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Abstract

87

The inverse design method for supersonic transport is developed. This method utilize Takanashi’s residual-correction concept

which is used in the transonic inverse problem. The difference between the computed pressure distribution of given wing and the

prescribed target pressure distribution is iteratively reduced by solving the integrodifferential form of linearized small

perturbation(LSP) equation. The pressure distribution is computed by Euler/Navier-Stokes equation. The numerical result show

the possibility of using this method to the design of SST.

Introduction
The next generation supersonic transport (SST) is under
consideration today, since the Concorde has been in service for
20 years and not fully successful in the economic sense. There
are many researches on this field now in the United State,
Europe, and Japan. To guarantee its economic success, the
next generation SST is required to have higher L/D than that of
the Concorde. To achieve this goal, development of a new
design technique for supersonic wings is of strong interest. For
the transonic wing design, Takanashi" proposed an inverse
method which uses the "residual-correction” concept and
showed successful design results?. In this paper, this inverse
method is extended to the supersonic wing design. In the

supersonic flow, the governing equation can be Linearized. So
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the integration becomes simpler than that of the transonic case,
but the integration region must be selected carefully because
the region that contributes to the point on the wing surface is
limited to Mach foregone. The sample design results of airfoils

and wings confirm the validity of the present method.

Design Procedure
The inverse design method seeks a geometry that materializes
the specified pressure distribution. With this target pressure
distribution specified, the corresponding geometry can be
obtained as follows. First, the performance of the initial
geometry is analyzed by the Euler/Navier-Stokes code and the
difference between this computed pressure distribution and the

target pressure distribution is caiculated. If two pressure
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distributions coincide with each other, the initial geometry is
the final geometry. If not, a geometry correction is executed by
using the solution of the inverse Linearized small perturbation
(LSP) equation. For this new geometry, the performance is
analyzed and the difference from two pressure distributions is
calculated. This process is repeated until the difference of
pressure distributions is eliminated. Through this process, the
geometry corresponding to the prescribed pressuse distribution
can be obtained. Figure 1 shows the flowchart of the above

procedure.

Integral Formulation for Inverse Method
In a supersonic flow, the small perturbation potential equation

can be written in the Linearized form as
, - - _
—1jog -0z —05; =0
M2 -1og - 05, - 05 0
and pressure coefficients on wing surfaces and the tangency

conditions can be written as
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where the subscript ‘+’ denotes the upper and lower surfaces
of the wing. For the convenience of the computation, a

Prandtl-Glauert transformation is used in the above equations

as
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The transformed equations are written as
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Suppose the solution of Eq. (6) for the initial geometry z(x, y)
is given as ¢(x, y, z). The perturbation solution ¢(x, y, z)+

AY(X, y, z) should satisfy
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By subtracting Eqgs. (6} - (8) from Egs. (9) - (11), the
perturbation equations are obtained as

Ady — Ady, - AD,, =0

(12)
ACpi[x,—X] =28 p¢.(x.y.20)

h k (13)
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The solution of Eq. (12), A¢, can be derived by means of

Green's theorem™*:

A¢(x ¥,2)
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where
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The area is that part of the z = O plane contained within the
Mach forecone from the point (x, y, z), that is, the area

bounded by the line

(x-¢)

Since Eq. (15) includes improper integrals in it, the

E= - and the hyperbola

~(y-n) ~(z-¢) =0

differentiation cannot move through the integral signs. This
obstacle can be eliminated by using Hadamard's "finite pan"s’
To utilize the pressure distributions as a boundary condition,
Eq. (15) is differentiated with respect to x and by adding the
values of the resulting Adx(x, y,z) atz = +0 and z = -0, we
obtain

E)aw (&, )

—g) - (y-n)

Au (x,y)=-Av (x,y)+= -U

a7

Aus(x,y) = A¢,(x,y,+ 0)+ Aq)x(x,y,- 0) (18)

Aw s(x,y) = A¢z(x,y,+ 0)— A¢,(X,Y,— 0)

(19)
Similarly, differentiating both sides of Eq. (15) with respect to

z and adding the values of the resulting Ad,(x,y, z) atz=+0

and z =-0.
- A ,
Awa=—Aua(x.y)+%H (2 £) uaz(x y) _gan
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Aus(x,y)=A¢x(x,y,+0)—A¢‘(x,y,—0) a1
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By solving Egs. (17) and (20) with the boundary conditions
Au, and Au,, the geometry terms Aw; and Aw, can be obtained.

As defined in Egs. (19) and (22), Awg(x, y) and Aw,(x, y)

7d&dn

represent the derivatives of thickness and camber correction,
respectively. So the value of geometry correction can be
computed by performing the numerical integration in the x

direction.

Azi(x,y)=%‘[AW &, Y)dﬁizjm’ (8. v)g

(23)
Results
To confirm the validity of the present formulation of the
inverse method for the supersonic wing design, numerical
calculations are performed for two-dimensional airfoils and

the three-dimensional wing.

Casel: Two-Dimensional Airfoil Designs

As an analysis code, a Navier-Stokes code. This code utilizes a
TVD upwind scheme for the spatial discretization of the
convective terms and the LU-SGS method for the time
integration. The computational grid is generated by an
algebraic grid generation code.

NACA1204 and NACAOQ003 are selected as reference airfoils.
First, NACA1204 airfoil is designated as a target airfoil. By
taking its pressure distribution as a target, the present inverse
design code is applied to reconstruct its shape, starting from
NACA 0003 airfoil. The flow condition is assumed as M =2.0,
Re=1.45x10" and o= 0°. The design result is shown in Figure
2. Both target and computed geometries and pressure
distributions coincide with each other.

NACAG66003 is selected as a reference airfoil for the second
test case. First, pressure distributions of this airfoil are
calculated at both 0° and 2° angles of attack and the pressure
distribution at 2° angle of attack is designated as a target.

Design procedure starts with the pressure distribution over
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NACA66003 airfoil at 0° angle of attack. As shown in Fig. 3,
the designed airfoil inclined 2° degrees as specified in the
target pressure distribution.

Case 2: Three-Dimensional Wing Design

The Euler code is used as an analysis code for the wing design.
The spatial discretization and time integral technique are the
same scheme as used in the two dimensional airfoil design.
The initial and target wing geometries are made for the same
warp geometry by using NACA0003 and NACA66003
airfoils, respectively. The initial wing geometry is shown in
figure 4. The pressure distribution of the wing that use
NACA66003 is designated as target. The flow conditions is set
to M = 2.0, Re=1.45x10" and o= 2°. Pressure distributions of
initial, target, and designed wing at the 20% and 50% spanwise
sections are shown in figures 5 and 6. As shown in the figures,
the pressure distributions of the designed wing are nearly

converged to the target.

Conclusion
In this investigation, Takanashi's inverse design method is
extended to supersonic airfoil design. The numerical results
show the possibility of using this method to the design of
supersonic transport. When using the inverse method as a
design tool, designers must translate their design criteria of
supersonic wings into target pressure distributions. The
determination of optimal target pressure distributions will be

studied in future.
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Figurel. Flowchart of inverse design procedure
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Figure 2. Inverse design result and comparison of pressure distributions

Figure 3. Inverse design result and comparison of pressure distributions
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Figure 4. The wing geometry of initial wing
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Figure 5. Comparison of surface pressure distributions (y/1=20%)
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Figure 6. Comparison of surface pressure distributions (y/1=50%)
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