```
ISSN 0289－260X UDC 06．055．8
```


航空宇宙技術研究所特別資料

SPECIAL PUBLICATION OF NATIONAL AEROSPACE LABORATORY

SP－41

航空宇宙数値シミュレーション技術シンポジウム＇98論文集

航空宇宙数値シミユレーション技術シンポジウム運営委員会

1999年2月

航 空 宇 宙 技 術 研 究 所

NATIONAL AEROSPACE LABORATORY

航空宇宙数値シミュレーション技術シンポジウム＇98論文集

	氏 名	（所 属）
委員長 委 員	（1）佐々木 誠	（航空エンジン研究所）
	山本 行光	（流体科学総合研究グループ）
	山本 稀義	（流体科学総合研究グループ）
	齊藤 茂	（流体科学総合研究グループ）
	中道 二郎	（構造研究部）
	江尻 宏	（構造研究部）
	牧田 光正	（航空推進総合研究グループ）
	福田 正大	（計算科学研究部）
	廣瀬 直喜	（計算科学研究部）
	小川 哲	（計算科学研究部）
	岩宮 敏幸	（計算科学研究部）
	山本 一臣	（航空エンジン研究部）
	○末松 俊二	（革新宇宙プロジェクト推進センター）
	舞田 正孝	（革新宇宙プロジェクト推進センター）
	石垣 博	（角田宇宙推進技術研究センター）
	田村 洋	（ロケット推進研究部）
	伊藤 勝宏	（ラムジェット推進研究部）
	［ ○印	幹事 ］

航空宇宙数値シミュレーション技術シンポジウム＇98論文集

Proceedings of Aerospace Numerical Simulation Symposium＇98

開催期日 平成10年6月24日～26日
開催場所 航空宇宙技術研究所

24 June～ 26 June， 1998
National Aerospace Laboratory，Tokyo

航空宇宙技術研究所
航空宇宙数値シミュレーション技術シンポジウム運営委員会

「航空宇宙数値シミュレーション技術シンポジウム’ 98 論文集」

まえがき

本シンポジウムは，これまで15回にわたり開催されてきた航空宇宙技術研究所主催「航空機計算空気力学シンポジウム」を引き継ぐものとして，これまでの総合的なシンポジウ ムの機能に加えて，研究開発プロジェクトの遂行において直面する重要課題に深く切り込 み，これを解決してゆくために関係研究者の努力を結集していく場としての機能を果たす べく，新たに「航空宇宙数値シミュレーション技術シンポジウム」という名称で開催いた しました。
計算空気力学（CFD）はこれまでに著しい発展を遂げ，航空宇宙分野から躍り出て，流体科学に関わる全ての技術分野において，解析や設計の手段として重用されるようになり ましたが，そのもとの航空宇宙分野では，次世代超音速輸送機（SST）や宇宙往還機の開発への応用という，よりいっそうの信頼性が要求される実用上の課題に直面し，きわめて高い精度に裏付けられた本格的な解析能力の向上が望まれております。この課題を克服す ることができなければ，最早大きな進展が望めない段階に至ったように思われます。一方 で，CFDと熱構造及び飛行制御等の関連数値シミュレーション技術を統合した多分野数値 シミュレーションの必要性も高まっております。そこで本シンポジウムも，そのような課題への重点的取り組みの一環を担う場となるべく，従来の在り方から脱皮して新しい役割 を果たす途をめざすことに致しました。

今回のシンポジウムでは，特別企画として「数値シミュレーション技術の新しい動向」 という題目で，多分野数値シミュレーション手法の現状と将来を展望いたしました。また， 2件の特別講演，6つの企画セッションを設け，このうち，「SST」，「回転翼」及び「高工 ンタルピー流れ」の企画セッションでは，それぞれ討論会，パネルディスカッション，ワ ークショップを開き，これらを通じて活発な討議を行うことができました。また「宇宙推進」，「航空推進」，「乱流の遷移機構と予知」のそれぞれの企画セッションも好評でした。脱皮を図る始めての試みのためもあって，企画が盛り沢山に過ぎ，内容が多少消化不良の気味もありましたが，一般講演を含め総数67件の講演が行われ，盛況のうちに終えること ができました。

