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ABSTRACT

Instability or stability of shock waves in van der Waals gas is invesitigated numeric-
ally. First possibility of presense of several types of shock transition is proved. Next
an evolution condition is applied to these shocks numerically. It is shown that only the
supersonic-subsonic shock can exist stably. However, all the supersonic-subsonic shock can
not always exist as an stable entity and then the supersonic-subsonic condition is only a

necessary condition for the shock to be stable. Shock splitting process or the time
evolutions of unstable shock transition is also simulated.

1. Introduction

Real gas near the phase boundary has some
peculiar effects that are different from those
caused by viscosity. heat conduction, relax-
ation of internal modes and cemical reactions.
The most important effects are “degradicity”
and “retrogradicy”. The former is responsible
for the expansion shock and the latter the
evapolation (or condensation) in adiabatic
expansion (or adiabatic compression).

A fundamental problem concerning the nature
of shock waves in a van der Waals gas has long
been studied. One of the most interesting facts
proved so far is that the existence of expan-
sion shocks cannot be ruled out from the point
of view of stability. It is well known that
the compression shocks occur in gases having a
fundamental derivative I' = (C*/2V*®)(42V/ip?)s
> 0, where V¥, p, C and s are the specidic
volume, the pressure, the speed of sound and
the specific entropy, respectively, and expan-
sion shocks occur for those having I { 0.'~*?

Shock waves in a large-heat-capacity gas
emerging from a tube were investigated numeric-
ally and experimentally by Thompson®’ et al.
Weak shock waves in which the local value of
the fundamental derivative changes were studi-
ed in detail by Cramer and Kluwick*’. In the
previous studies, analyses were made mainly
for relatively weak shock waves. In the full
nonlinear problem, the shocks exhibit much
more complicated behavior than that of the
weak shocks. In this paper, one-dimensional

shock waves are considered. First,the Rankine
-Hugoniot relations are obtained by using the
Rayleigh line and the shock adiabatic in the
pV-plane. characteristics of the shocks are
investigated in detail. Next, to justify and
confirm the analytical results, numerical ex-
periments are made on a supercomputer with a
TVD-scheme. All the numerical simulations were
performed on the supercomputer Fujitsu VP-2600
at the Date Processing Center of Kyoto Uni-
versity.

2. Possible Shock Transitions

Detailed investigation of shock transitions
satisfying the Rankine-Hugoniot relations and
the entropy condition yields the result; there
can be seven types of shock transition in the
van der Waals gas®’. These are

Case 1; M: > 1, N2 > 1

Case 2; M, > 1, N: € 1|for compression shocks,
Case 3; M, (1, Mz 1

Case 4; M, > 1, N2 > 1

Case 5; M > 1, N; (1 for expansion shocks.
Case 6; M, (1, N2 > 1

Case 7; M; {1, N> € 1

The sample flow conditions found here are
listed in Table 1.

3. Tine Evolution of Shock Discontinuity
The evolution condition is that the solution
is unique and the transition must be stable to
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Table 1. Possible shock transitions

[T~ 71 “upstream conditions | downstream conditions |
Case | Wamo M) | G M)

71~ (1.80, 0.92862, 1.01188)  (1.30, 1.06221, 1.00810)

UPSTREAM
BOUNDARY

DOWNSTREAK

SHOCK FRONT BOUNDARY

+-o-o—o-/ /-o—olo—o—/ /-o—o—o-+

+« COMPUTATIONAL FLO¥ FIELD =

Fig.1 Initial and boundary conditions.

small disturbances.Since all the shock transi-
tions listed in Table 1 are determined unique-
ly in the p-V plane, here the evolution condi-
tion requires that these shock transitions are
stable to small disturbances®’.

Numerically we investigate the shock stabil-
ity or instability in the coordinate system
moving with the shock front. As shown in Fig.
1, first flow conditions satisfying the
Rankine-Hugoniot relations and the entropy
condition are specified as the initial condi-
tions across the discontinuous plane. For the
boundary conditions. the initial conditions
are always fixed at two points both upstream
and downstream of the boundaries. A time-
dependent approach is adopted with a finite
difference TVD-scheme’’. As is well known,
numerically any shock wave has some numerical
(artificial) structure extending into several
meshes. Then after the initiation of numerical
simulation, the specified discontinuous shock
structure begins to shift into a numerically
stable structure. During this transition
process, some numerical (artificial) fluctu-
ations are produced. If the upstiream flow is
subsonic, these propagate upstream and on
arriving at the boundaries, some part of the
fluctuations may be reflected back from the
boundary. On the other hand, those always

2-1  (1.90, 0.90515, 1.06542)  (0.90, 1 0
2-2  (1.80, 0.92862, 1.01262)  (1.450, 1.02227, 0.99729)
2-3  (1.80, 0.92862. 1.01123)  (1.060, 1 0
3-1  (1.60, 0.97549, 0.99563) (1.0, |1
3-2  (1.40. 1.01939, 0.98961)  (1.010, 1.11558
T4-1  (1.40 1.01939, 1.00952)  (1.760, 0.92699, 1.00401)
1.05513, 1.04721) (2.0, 1

0
5-1  (1.40, 1.01939, 1.00963) (1.650, 0.95521, 0.99759)
1.05513, 1.04080) (1.610, 0.95675, 0

——— e —_— e e — . 4
b e ————

.19528, 0.70261)

.95806)
.90064)
.92042)

.01495)

.97703)

propagate downstream and some part will be
reflected back, if the downstream flow is sub-

sonic. These disturbances will fluctuate again
the shock.

