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COMPUTATIONAL STUDY OF INCOMPRESSIBLE FLOW
BY FINITE-DIFFERENCE METHOD

Kunio Kuwahara
Institute of Space and Astronautical Science
Yoshinodai, Sagamihara, Kanagawa, Japan

Incompressible high-Reynolds-number flows are simulated by solving the Navier-Stokes equations. A
finite-difference method with third-order upwinding are employed without using any turbulence model.

Validity of this method is discussed.

Also, a newly developed multi-directional formulation is applied for improved accuracy. Examples are
presented to show the applicability of the present approach to variety of problems.

INTRODUCTION

Many of the high-Reynolds-number, turbulence simulations have been
based on Reynolds-averaged Navier-Stokes equations using a turbulence
model. Some use a large-eddy simulation based on a Smagorinsky-type
model. However, a turbulence model or a large-eddy simulation is not
suitable for high-Reynolds-number-flow computation because, there, the
effect of turbulence mixing is usually replaced by second-order diffusion.
This diffusion is similar to viscous diffusion. It means that we are
simply computing a locally low-Reynolds-number flow.

There are some real direct numerical simulation in which most of the
small-scale structure are resolved, but the computations can be done only
at relatively small Reynolds numbers. It demands too much computer
resources. We can not use enough grid points for high-Reynolds-number
flows of practical interest. We have rather to use a very coarse grid
system. In many applications, large structures are most important and
we are not interested much about in small structures.  What we want to
do is 10 capture the large-scale structure using a coarse grid system.

On the other hand. quit a few simulations (see Kuwahara, 1992). show
that large structures of high-Reynolds-number. trbulent flow can be
captured using relatively coarse grid. if the numerical instability, usually
unavoidable for high-Reynolds-number-flow simulation, is suppressed.
Most successful simulations in these approaches are based on the third-
order upwind formulation (Kawamura and Kuwahara, 1984). An
approach similar in philosophy but different in method is adopted by
Boris et. al. (1992).

In the present paper, we summarize the third-order upwind scheme for
high-Reynelds-number-flow computations. To increase the accuracy.
we have developed a new finite-difference scheme named as multi-
directional finite-difference method. Most of the results in the present
paper is based on this new scheme.

Following examples are presented in this paper to show the validity of
the approach.

0)  One-dimensional Burgers turbulence.

1) Two-dimensional flow around a circular cylinder at the Reynolds
numbers from 0.1 to 1000000.

2) Three-dimensional transitional flow in a square channel at Reynolds
numbers 12500.

3) Three-dimensional flow around a car at Reynolds number 1000000.

4) Three-dimensional thermal convection in a box at Rayleigh number
17000000..

COMPUTATIONAL METHOD
The governing equations are the unsteady incompressible Navier-
Stokes equations and the equation of continuity as follows:
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where u, p, t and Re denote the velocity vector, pressure, time and the
Reynolds number respectively. For high-Reynolds-number flows, time-
dependent computations are required owing to the strong unsteadiness.
These equations are solved by a finite-difference method. The numerical
procedure is based on the MAC method. The pressure field is obtained
by solving the following Poisson equation:
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where n is the time step and Of is the time increment. D™ is assumed

1o be zero, but D" is retained as a corrective term.

In cases 1. 2, 4, a generalized coordinates system is employed, so that
enough grid points can be concentrated near the body surface where the
no-ship condition is imposed.

All the spatial derivative terms are represented by the central difference
approximation except for the convection terms. For the convection
terms. the third-order upwind difference is used. This is the most
important point for high-Reynolds-number computations and the detail is
given below.

Strong numerical instability caused by the aliasing error occurs at high
Reynolds numbers, owing to the non-linear convection terms, if enough
grid points are not used to resolve the small-scale structures. When
digitizing a continuous function into a finite number of the values, it is
very important to filter out the high-frequency part of the original function
which can not be resolved by the digital system. If not, aliasing error
makes the approximation meaningless.

Usually a turbulence model or a large eddy simulation is used to get rid
of this instability. The diffusion coefficients increased by the added
turbulent viscosity reduce the aliasing error and suppress the numerical
instability. In most of the models ,this diffusion has the same form as the
viscous diffusion and the diffusion coefficient is usually much larger than
that of the viscous diffusion. Therefore, the effect of physical diffusion
1s concealed, resulting no dependency of the flow on the Reynolds number
is captured.

Another way to stabilize the computation is to use an upwind scheme.
The first-order upwind scheme is widely used because of the very good
stability but the leading numerical error caused by this upwinding is
second order and similar to the physical diffusion. This should be
avoided because of the same reason just mentioned above

The second-order upwind scheme has a dispersion type leading error,
which makes the computation unstable generally.