本シンポジウムの成果をできるだけ多くの方々に利用していただくため，これまでと同様に，シンポジウムにおける講演を集成した論文集を航空宇宙技術研究所特別資料（SP） として刊行いたしました。この論文集が本シンポジウムの意義を更に高くするものである ことと念じ，寄稿された所外の方々のご協力に感謝いたしますとともに，本シンポジウム を時代の要求に適合したものとしていくため，今後とも関係各方面の方々の御協力をお願 いする次第であります。

航空宇宙数值シミュレーション技術シンポジウム＇98運営委員会委員長 佐々木 誠

——目 次 —

35．NALとONERAによるEuler／Kirchhoff法を用いた㟟音速ロータ騒音の予測 233
航空宇宙技術研究所 青山剛史，齊藤 茂，岩宮敏幸ONERA Joelle ZIBI，Cyril POLACSEK，Olivier ROUZAUD，Jacques SIDESTakashi AOYAMA，Shigeru SAITO，Toshiyuki IWAMIYA
36．ロータCFDと空力騒音解析 239
三菱重工業（株）中尾雅弘，内山直樹中菱エンジニアリング（株）鈴木博史宇宙科学研究所 藤井寿蔵
（株）CTI 大村 稔
Masahiro NAKAO，Naoki UCHIYAMAHiroshi SUZUKI
Kozo FUJII
Minoru OHMURA
37．航技研におけるヘリコプタ機外騒音研究において245航空宇宙技術研究所 齊藤 茂，青山剛史，末永尚史Shigeru SAITO，Takashi AOYAMA，Hisashi SUENAGA38．ヘリコプタブレードの翼端渦巻き上がりの解析法249東京大学 河内啓二日立製作所 相川 慎
Keiji KAWACHIMakoto AIKAWA
39．ヘリコプタ・ブレードの翼端形状がBVI騒音の指向性に与える影響255ATIC 近藤夏樹，中村英明，山川笨一航空宇宙技術研究所 青山剛史，齊藤 茂
Natsuki KONDO，Hideaki NAKAMURA，Eiichi YAMAKAWATakashi AOYAMA，Shigeru SAITO
40．Warped Delta翼における超音速層流制御効果に関する考察． 259川崎重工業（株）生越博景，稲垣健次郎航空宇宙技術研究所 石田洋治，吉田憲司，野口正芳Hirokage OGOSHI，Kenjiro INAGAKIYoji ISHIDA，Keiji YOSHIDA，Masayoshi NOGUCHI
41．横流れ摄乱に起因する境界層遷移の予測265
航空宇宙技術研究所 野村聡幸 Toshiyuki NOMURA
42．e^{N} 法による境界層遷移の数値予湘について 271航空宇宙技術研究所 跡部 隆，山本稀義Takashi ATOBE，Kiyoshi YAMAMOTO
43．チャンネル流遷移の直接シミュレーション 277航空宇宙技術研究所 山本稀義東京大学 高橋惪也，神部 勉Kiyoshi YAMAMOTONaoya TAKAHASHI，Tsutomu KANBE
44．パネルディスカッション $\cdot 281$「日本における可転翼騒音研究の現状と将来」 司会：ATIC 山川榮一パネリスト：東京大学 河内啓二 航空宇宙技術研究所 青山剛史石川島播磨重工業（株）中村良也 三菱重工業（株）小林 孝川崎重工業（株）中野満絋 富士重工業（株）小生方正裕