In this paper, we define a shock is stable
if the shock wave stay substantially at the
original position, its profile extending into
several meshes tends to have a converged
steady profile, and the flow conditions both
upstream and downstream of the numerical shock
(having a structure with several meshes) con-
verge exactly to those specified initially.
Here it must be emphasized that any shock in
the ideal gas has been confirmed to be stable
in the similar numerical experiment with the
present TVD-scheme.

Samples of time evolutions of the shock
transition are shown in Fig.2, where the CFL
and mesh numbers are taken to be 0.4 and 100,
respectively. The first shows an unstable
supersonic-supersonic shock. In such an unsta-
ble case, the original discontinuous shock is
splitted into a few types of waves which
spread out with increasing time step. Once
the wave splitting occurs, any time converged
shock profile can never be constructed. Figs.
2-b) and c) show stable shocks and then their
numerical structures converge to steady ones.
Fig.2-d) shows an unstable shock.It is intere-
sting that this- shock is supersonic-subsonic
shock. Figs.2~e) and f) show expansion shocks,
where the former is an unstable supersonic-
supersonic shock and the latter is a stable
supersonic—subsonic shock.

It has to be stressed that for the stable
shocks, the results were checked for:various
time steps up to 500,000 and it was also con-
firmed that the instabilities do not depend on
the mesh number (50~5000) and the CFL number
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Fig.2 Stable and unstable shock transitions.
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Table 2. Stable and unstable shocks.
I [resent | i Theoretical ]
ase . Tt YT
____________ Numerical | C& K| F&H[ "K
O Cs.swsp) |~ @ [T @ [Tk | k|
2-1 o) o) o o
2-2 (CS,Sup.-Sub.) O O O O
23 | ® | o | ¢ o _| o _|
3-1 ° o o) o
CS, Sub. -Sub
30 (SS050) | 9 | @ | 0 | o
4-1 o [ ) * %*
ES,S -S
._4-_2_‘__‘2’__“"_’_4__0__ﬂ__0__1.__*__+__*__.
5-1 O O O O
ES, Sup. -Sub
.3;2_‘__“_"__“_’_*._9___4.*_0 ______ o _| o |
6 (BS.Sub.Sw.) | @ | @ | & | * _
7 (&s.5ub.-5ub.) [ @ [ "@ [0 "["0 ]

O, stable, @; unstable, % ; not applicable,
C & K; Cramer and Kluwick*’, F & H; Fowles and Houwing®’,
K;Kontorovich®’.

unstable shock transitions in the p-V plane.
All transitions between two points (I.N),
(J.K)., (J.L), (L.W), (K.L), (K.M) and (L.N)
are possible. Although their transition di-
rections are determined by the entropy con-
dition, only those between the points (I,N),
(J.K), (K,L) and (L,M) are stable.

From Cramer and Kluwic’'s criterion and the
present numerical results, it can be said that
\Y% the supersonic-subsonic condition is a nec-
essary condition but not a sufficient condi-
tion. It is rather remarkable that the present

Fig.3 Rankine-Hugoniot relations in the p-V

plane. . oy
results about the shock instability are com-
pletely well explained by their theory. Obvi-
(0.4~0.8). ously the present conclusion is partly contra-

dictory to the results in the previous paper,
where it was concluded that the supersonic-
supersonic shock is stable at least numeric-
ally. This wrong result comes from the fact
that for a shock transition where the funda-
mental derivative I' takes very small absolute
values, the wave profile changes very slowly.
Then the accurate investigation of shock in-
stability requires a sufficiently large number
of time steps. Then although the previous Cramer
numerical results are correct but the time
steps are not always satisfactory to observe
the shock instability.

For the shock instability, we can summarize
the results as in Table 1, where a few theo-
retical predictions are compared. Obviously
the present results agree completely with
& Kluwic’'s predictions*’ but do not
always with the other predictions. Since the
stability theories of Kontorovich®’and Fowling
& Fouwing®’are discussed in the previous paper,
here Cramer & Kluwic’'s theory is described
briefly. Their analysis is based on the
Navier-Stokes equations which can be applied
only to weak shock waves. And they assumed
their result is applicable to shocks with
arbitrary strength. They concluded that the

4. Conclusions
shock adiabatic and the Rayleigh line inter- u

sect only at two points in the p-V plane,
describing the upstream and downstream flow
conditions across the shock discontinuity,
for the shock to be stable.

Fig. 3 shows schematically the stable and

Normal shock waves in the van der Waals gas
are investigated theoretically and numerically.
Some interesting features of shock transitions,
which are different from those in the ideal
gas, were found: 1) In the p-V plane, the
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shock adiabatic and the Rayleigh line can
intersect at four points. 2) The supersonic-
subsonic condition is only a necessary condi-
tion but not always a sufficient condition.
3) The stable shocks satisfy the criterion
proposed by Cramer & Kluwick but do not al-

ways those by Fowles & Houwing and Kontrovich.

4) One-dimensional shock splitting occurs for
unstable shock transitions.

As described in the introduction, there are
two kinds of shock instability; one is the
shock splitting and the other the corrugation
instability. The latter could not be treated
in the present one-dimensional analysis and
then will be studied in the near future.
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