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Numerical Simulation of Viscous Unsteady Flow Around Wing
Oscillating in Elastic Modes

Hamidreza KHEIRANDISHY, Goro BEPPU?) and Jiro NAKAMICHI3)

An areoelastic version of CFD code was developed and applied to numerical simulations of unsteady transonic
flows around a rectangular wing with bioconvex airfoil section oscillating in bending mode and a wind tunnel
model of a high aspect-ratio (YXX) wing which is also oscillating in first bending mode. A numerical
simulation of transonic flutter of the YXX wing considering first six modes has been performed as well. The
cod is based on Navier-Stokes (N-S) equations coupled with the structural equations. The N-S equations are
integrated by Yee-Harten TVD scheme on dynamic grid, while the structural side is integrated by Wilson g

method..
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1. INTRODUCTION

The computation of acroelastic characteristics in the

transonic speed is of much current interest. Aeroelasticity is
concerned with those phenomena which involve mutual
interaction among inertial, elastic, and aerodynamic forces.
Since high performance modern aircraft tends to possess a
high level of flexibility in order to satisfy low weight and
maneuverability requirement, the avoidance and prediction of
aeroclastic problems such as flutter, buffet and, buzz are
very important in aircraft design. To clarifv these nonlincar
problems, CFD tools based on Navier-Stokes(N-S)
equations including turbulence model are needed.
The remarkable progress in computing resources in the last
decade, tied with advances in computational methods, has
motivated the development of acroelastic CFD codes.
Prediction of flutter boundaries of a 3-dimensional elastic
wing bascd on N-S cquations is the final goal of this
research.

In the present study, the time averaged N-S cquations
coupled with Baldwin-Lomax! (B-L) turbulencc modecl,
were integrated by Yee-Harten?) implicit TVD scheme. An
ADI form which is of second order accuracy both in space
and in time has been used.

To describe the effects of elastic oscillation of a wing on
the flow stream and aerodynamic forces, the following two
numerical simulations have been performed in advance:
a)numerical flow simulation around a rectangular wing
oscillating in first bending mode with reduced frequency of
.13 (based on the root half-chord and free stream velocity).
The numerical results are compared with the experimental
results3) of wind tunnel tests.
b)numerical solution of the YXX wing oscillating in the first
bending mode with reduced frequency of .381.

Finally numerical simulation of flutter of YXX wing in
transonic region is presented. The flutter boundary is
investigated and compared with experimental ones.

2. NUMERICAL IMPLEMENTATION

To calculate aeroelastic response of an elastic wing, it is
needed to integrate the governing equations for the flow field
and structural dynamic equations simultaneously. In the
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present study, the governing equations are the unsteady N-S
equations coupled with B-L turbulence model. The
structural equations are derived by employing modal
approach. Introducing generalized coordinates, so called
flutter equations can be written in a nondimensional form as;

mig; + ki = foACpcpinzdS ) (2.1
where ¢; are generalized coordinates, ®; and m; are
fundamental modes and generalized masses with respect to
the i'th mode, and where ¥, and @ are the reduced
frequencies and nondimensionalized dynamic pressure,
respectively. The nonlinear aerodynamic loads of right hand
side obtained by integrating N-S equations are substituted.
The left hand side of Eqs.(2.1) is integrated by Wilson ¢
method¥).

The computation is proceeded in a time dependent manner
with a specified dynamic pressure and the time histories of
generalized coordinates are obtained. At a dynamic pressure,
every ¢; converges with respect to time. At another
condition, it diverges statically or dynamically. In the former
case, the static aeroelastic deformation of the wing can be
obtained. In the latter cases, the system is unstable and
divergence velocity or flutter dynamic pressure can be
captured by looking at the time histories of the generalized
coordinates.

In the present calculations, the following procedures are
considered to update grid points at each time step. Having
computed generalized coordinates, wing surface grid points
are renewed by superposing the fundamental modes. To
update the flow field grid points as fast as possible, moving
grid strategy 3 is used at each time stcp. The deformation of
wing, however, becomes too large after some amount of
iterations and the above mentioned strategy no longer works
well. Overlapping or skewness of grid lines occurs. So a
grid generator, alternatively, was employed to renew the
whole grid, in accordance with the new position of the wing
surface, at every reasonable number of steps .

3. RESULTS AND DISCUSSIONS

Firstly, numerical solution of a rectanguiar wing oscillating
in the first symmetric bending mode is presented. The wing
is of aspect ratio 3 with bioconvex airfoil section (5%
thickness-chord ratio). The mean angle of attack is 0 degree
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and Mach number is 0.9. The frequency is interpreted in
terms of reduced frequency of 0.13. Reynolds number was
settled to be 5x10¢. The nondimensional wing tip amplitude
is 0.011 based on the root chord length. The first bending
mode shape is obtained from reference(3). The comparisons
of unsteady pressure (upper/lower) difference distributions
between the numerical results and experimental ones are
given at four span positions in Fig. 1, which are shown in
terms of magnitudes and phase angles. The results are
relatively in good agreements with each other. The
discrepancies between computed and experimental results at
the wing root is due to boundary layer of the side wall of
tunnel which wing is installed . Since the wall effect is not
taken into account in this study, a shock also appears at wing
root position, whereas in the experiment it does not.

