第47回流体力学講演会 / 第33回航空宇宙数値シミュレーション技術シンポジウム 2015年 7月 3日 First Aerodynamics Prediction Challenge (APC1)

不連続ガレルキン法による NASA-CRMまわりの定常流解析

〇淺田啓幸 澤田恵介(東北大学)

数値計算法

■ <u>不連続ガレルキン法(DG法)</u>
▶ 高次精度非構造格子法
▶ セル内部に分布
$Q = Q_1 \phi_1 + Q_2 \phi_2 + Q_3 \phi_3 + \cdots$
$(\phi_j: 基底関数、Q_j: 自由度)$
▶ セル外部のステンシル必要なし ・ 優れたコンパクト性
■ <u>セル緩和型陰解法(CRIスキーム)</u> > セル内部の情報のみで時間積分

• DG法のコンパクト性とマッチ

2

課題0:verificationの課題

空間2,3,4次精度DG-CRIスキーム

4

3

■ 計算条件 ● M_∞ = 0.2 ● Re = 5.0 × 10⁶(L = 1) ● 乱流モデル: SAモデル(no-ft2) ● 計算格子: NASA提供の格子(粗い格子から3つ) ● 前りの ● 1 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh

	N	lesh 1	Mesh 2	Mesh 3	Mesh 4	Mesh 5
総格子	数	816	3,264	13,056	52,224	208,896
最小格- (最小)	子幅 ^{,+})	1.56	0.78	0.39	0.195	0.0975

$$x = 0.97$$
における C_f

6

5

課題1:NASA-CRM空力係数の予測

空間4次精度DG-CRIスキーム

計算条件

- > $M_{\infty} = 0.847$, $Re = 2.26 \times 10^{6} (L = 0.15131 [m])$
- $\succ \alpha = -0.62, 2.94, 4.65 [^{\circ}]$
- ▶ 乱流モデル:SAモデル(no-ft2)
- ▶ 計算格子:自作格子

α [°](coarse)	-0.62	2.94	4.65			
総格子数	977,992	1,017,696	1,038,313			
最小y ⁺	2.0	2.0	2.0			
層状格子成長率	1.25 [※]	1.25 [※]	1.25 [%]			
α [°] (fine)	-0.62	2.94	4.65			
総格子数		2,759,946	2,691,912			
最小y ⁺		1.0	1.0			
層状格子成長率		1.35	1.35			
※ 成長率の成長率を1.005とした(最大成長率1.5						

※ 成長率の成長率を1.005とした(最大成長率1.5) 8

7

 C_M が頭下げになる要因($\alpha = 4.65^{\circ}$)

14

まとめ

■ 課題0:verificationの課題

- ▶ C_fの収束値は、少しずれはあるが概ね一致
- ▶ 空間精度向上で格子が粗くても格子収束

■ <u>課題1:NASA-CRM空力係数の予測</u>

- ▶ C_LとC_Dは細かい格子ならば良い一致
- ▶ C_Mは格子が細かくても実験値から大きく外れる
 - ・ 翼根の剥離が原因ではない
 - 衝撃波が後方にずれることが原因
 - 衝撃波による剥離をしっかり捉えられていない?

まとめ

■ <u>課題2:NASA-CRM主翼後流の比較</u> ▶ 計算はしたが、比較はデータ公開後

