial half crack length
for Bayesian analysis ag”(in) 0.22
-Minimum detectable crack length amip(in) 0.04
-Effective width (in) Skin Wg 40
Frame WEL 14
-Maximum allowable crack length
Amax=W/2 (in) Skin as,max 20 20
Frame aF],max 7
aF2,max 1
2024-T3  7075-T6
{Skin:S) {Frame:F)
‘Yield stress Sy(ksi)
2-parameter Weibull Osy 19 19
By (ksi) 49 70
-Fracture toughness Kc(ksivin)
2-parameter Weibull OKc 12 12
Bk c(ksiVin) 140 65
-Fatigue crack propagation
in Eqs.(2) & (3) b 3.8 3.4
Normal Ky -9.5 -9.0
O, 0.154 0.154
in Eq.(5) b 4.0
Z Unknown -4.1 to -2.7
-Cyclic stress range
in EqQs.{2) & (3) As(ksi)
Normal g (ksi) 18
Cas (ksi) 0.9
-Parameters of POD in Eq.(7) £ 1.4
d (in) 12,14, 1.6, 1.8
-Parameters of failure rate in Eq.(11) r -18
inEq.(13) oy 5.5
B (flights) 37,000

Note: 1 ksi=6.895 MPa, 1 in=2.54 cm, 1 ksivVin=1.099 MPav¥m
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Posterior probability density f(B*, z)

Posterior probability density {(B+, z)

Posterior probability density {(B*, z)

Posterior probability density 1{(B*.2)
(=]

SPECIAL PUBLICATION OF NATIONAL AEROSPACE LABORATORY SP-31

1) M=100 and d=1.2 inches
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