45．On the open boundary conditions for incompressive unbounded flows 285
National Aerospace Laboratory Shigeki HATAYAMA
46．アドバンシング・フロント法とデローニー分割法を併用した3次元非構造格子生成法について 291名古屋大学 增田 糧，中村佳朗Ryo MASUDA，Yoshiaki NAKAMURA
47．有限要素計算による翼の等角写像の研究 297
電気通信大学 牛島照夫，横松大作，安藤一平，矢野祐輔
Teruo USHIJIMA，Daisaku YOKOMATSU，Ippei ANDO，Yusuke YANO
48．ベクトル量の輸送に対する数値計算法について 303
高度情報科学技術研究機構 白山 晋
Susumu SHIRAYAMA
49．保存則（スカラー及び系）の差分近似の高精度化について 307
航空宇宙技術研究所 相曾秀昭 Hideaki AISO
50．数値データのTV—安定性検証方式の概念検討
航空宇宙技術研究所 高橋匡康，中村絹代 Tadayasu TAKAHASHI，Kinuyo NAKAMURA313
51．燃焼を伴う剪断流れの数値シミュレーション
航空宇宙技術研究所 溝㴊泰寞 Yasuhiro MIZOBUCHI319
52．超音速ジェットスクリーチのタブによる抑制のシミュレーション 325
早稲田大学 大田英輔（株）荏原製作所 木分孝幸航空宇宙技術研究所 小林 紘，生沼秀司，長井健一郎Eisuke OUTATakayuki KIWAKEHiroshi KOBAYASHI，Hideshi OINUMA，Kenichirou NAGAI
53．Numerical analysis of supersonic pulse jets331
Kyoto University Ryuji ISHII，Yoshikuni UMEDA Kanazawa University Masatoshi YUHI
54 NWTジョグにおける処理性能の改善 $\cdot 337$航空宇宙技術研究所 土屋雅子，吉田正廣，中村 孝三向ソフトウェア開発 藤岡 晃富士通 山口 靖
Masako TSUCTIYA，Masahiro YOSHIDA，Takashi NAKAMURAAkira FUJIOKAYasusji YAMAGUCHI
55．CFDアプリケーションプログラムとNWTとの整合成について343航空宇宙技術研究所 中村 素，吉田正廣，松尾裕一，高木亮治川崎重工業（株）嶋 英志
Takashi NAKAMURA，Masahiro YOSHIDA，Yuichi MATSUO，Ryoji TAKAKIEiji SHIMA

Simulations of High Speed Flow Fields: the Role of Databases for CFD Valitation

Francesco Grasso
Department of Mechanics and Aeronautics
University of Rome "La Sapienza"
Via Eudossiana 18, 00184, Rome, Italy

Abstract

In this paper the issue of simulations of high speed flows is addressed, and the role of databases for CFD validaton is discussed. The credibility of Computational Fluid Dynamics can be established only by validation; the development and the use of a database is essential to arrive at a validated CFD procedure. Validation is not always feasible if one wants to explore all possible combinations of phenomena, therefore one should focus the analysis on basic well-defined test cases. In the paper we then describe those test cases that have been selected for the creation of the High Speed Flow Field Database.

1 Introduction

The development of high velocity vehicles (the new generation supersonic transport airplane, the new maneuverable re-entry vehicles, the single-stage and two-stage orbital launchers) has refocused the attention on the problem of accurately predicting shock-wave boundary-layer interaction phenomena, real gas effects, transition and turbulence effects, ablative and non-ablative thermal protection, and their impact on the aerodynamic performance of such vehicles in terms of efficiency
and controllability. All these physical phenomena represent a strong challenge to both theoreticians and experimentalists [1]-[3].

On one hand, there are many open questions regarding appropriate physical modelling, especially for turbulence and hightemperature effects at high Mach numbers, and their mutual influence: uncertainties exist in the thermodynamic relations, energy transfer mechanisms, chemical kinetics and gas-surface interaction. Moreover, difficulties still remain even for those phenomena for which models exist (turbulence is a typical example).

On the other hand, the experimental investigations are mainly based on wind-tunnel ground tests which mostly yield a limited amount of information. Indeed, high Mach number flight conditions cannot be easily reproduced (especially in terms of Reynolds number) and, likewise, accurate reliable data such as instantaneous velocity and temperature fields, heat transfer, statistical quantities for turbulence, chemical compositions, etc., are difficult to measure accurately.

In the last two decades Computational Fluid Dynamics (CFD) has undergone a strong development and has become a powerful tool both for the analysis and understanding of fluid dynamics phenomena related to high speed flows, and for the design of
aerospace vehicles．This progress was possi－ ble only with the advent，in the meantime， of faster and faster supercomputers with in－ creasing memory capabilities．Limitations of CFD are obviously to be addressed for the lack of understanding and／or inappropriate physical models as well as limited experimen－ tal information．In addition，CFD is strongly affected by the numerical methodology em－ ployed（in terms of accuracy，efficiency，phys－ ical and geometrical modelling）and computer resources（the selection of a numerical strat－ egy is，in practice，driven by the available computational resources）．The use of CFD then poses the question of the credibility of the solution both for the understanding of a physical phenomenon and／or the estimation of critical design parameters［4］－［8］．

