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A New High-Accuracy Method-Finite Spectral Method

Jian-Ping Wang*

Abstract

The conception of finite spectral method is given in this
paper. The method of non-periodic Fourier transform and
two finite spectral schemes are presented. Numerical tests
of a wave propagation problem and a shock tube problem
are performed.

1 Introduction

The advance in computational fluid dynamics enables al-
most all problems in fluid dynamics to be solved numer-
ically. However, there are still many difficulties to make
their results reliable. Two approaches to real results are
considered: one is the construction of proper mathemat-
ical models, and another is the development of accurate
numerical methods. For instance, the numerical research
on turbulence just relies on these two keys. Spectral meth-
ods have taken an important role in numerical studies on
turbulence due to their high-accuracy, while their appli-
cations have been restricted to simple geometry and uni-
form variations. Although the spectral element method [1]
and the uniform high-order spectral methods [2] have been
proposed, their flexibility is not satisfactory to deal with
arbitrary geometry and their algorithm is complicated for
programming. To review the progress of spectral methods,
all efforts have been made to overcome the contradiction
between the global properties of spectral methods and the
local properties of flow fields[3]. Therefore, it becomes
necessary to construct local spectral methods as flexible
as finite difference methods and finite element methods.

Finite spectral method is a new conception defined
as local spectral schemes based on non-periodic Fourier
transform with finite order and finite points[4]. The non-
periodic Fourier transform owns both non-periodicity and
uniform mesh, which makes it possible to construct spec-
tral schemes pointwise or cellwise. In this paper, we pro-
pose two finite spectral schemes and give their applications
to the wave propagation problem and the shock tube prob-
lem.

2 Non-periodic Fourier Trans-
form

To change the conventional point of view, we find that
non-periodic functions are approximated by Fourier se-
ries in arbitrary sub-intervals of the whole periodic in-
terval. Using a truncated Fourier series with periodic-
ity on [—1, 1] to interpolate u(£), a non-periodic func-
tion on [—{, 1] (-1 < —=I < | < 1), we have the fol-
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lowing relations at the 2N + 1 uniform discrete points

& =jl/N (j==N,—-N+1,...,N):

N .
u(¢;) = Z Tine™8 )]

n=—N

The 2N +1 unknown coefficients #,, are obtained by solv-
ing the above system.

3 Finite Spectral Method

3.1 Central Spectral Scheme

This is the simplest scheme in finite spectral method,
which is similar to the central difference scheme. We in-
troduce #(¢'), a local Fourier series centered on z;, to ap-
proximate a smooth function u(z) as

N

ag) = Y alel™s, (2)

n=—-N
where ¢' is the local coordinate given by

£ = (- )

Az is the increment of z,  and N have the same definition
with eq.(1). @ interpolates u at the stencil points

a(g)) = u(zi;),  (G=-N, -N+1,...,N). (4

Thus the spatial derivatives of u near r; can be expressed
as

i ~ g irl & i _jmng
u:r(x) = E:ruf(é ) = NAz Z nu.e ] (5)
n=—N

ul (x) = e (E) = — )\ § n?ai ™ (6
L) = (& Pade) =~ () T e (0

n=-—

The higher order derivatives can be derived similarly. The
above equations are reduced to the following simple forms
at the center z;

i N
UI(I,‘) = _NAIL' Z nun,i? (7)
n=-N
: m \* X i
e =~ (7o) Tt ®
: n=-—N

where ﬁ;,, and 4} ; are the real part and the imaginary
part of ! respectively.
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3.2 Finite Spectral ENO Scheme

The ENO schemes can be divided into two processes: es-
timation of the smoothness and interpolation of the solu-
tion. Although there are some differences between them,
the existing ENO schemes all use divided differences for
the former and Newton interpolation for the latter[2).
Here we introduce a new scheme to the second process,
that is, using non-periodic Fourier interpolation instead
of Newton interpolation. The algorithm of the finite spec-
tral ENO scheme is as follows:

1. Primitive function

H(1i+1/2) = Az Z f(zx). 9)
k=1
2. Divided differences
H{Ii—l/Za sy l‘i+k—1/2] (10)
= {Hziyr/2) -, Tigk-1/2) — H[zizaj2s - -5 Tigk-3y2)}

[(Tizk-1/2 — Ti—1/2)
(k=1,2,...,2N).

3. Propagation speed. For the Euler equations, the char-
acteristic speeds Ciy172 (Uig1y2, Uigr2 £ Giy1/2) are
calculated by using the Roe average[5)].

