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Systematic Modification of Ship Hull Forms Using B-Splines
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ABSTRACT

REDA Y VARDATIA 4y PTEHRSNRL, FIRIIREDOL S 2/ o2 PEBIRIE. Ay Pa
OXEUEZBHEHL LI THVHHETERSELIENTEL, LL, ZOBVWEHHERN>TE
HlEEYEHEICTE, £7. RABFTHLAHPCOEREELERTLHE. ERICI > THOMENHESL
DEFEEbNLZVDIIE, EXEOBHEIF KL LTHELIPIZHGHL TV RITRIIR 620D, FitE
HEDLH LBHRYEEELETEZIAILEBREARTETHL, Aviadi<TarE, BOIPLHHE
EXZZLRESHIIEDN. BRXBOBBHENMET T4, Rz, BEL7VTY LA12E o TEHERIDE
FikY BEMIIER S EA2HEIE, Ay anERATOBYELHIRKRE T A-F LTHIEMFAYT
HEH. Ao atkBILTHENRT A RIRBHICAKE2 ), HHEEENN T A-FHOBMIBDOHET
PRI 2 B, 72, Ay a3l T5E, REVKEAHNOATHEIEL S,

AWEL, He Ay P2 0MEEORE LT, BATI54 VOEEMBEOWONEBL ERNICELI L
LA OBKEBRTERVWIEERT, Ril, COMBIOBREL LT, Mrv Ay akvnids, 4
BWRIRA— I B TERLYRBET AN TLE2RET L, TLCEDERPAL LT, MEEBREA SIS
39 FTEL, TO—IEREL ATy TS THREIKEERSELHEETT,

1. Introduction But, as will be shown in §3, the use of a coarse mesh

has its own problem, and in §4, another method for solv-
The progress of CFD has reached a stage in which ing the problem will be proposed.

inverse problems are feasible, i.e., a body shape hav-

ing specified fluid dynamic performances is obtained af-

ter iterative modification of the shape through a huge

amount of computation. In many cases, the process of

obtaining a body geometry having a desired fluid dy- 2. Representation of a Ship Hull Form

namic performance takes the form of optimization with

constraints. For example, a ship hull form is optimized

t minimum drag under the constraint of constant . . .
to get min drag & A ship’s hull form is defined by a set of discrete points
volume. . .
e . . called offsets. Fig. 1 shows its example of a tanker
In optimization, a body shape must be given a high
. - model. The hull form has a bulb at the bow (front) for
degree of freedom, in order that the search for optimiza- . . . . .
tion covers a wide area. This accompanies  large num reducing wavemaking resistance. Fig.1(d) shows inter-
’ P g polated x=constant sections at 1/100 length pitch.

ber of shape parameters. But, at the same time, the
number of shape parameters should be as small as pos-
sible, because, otherwise, the CPU time would be too
much and the independece among the parameters would
be degraded.

Perhaps the most flexible way of representing a body
shape is to fit its surface with a mesh, and give coordi- d” ] I l l ] l I I [ I I ’ l I l 1!”‘”’
nates to points of intersection of the mesh. By refine-
ment, one can fit the mesh to almost all body shapes. A (a) Total side view
natural chocie of parameters in such a mesh system is to
use coordinates of intersection points. But, by refining
the mesh, the number of parameters increases rapidly,
and the process of optimization using the system would
be impractical.

In order to solve the problem, Hamazaki et all'l. used
a fine mesh for representing a ship hull, and overlapping Bow Stern
coarse mesh for changing the body shape, thus retaining (b) Magpnified side view
the flexibility of body geometry and reducing the num-
ber of parameters for optimization at the same time.
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Fig. 3 A B-spline curve and control points.

An example of a generated B-spline is shown in Fig.
4(a). It is also possible to compute a B-spline that passes
through given points, as shown in Fig. 4(b), where 2nd
derivatives at boundary points are set zero.

Aft Fore
{c) Body plan

\/
)

Aft Fore
(d) Interpolated x=constant sections
Fig.1 Offset data of a ship hull form

Based on the offset data, splines passing through {a} Control points are given.
the spline curves at each offset sections are generated - : control points
lenghtwise and crosswise using the Implicit Geometrical
Method!ZBM4) They are called a spline net as shown
in Fig. 2, and by interpolating those splines in a tensor
product manner, a spline surface that covers continu-
ously the entire hull surface is defined.