In the next sections we first address the crit－ ical issues of validation，and then describe the test cases selected for the creation of the High Speed Flow Field（HSFF）Database．

2 CFD Validation

A very important issue，which is related to flow predictions performed by CFD numerical tools，is the development of a validation pro－ cedure．The credibility of computational fluid dynamics can only be established by valida－ tion．Validation involves both numerical and physical aspects［4］．The former requires the assessment of the sensitivity of the solution to the numerical algorithm，grid resolution and its properties，initial and boundary conditions treatment etc．，so as to determine the relative importance of the different errors as well as uncertainties．The physical aspect of valida－ tion implies that the experimental and／or the－ oretical knowledge of the phenomena must be taken into account when analyzing the com－ puted solution．Another subtle and critical issue is the difficulty to evaluate the degree of validity of a simulation without knowing the model uncertainties．Uncertainties can only
be assessed by identifying possible sources of errors in the model parameters and the sensi－ tivity of the simulation to these errors．

In principle，a validation procedure may re－ quire simulations of a very large number of reference test cases．However，such a method－ ological approach is not always feasible if one wants to explore all possible combinations of phenomena．One should then focus on basic reference test cases，and the development and the use of a database is essential to arrive at a validated CFD procedure．

3 The High Speed Flow Field Database

For validation purposes a number of high speed flow field database workshops have been organized in the last years both in Europe （Antibes 1990， 1991 and 1993，Noordwijk 1994），in the US（Houston 1995），and more recently in Italy（Naples，1997），the goal be－ ing to create a large database of numerical solutions and experimental measurements for several basic and well－defined reference test cases．

The scope of the development of the HSFF database is to encourage a collaborative ap－ proach to fluid－dynamics from both compu－ tational and experimental specialists，focus－ ing on a scientific characterization of some fundamental problems representative of fluid dynamics able to drive developments in ba－ sic research and to mark progress in physical understanding．

All test－cases have been selected with the aim to produce：i）reliable and accessible ex－ perimental data，and ii）well documented re－ sults．The list of the selected test－cases to－ gether with the research centers and／or labo－ ratories where the experiments have been car－ ried out is reported in Table 1 （for the details on the flow conditions and model assumptions refer to［3］）．

3．1 Hyperboloid Flare

This test case（Fig．1）has been selected for the validation of Navier－Stokes solvers for hypersonic viscous flows characterized by both stagnation point region and shock－wave boundary－layer interactions．The test－case is characterized by perfect gas flow assump－ tion and axisymmetric geometric configura－ tion．Two subcases have been proposed：one fully laminar and the other with a laminar－to－ turbulence transition in the proximity of the boundary layer reattachment over the flare． Well documented experiments were available from the RWG facility（Ludwieg Wind Tunnel B）at DLR，Goettingen（Germany）．

The contributed results show small differ－ ences in the laminar prediction of separation location，while a larger spread in the reattach－ ment position is observed，and consequently larger differences on the pressure distribution along the flare are found（even though the level of the plateau pressure was well pre－ dicted）．For the turbulent test case，the so－ lutions are found to be affected by the tran－ sition location：the best agreement with the experiments is obtained by assuming transi－ tion immediately upstream of reattachment．

3．2 Hollow Cylinder Flare

This test case（Fig．2）has been proposed to analyze high speed flows characterized by axisymmetric strong shock wave boundary layer interactions in fully laminar flow regime． The experiment has been carried out in the R5Ch Blow－down Hypersonic Wind Tunnel of ONERA（France）．Accurate numerical stud－ ies（code－to－code comparison）and compari－ son with experimental data have also been conducted in the frame of AGARD Working Group 18.

The main flow features are correctly pre－ dicted by all contributors，the main differ－ ences being observed in the separation extent and its location；the reattachment is well pre－
dicted by the majority of the contributions indicating that the boundary layer thinning makes the reattachment being less affected by the numerics，provided the grid is suffi－ ciently refined；non－continuum effects are con－ fined to a region that extends for about 5% of the hollow cylinder length corresponding to $O(50 \div 60)$ mean free paths；a peak pres－ sure overprediction and a faster recompres－ sion through the reattachment are also ob－ served，together with a weaker leading edge shock wave and a lower density jump across the shock．

3．3 Ogive Cylinder

This test case（Fig．3）has been proposed to validate Navier－Stokes solvers in the field of missile supersonic（laminar）flows，accounting for the effects of moderate to high angle of in－ cidence．An important feature of the flow field is the three－dimensional separation with the development of vortical structures．The ex－ periments have been performed on a 9 －calibre ogive－cylinder configuration in a continuous wind tunnel test facility，the S 5 Ch wind tun－ nel of the ONERA Chalais－Meudon estab－ lishment（France）．This test－case has also beenexamined in the frame of the AGARD－ FDP Working Group 14，in 1994.