4. Smoothest stencil. Let jioca be the point on
the local coordinate corresponding to the cell
boundary point ¢ + 1/2 on the global coordinate,
lmin = ¢, Jlocal = — &V
if éi*}-l/Z >0, then tmin = tmin — 1, jlocal = j]oca.l +1.
if |H[Tigia1/2s -+ + Timinti-1/2]l >

[H(Z; 0 —3/25 - - - Tiint1=3/2}15
then z-min = 2.min - la jlocal = jloca.l + 15
(1=2,3, ..., 2N).

5. Error Limitation. Define that R)(z) be the Ith error
term of Newton interpolation of f = dH/dz, then

R(”(r) = H[Il'minvl/?’ e .’Egmn_‘,l_]/g] (11)
imin+l-1

II (z—ziap).
iSimin, A7 1

(12)

Since R")(z;41/2) is the approximation of the error,
we shorten the stencil when R() > R(-1),

6. Non-periodic Fourier interpolation. The values of the
primitive function are replaced to the local coordinate
as

ﬁ(£;+1/2) = H(Iimin+1/2+N+j)1 (] = "N7 _N+17

(13)
The non-periodic Fourier transform is done on the
smoothest stencil with

oo pit1)2 N i41/2 ixn{””z
HEM) = 3 ainled=s™ (1)
n=—N

7. Reconstruction of flux
. dH(z) irl XN 4172

a4 2 ixng
finp = = 2 ni e e
dzr NAz &=, "

+1/2
(15)

4 Results

The complex form of LU decomposition method is used

for solving eq.(1). Once the LU decomposition matrix is

obtained, it can be used repeatedly. The coefficients are

calculated in M(M +1)/2 (M = 2N + 1) operations.
First we choose the wave equation

U+ u, =0 (16)

as a test problem. The central spectral scheme and the
central difference scheme are employed for calculating the
spatial derivative, and the Euler scheme is used for the
time-integration. Figure 1 shows the exact solution and
the numerical results after one period of propagation start-
ing from the initial condition
Nt
u(z) = Y_{cos[2rn(z + 0.5) + sin[27xn(z + 0.5)]}. (17)
n=0

Weset { = 0.5, N =3, Nt =8, At = 0.0001 and the total
grid number Nz = 32. The result of the central difference
method departs from the exact solution considerably, and
one peak is lost. In contrast the central spectral method
gives good accuracy. This is because that the difference
schemes are inherently accompanied by phase errors, i.e.
the components with different frequencies propagate in
different speeds, while the spectral schemes are character-
ized by no phase error occuring.

Next we apply the finite spectral ENO scheme to the
Sod’s standard shock tube problem. The one-dimensional
Euler equations are written as

u+ fr =0, (18)

p pu
u=[pu}, f=[p+pu2
e u(e + p)

The flux vector f is divided into three characteristic com-
ponents as

where

(19)

1
Y Ut
I - [ ] (20)

h —ua
1
f2 (‘7—1)[)11[ u },
v %uz
1
f3 = p(u2+a) u+a ,
v h+ ua

to which the finite spectral ENO scheme is imposed. The
time-integration is performed in the following form:
) - - At S -
W == Ry~ fey) == R DA Ty,
(21)
The initial conditions are (pr, ur, P) = (1, 0, 1),
{pr, ur, Pr) = (0.125, 0, 0.01), and the CFL number,
the non-periodic interval and the grid number are set to
CFL =03,1=002, Nz = 100. Figure 2 and 3 illustrate
respectively the density distribution of the shock tube
problem without and with error limitation. The shock
wave is captured sharply, and the effect of the error limi-
tation is obvious. The comparison between the numerical
result and the exact solution is excellent.
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5 Concluding Remarks

Non-periodic Fourier transform enables us to construct
spectral schemes pointwise or cellwise. The central spec-
tral scheme and the finite spectral ENO scheme proposed
in this paper are two applications of them. These local
schemes keep the high-order accuracy of spectral method,
and possess the flexibility which has not been existed in
conventional ones. The results of the two examples implies
that finite spectral method is attractive for solving both
unsteady problems and discontinuous problems. Since fi-
nite spectral method is a most fundamental methodology,
further developments are necessary to be done.
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Figure 2 Density distribution of shock tube problem us-
ing finite spectral ENO scheme with five-point stencil
and without error limitation.
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Figure 3 Density distribution of shock tube problem us-
ing finite spectral ENO scheme with five-point stencil
and with error limitation.

Figure 1 Comparison between exact solution and nu-
merical solutions of wave equation by using 3rd-order
central spectral scheme and 3rd-order central difference
scheme.
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