For the discretization of the non-linear convection terms, the order of
accuracy is odd or even has special importance for stable computation.
In case of even order of accuracy, the leading numerical-error term is the
odd-order derivative which is dispersive. Once some error is created, the
error never diffuses but moves around in the computational domain until
the computation blows up.  Eventually no stable solution can be obtained
in this case. On the other hand, in case of odd order of accuracy, the
leading error term is the even-order derivative which is diffusive. This
makes the computation very stable by reducing the aliasing error well.
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A third-order upwind scheme has been found to be most suitable for
high-Reynolds-number-flow computation. The leading numerical error
terms are the fourth-order derivative terms, where the effects of the
second-order numerical diffusions are carefully removed. The numerical
diffusion of forth-order derivatives is of short range and does not conceal
the effect of molecular diffusion but well stabilizes the computation.

One simple explanation why the fourth-order diffusion does not conceal
the effect of second-order diffusion is as follows. A finite-difference
representation of the fourth-order diffusion term is as follows:

(u,,, —du,,, +6u —4u_ +u_,)/ ox* 5)
This can be written as ,
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The two terms in Eq.6 represent the second-order diffusion and their
effects cancel each other except near the point i . This means fourth-

(6)

order diffusion is very independent from second-order diffusion. In
general, the effects of lower-order diffusion are not concealed by higher-
order diffusion.

Similarly, fifth-order upwinding is possible and some computations
have been done but it requires seven points in each direction to
approximate the local derivative. This means to require a wider range of
analyticity to the solution of the equations. High-Reynolds-number
flows are not so analytical, therefore it is not necessarily better than third-
order unwinding.

There are several third-order upwind schemes. We use the following

scheme. Initially, the one-sided second-order finite difference
approximation is employed for the convection terms.
ou 3u, —4u_, +u_,
u—=uy| —————2 L >0 )
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We can rewrite the above equations to a symmetrical form as follows:
ug =u,(~u,,, +4u,, —u,_)+u,_,)/4ox )
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If the first term of Eq.(9) is developed into Taylor series, it becomes
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Similarly the second term becomes
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Therefore, the leading error of Eq.(9)is order &x3and its coefficient
includes third-order derivative. As mentioned above, odd order-derivative
is not desirable, but this error term is eliminated if the term is replaced by

B 1(—uy +8(u,, —u;y) +u,_,)/ 120x (12)
As a result, the present third-order upwind scheme is represented by five
grid points as follows:
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There is another version of third order upwind schemes for example as
follows.

-4y,
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where@ =1/ 3 is called UTOPIA scheme by Leonard. We compared
these schemes and as well as QUICK scheme by comparing the energy
spectrum in one-dimensional Burgers turbulence and found the above
Kawamura-Kuwahara scheme is the best (Fig.1). When we use a very
fine grid as 4096 points, the three scheme agrees completely with each
other and theoretical prediction. However, with reducing the number of
grid points, the difference become clear. Only the present method give
the good agreement with the result of very fine computations. For the
theoretical validation based on the digital-filter theory has been given by
Hashiguchi (1997).
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Fig.1 Energy specrtum for Burgers turbulence

There is another important problem in high-order upwind schemes.
That is, the accuracy decreases when the flow direction is not well parallel
to one of the coordinate lines. If we use generalized coordinate system,
near the boundary, the flow direction and one of the coordinate lines are
almost parallel, and this problem is not serious. However, in general,
flow direction is not always parallel to a coordinate line and the problem
become very important

To overcome this problem we introduced the multi-directional upwind
method.  This method is summarized as follows;
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(a) system A

(b) system B
Fig.2 Grid for multi-directional scheme

When structured grid points are given, the black points in Fig.2-a are
usually used to approximate the derivatives at the central point { system
A).

If we introduce the other 45 degrees-rotated local grid points, the white
ones in Fig.2-b, which can be used to approximate the derivatives at the
central point ( system B ).

In order 1o improve the derivative value at the central point, we mix the
derivative values calculated from both systems ( A and B ) at a proper
ratio. We adopt the ratio A : B = 2/3: 1/3.  Using this ratio, for example,
resulting finite-difference scheme for the Laplacian coincides with the
well-known 9-points formula with forth-order accuracy. This method
improves the rotational invariance of the coordinate system. Then those
flows where flow direction is not parallel to the grid direction are better
simulated.

For all the spatial derivatives, the multi-directional finite-difference
method is used. This method has another advantage. In MAC method,
usually staggered mesh is used to remove the unphysical oscillation of the
pressure. This oscillations is caused by the decoupling of the computed
values within the nearest two points. These values couples more tightly
with the second nearest points. This decoupling become less if we use
third-order upwind scheme because of the five-point differencing, but
there remains some. However, if we use multi-directional finite-
difference method, every point becomes tightly coupled and the
oscillation disappears. Therefore, a non-staggered mesh system is
employed where the defined positions of velocity and pressure are
coincident.