The computed surface pressure distribu－ tions on the windward side agree well with the experiment up to the primary separation line； the size and shape of the primary vortices are well predicted whereas（for all contributions） the prediction is less satisfactory in the sepa－ rated region at leeside where several weaker vortices form．The latter discrepancies are likely linked to numerical issues，rather than model uncertainties．

3．4 Corner Flow

The test case（Fig．4）has been proposed to analyze a complex fluid dynamic interaction
pattern on a simple three dimensional geome－ try：two wedges mounted at a corner angle of 90 degrees and with an unswept leading edge． This configuration was chosen to simulate a wing－body or a fin－body juncture as well as a rectangular air intake．In the assumption of perfect gas，the boundary layer flow is fully laminar and freestream is characterized by a high Mach number．Experiments have been carried out in the hypersonic gun tunnel of the Institut fur Stromungsmechanik of Uni－ versity of Braunschweig（Germany）．

In general，good agreement with experi－ ments has been observed．However，none of the computed solutions shows a clear peak heating in the core of the primary vortex， as the experiment shows．Moreover，discrep－ ancies are found in the location of the sec－ ondary vortex as well as its reattachment point．Three dimensional effects may be re－ sponsible for these differences．

3．5 Blunt Fin Interaction

This test case（Figs．5，6）has been pro－ posed to assess the capability of codes to simulate three dimensional supersonic shock wave boundary layer interactions induced by the presence of a fin with a semicircular lead－ ing edge，mounted as an obstacle on a flat plate．The experimental set－up is simple and a fully turbulent incoming boundary layer de－ velops over the plate．High aerodynamic heat－ ing and pressure rise can be realized near the root of the fin，where reliable measurements can be achieved very near the wall．Two ex－ periments have been considered：the first one executed in the S 5 Ch supersonic wind tun－ nel of ONERA Chalais－Meudon（France）and the second one in a supersonic wind tunnel at University of Kyushu（Japan）．

The results show a strong influence on the turbulence model employed，mainly for heat transfer distributions（which show a rather poor agreement with the experiments）and
the surface flow pattern（in terms of skin－ friction lines）．

3．6 Supersonic Delta Wing

This test case（Fig．7）has been proposed to check the capabilities of Navier Stokes solvers to correctly predict supersonic flow fields around a Supersonic Civil Transport－ like delta wing．A 70 deg sharp leading edge swept delta wing has been considered with zero design lift（no camber，no twist），in su－ personic and turbulent flow regime，with the assumption of perfect gas．Two angles of attack have been considered， 4 deg and 8 deg，that correspond respectively to the con－ ditions of maximum L／D ratio and more pro－ nounced effects of leading edge vortices．Ex－ periments have been performed in the 4×4 foot supersonic pressure tunnel of Langley Re－ search Center（US）in the 60s on a series of arrow wings．

The greatest differences between the simu－ lations and the experiments are found to oc－ cur at the wing tip．However，contrary to the conclusion of Carlson（who suggested wing bending effects as a possible explanation for the discrepancies between theory and experi－ ments），the reported contributions are not in－ fluenced by bending．A detailed analysis of the results indicates that poor grid resolution at the wing tip and uncertainties in the flow conditions are among the possible causes of these discrepancies．

3．7 ELAC－I Delta Wing

This test case（Fig．8）has been proposed for code assessment in simulating complex three dimensional flow fields over a complete delta wing configuration with winglets．The refer－ ence configuration is ELAC－I，and two angles of attack have been considered（0 deg and 10 deg ）for turbulent supersonic flows assum－ ing perfect gas behaviour．Experiments have
been carried out at the Aerodynamisches In－ stitut of RWTH－Aachen（Germany），in a vac－ uum wind tunnel which utilizes the ambient conditions as reservoir conditions．