Bow Stern
(a) Total side view {b) Passing points are given.
+ : control points
+ : passing points
Fig.4 1-D non-uniform B-spline
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For the ease of extension to 2D, knot vectors s; are
equally spaced with a spacing of unity, i.e., uniform B-
splines are used. Then the basis functions take the fol-

(b) Maginfied side view lowing forms.
Fig. 2 A spline net for a tanker model. ) 1
s 213
3. B-splines on a coarse net N6 = 6(1 €)
B-spline can be conveniently used for representing a NiL(6) = 1(353 —~ 682 +4)
body geometry. It defines a curve by interpolating a 6
set of c.ontr‘ol points Q; using basis functions N?(s) as 4 NAL,(&) = é_(__sea +3E24+364+1) (3.2)
shown in Fig.3. 1
Pi(s) = N2 4()Qica+ N5 (8)Qia+ N (8)Qict + N/ (5)Q: ] NGO = gfs
(5:S5Ssi01) (3.1) ‘ (0<€<1)
P;(si) = P;
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Fig. 5 A hump moving on a coarse 1-D B-spline.

In 1-D, if the value of a function at a certain control
point is unity and the values at all the other control
points are zero, a B-spline gives a hump which extends
in four consecutive intervals. It is shown as a thick curve
in the center of Fig. 5. It is called a basis function of
B-spline. The two neighboring humps shown by thick
curves have a function value of unity at adjacent control
points. Their asymmetry is caused by the influence of
boundary conditions. If one wants to place the peak of
the hump at somwhere between the control points, one
would give the values of function which sum up to unity
to the two control points while changing their ratio de-
pending on the location of the peak. In case the peak is
at the middle of the two control points, the function val-
ues should be 0.5 each. The case is shown by thin curves
in Fig. 5. Clearly, the hump is shorter and wider, and
does not preserve its shape.

The extension of uniform B-splines to 2-D curved sur-
faces is straightforward. It is carried out by the tensor
product of B-splines in two direction, as shown below.

P& n) = [N} 5(n), NLo(n), N (n), N} (n)]
Qi-3j-3, Qi-2j-3, Q-‘—l,j—s, Q.'.,'—s NEs(6)
Qi-3j-2, Qi-25-2, Qi-1j-2, Qij-2 N2 ,(8)

Qi-aj-1, Qi—2j~1, Qi-1j-1, Qij-r NLL(©)
Qi-sj,  Qi—zy,  Qicnyy Qij Ni(©)
(&s€=&ipr, ;ENS0i )
(3.3)

where the control points Q. ; are distributed meshwise
as shown in Fig. 6.
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Fig. 6 Control points Q;; for B-spline surface.

If all those humps in Fig.5, drawn in thick or thin
lines, are distributed at consecutive sections in 2-D, the
contour plot of the height distribution would be like that
in Fig. 7. The figure shows clearly the poor quality of
a coarse mesh in preserving the hump shape when its
location changes continuously.

Fig. 7 Humps changing location at a half mesh pitch
on a B-spline net.

Fig. 7 shows the severest test case for the moving
hump problem, while Fig. 8 shows the easiest, where
the location of the hump agrees with that of the control
point at each section. But one can observe slight wiggles
in the contours even in this easiest case.

'Fig. 8 Humps changing location at a mesh pitch on a

B-spline net.
4. B-splines on a fine net with grouping

In order to get better quality in preserving the shape
of the hump, the number of control points are doubled
as shown in Fig. 9.

Fig. 9 A hump with least square fitting on a fine 1-D
B-spline.

The location of the hump in the center is at the mid
point of the two control points, and the locations of
the other two are at control points. The values of the
function at control points for the middle hump are ob-
tained by least square fitting. As shown in the figure,
the shape of the middle hump is indistinguishable from
the other two. Thus the problem related with a coarse
mesh has been solved. Note that the basis function of a
coarse mesh is only one example of target functions for
least square fitting. A function of arbitrary shape can
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be used.

The problem with refining a mesh is the rapid increase
of control points. Therefore, instead of using directly
the values of the functions at control points as body
geometry parameters, a new set of parameters, much
smaller in number, which group control points, should
be defined. An example of the grouping is shown in
Fig. 10, in which the location and height of the hump is
given at three horizontal locations (i.e., the left end, the
middle, and the right end), and the values in between
are interpolate using B-splines. Thus the number of
parameters representing a series of humps in this case is
only six. These parameters can be easily controlled by
a designer. If more complexity in geometry is needed,
more groups should be add.
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(b) Case 2

Fig. 10 Grouping of control points on a fine 2-D mesh.

Figs. 11(b),(c) show the modified hull forms, where
the height distributions shown in Fig. 10 are added
in normal direction to the original shape shown in Fig.
11(a).

&/

(a) Original shape
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(c) Case 2
Fig. 11 Hull forms with modification

5. Conclusions

A new method for grouping control points on a spline
mesh for representing and modifying body geometry has
been proposed. The method reduces the number of body
geometry parameters significantly, so that a designer can
easily control. In order to use this method in practical
applications, further study is needed to select suitable

form of target functions, and to avoid unnecessary wig-

gles in the functions obtained using least square fitting.
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