For the temporal integration of the Navier-Stokes equations, the Crank-
Nicolson implicit scheme is utilized. This scheme has second-order
accuracy in time. These equations and the Poisson equation are iteratively
solved at each time step by the successive overrelaxation (SOR) method.

COMPUTATIONAL RESULTS
1)  Flow past a circular cylinder

The dependence of the drag coefficients on Reynolds numbers is shown
in Fig.3. The number of grid points are 32*16, 64*32, 128*64. If the
Reynolds number is less than 100, all the computations and experiments
agree very well. At high Reynolds numbers even 64*32 computation can
capture the drag crisis qualitatively. The 128*64 computations agrees
much better with the experiments as expected.

Ccd
lw T T AN T T T 4
t Oseen -~
Tritton ----
A3 Wiesels —
[ 32x16 ¢
RN 64x32 —-
128x64 o -
10 \ .
LF ‘?K:\
\\
\_
1t
o'l 1 1 1 1 sl i —
0.1 1 10 100 1000 10000 100000  1e+06

Re
Fig.3 Drag coefficients of circular cylinder

The drag sharply decreases at about Reynolds number 400000, which is
called drag crisis, is well captured even using this coarse grid.
Instantaneous and time-averaged flow patterns clearly show the difference
as shown in Figs. 4-7.  After drag crisis, flow separation delays and the
which makes the drag less.

wake becomes narrower,

T
-

Fig.4 Flow past a circular cylinder at Re=56000, before drag crisis
Streamlines and pressure contours
Instantaneous flow field, 128*64grid

Fig.5 Flow past a circular cylinder at Re=1000000, after drag crisis
Streamlines and pressure contours
Instantaneous flow field, 128*64gnid

Fig.6 Flow past a circular cylinder at Re=56000, before drag crisis
Streamlines and pressure contours
Time averaged flow field, 128*64grid
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Fig.7 Flow paét é circular cylinder at Re=1000000, before drag crisis
Streamlines and pressure contours
Time averaged flow field, 128*64grid

2)  Transitional flow in a square channel

It is impossible to compute transitional flow by using turbulence model.
Even large-eddy simulation can not handle this type of problem, because
it assumes the flow is turbulent from the beginning. However, transition
phenomena is very important at high-Reynolds number flow. In the
present approach, this is nothing special, we can compute any transitional
flow with no special consideration. In Fig.8, development of
turbulence behind an obstacle is shown. The visualization was done by
showing equi-temperature surface. The temperature at the inlet is only
This does not
However it is very effective for the flow

0.1 degree higher than the initial condition in the channel.
affect the computed flow field.
visualization.

'Fig.8 Development of turbulence behind an obstacle
in a square channel at Re=12500, 256*64*64 grid

3)  Flow around a car

For car aerodynamics, evaluation of drag and lift coefficients is most
important.  For this purpose the separation zone should be calculated
accurately. At high-Reynolds numbers, as shown in the case of circular

cylinder, drag crisis takes place which has decisive effect on the drag.
At this moment almost only way which can capture the drag crisis is to use
the present upwind method (Fig.9). By using this, drag can be calculated
within 5% difference with the experiments (Hashiguchi, 1996).

Fig.9 Flow around a car at Re=1000000

4)  Thermal convection

Thermal convection is another good example where the transition plays
an essential role (Fig.10) (Tsuchiya and Kuwahara 1997). Figure 10
shows equi-temperature surface in the initial stage of the development.

Fig.10 Natural convection in a box heated below,

equi-temperature surface. Rayleigh number 17000000,
128%128*32 grid

VISUALIZATION

The computed data is becoming bigger and bigger and without
visualization system understanding of underlying flow mechanism is very
difficult. What is necded is a means of properly visualizing the computed
flow field. The key points are real-time visualization and animation.

A flow simulation takes a large amount of CPU time, therefore it is
desirable to visualize it while computing it. This saves a lot of time
especially while debugging. This should be called real-time
visualization.

Moreover, a still picture is insufficient when flows become essentially
unsteady as those at high Reynolds numbers, since it is impossible to
understand the transient flow in total only from a set of instantaneous flow
pictures.  Visualization by animated graphics is a necessity in this case.
Only by using such a system it becomes possible to observe the essentially
unsteady flow field and to understand the fundamental flow mechanism
underlying it.

The visualization software used here is Globe2D and Globe3D
developed by Institute of Computation Fluid Dynamics, which satisfies
the above requirements (Kuzuu, Kaizaki, Kuwahara 1997).

CONCLUSIONS

It is becoming clear that we need not resolve the small-scale structure
of high-Reynolds-number flow to capture the large structure, which is
most important for application. We should not use standard models to
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simulate any high-Reynolds-number, turbulent flows. Only without using
turbulence models we are able to capture the dependence of the flow on
the Reynolds number. To avoid the numerical instability we can simply
use a third-order upwind difference. Multi-directional finite-difference
makes the dependence of the solution on the flow direction less and the
computation more reliable.
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