In the second example, numerical solution of YXX wing
osillationg in first bending mode is presented. The planform
of this wing is given in Fig. 2. The aspect ratio of the wing
is 10.0, the taper ratio is 0.324 and the quarter chord sweep
angle is 180. It has supercritical wing section, and a built-in
nose down twist of 3.5° at the wing-tip. The angle of attack
and Mach number of this case are 0 degree and 0.7,
respectively. Reynolds number is 106. The reduced
frequency is set to be 0.381 which corresponds to frequency
of 168 Hz(experimental flutter frequency). The steady state
pressure distributions are given in Fig. 3. The amplitude of
oscillation at the wing tip is about half root chord length. A
C-H mesh with 179x60x51 grid points was used. Real and
imaginary parts of unsteady pressure distributions at four
span positions, which are normalized by magnitude of
oscillatory angle of attack at wing tip, are given in Fig. 4.
To get some idea of the effect of this oscillation, pressure
distributions on upper and lower surfaces are shown in Fig.
6. for 26 time sequence steps in the third cycle. The closer to
the wing tip, the more variation of pressure distributions can
be observed in a cycle. This comes from the changes of
effective angles of attack due to the motion of wing surface.
The time histories of lift and drag coefficients are given in
Fig. 5. for the first three cycles.

Finally flutter simulation of YXX wing in transonic region
is presented. The fundamental frequencies which are
calculated theoretically and experimetaly6) are given in table
1. The shapes of wing deformations are approximated by
superposing the first six fundamental modes obtained by
vibration analyses of the wing. Classically, the linear theory
was used to obtain the flutter velocity and the problem was
reduced to an eigenvalue one. In the modemm CFD
acroelasticity, the phenomena are simulated using high level
of nonlinear flow modeling on computers. The procedure of
the present flutter simulation is as follows;

1) set a low dynamic pressure
2) integrate Eqs.(2-1) and obtain the converged solutions;
that is, static aerodynamic deformation
3)increase dynamic pressure and integrate Egs.(2-1) using
the solution of step (2) as an initial conditions
4)investigate the time histories of the wing responses
S)repeat (3)~(4) and find the flutter point

The Mach number range is 0.7 to 0.85, The Reynolds
number based on the root-chord lenght is 2.4x106 and the
steady state angle of attack is 0.0°. In this study the dynamic
pressure is swept at a fixed Mach number and the wing
responses for many cycles obtained.The cases studeied in the
present numerical simulations are summarized in a plan of
dynamic pressure vs Mach number in Fig. 7. The flutter
frequencies are also shown in Fig. 8. For the Mach numbers
0.7, 0.75. and .85 the wing responses converged at dynamic
pressueres 150,78, 120kPa, respectively. They entered to
unstable area with increasing the dynamic pressures upto 190
, 100, 128kPa, respectively. However, for Mach number
0.8, where the wing responses converged at dynamic
pressures 110kPa, the wing responses never diverged with
increasing dynamic pressure for a large range upto 195kPa.
It was found that the wing penetrated to low-damping(L-D)

area. The generalized coordinates qi, q2, and g3 at dynamic
pressures 110, 140, 160 and 195 kPa, and Mach number
0.8, are shown in Fig. 9. In low damping area the amplitude
of generalized coordinates decreased rapidly after a few
cycles of oscillations, specially g1, but they never tended to
converge. The flutter test has only been conducted at two
points for angle of attack, 0o. There is no report of low
damping area in experiment at this angle of attack. However
it was found in the numerical simulations at Mack number
0.8. The frequencies of the current results are in good
agreement with the experimental ones. It is also found that
the frequencies of oscillation in low damping area were higer
than that of flutter point.

4. CONCLUSION

The developed computer codes have been already used to
simulate, unsteady flows about oscillating NACA0012
airfoil, flutter of the same airfoil and, unsteady flows about
YXX wing. It has been also applied to mentioned problems
in this report. The comparisons of numerical results with
experimental ones show that these codes are valid and
powerful to clarify unsteady aerodynamic phenomena.

All simulations presented here were done on NWT paraliel
computer at NAL.
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Table 1. Fundamental Frequencies of Flutter Model

Mode Frequency Hz
Nastran Experiment
First Bending 60.6 61.9
Second Bending 200.6 206.1
First Torsion 429.4 413.2
Third Bending 448.2 453.7
Second Torsion 702.4 ———
Third Torsion 816.9 -
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Fig. 3. Steady State Pressure Distributions
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Fig. 4. Real and Imaginary Parts of Unsteady
Pressure Distributions(lines are real part)
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Fig. 5. Time Histories of Aerodynamic Forces
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Fig. 6. Pressure Distributions of Upper and
Lower Surfaces for One Cycle
a=0.0, M=.7, Re=106. K=.381
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