The reported contribution shows a moder－ ate agreement with experiments that is due both to the uncertainties in the definition of laminar－to－turbulence transition front（vor－ tices developing on the leeward side of the wing are superimposed to the transition re－ gion and this makes extremely difficult to dis－ tinguish between the two）and to the turbu－ lence model used（an algebraic one）．

3．8 Multiple Bodies Interaction

The test（Fig．9）has been proposed for code assessment in simulating multiple shock and shock－wave boundary－layer interactions of supersonic flows around bodies of revolu－ tion（cone－cylinder configurations），mounted over a flat plate．Experiments have been per－ formed in the supersonic wind tunnel T－313 based at the Institute of Theoretical and Ap－ plied Mechanics（ITAM），Siberian Branch of the Russian Academy of Sciences（SB RAS） at Novosibirsk（Russia）．

The reported computation corresponds to an inviscid solution and the computed pres－ sure shows a qualitative agreement with the experiments．However，the latter seem to in－ dicate strong three dimensional effects and a fully turbulent shock－wave boundary－layer interaction，thus explaining the quantitative disagreement．

3．9 OREX（Orbital Reentry Experiment）

This test case（Fig．10）corresponds to an axisymmetric laminar flow around a reen－ try capsule（named OREX），without base－ flow，with fully catalytic or non－catalytic sur－ face assumption．OREX is a joint experi－ ment between NAL（National Aerospace Lab－
oratory）and NASDA（National Space De－ velopment Agency），whose primary objective is to obtain aerothermodynamic and thermo－ structural data needed for the design of the unmanned Japanese space vehicle HOPE， that is a NASDA／NAL joint project，and to test in flight its thermal protection system．In this experiment，NAL has measured plasma electron density，the heat transfer rate，and the surface pressure at high altitude．

Results for the high altitude case are un－ certain due to the sensitivity of computa－ tions to low density effects and to the num－ ber of species and reactions considered．For the low altitude case，the comparison of com－ puter simulations and flight data suggests that finite－rate catalytic wall assumption is appropriate under OREX conditions．More－ over，an assessement of the quality of the in－ ferred data from OREX and a study of the sensitivity of computations to discretization are needed to properly compare them and es－ tablish the level of accuracy and credibility of computer simulations．

3．10 Wind Tunnel Nozzle

This test case（Fig．11）is related to cali－ bration efforts at the ONERA F4 high en－ thalpy facility（France）．This test case has been proposed to assess nonequilibrium mod－ elling able to drive nozzle flows close－to－ equilibrium during strong expansions．Dif－ ferent measurements such as nozzle static pressures and translational temperature from the Diode Laser infrared Absorbtion Spec－ troscopy（DLAS）technique indicate by com－ parison with numerical simulations that，in－ deed，the nozzle flow can be interpreted as being close－to－equilibrium．

Pitot pressure profiles at the exit section in－ dicate that the nozzle boundary layer is not turbulent，and laminar and transitional mod－ els allow to fit well the Pitot pressure profile in the inviscid core．The thermochemical transi－
tional nonequilibrium with Vibrational Disso－ ciation Recombination（VDR）coupling pro－ duces the closest results to the whole set of ex－ perimental data（in terms of wall heat trans－ fer and pressure，translational temperature measured by DLAS technique，NO concentra－ tion）．Further investigations are needed to as－ certain that the selected physical model is the correct one，and additional measurements are necessary to conclude whether VDR coupling or full thermochemical equilibrium is control－ ling．

3．11 Shock－Shock Interaction

The interaction between an impinging shock wave generated by a wedge and the bow shock around a circular cylinder（type IV shock－ shock interaction in the classification of Ed－ ney），with significant dissociation of air，has been chosen as a test case（Fig．12）to eval－ uate CFD codes for the analysis of complex reactive shock－shock interactions．The exper－ iments have been conducted in the High En－ thalpy Shock Tunnel（HEG）of DLR at Goet－ tingen（Germany）．

3．12 Blunt Cone

The test case（Fig．13）has been proposed to assess codes for simulating laminar react－ ing flows around an axisymmetric planetary probe configuration．The main features of a hypersonic flow field over a bluff body can be divided in two parts：i ）the forebody，dom－ inated by a strong shock ahead of the nose with strong air dissociation，non－equilibrium phenomena，ionization，and high heat trans－ fer；and $i i$ ）the afterbody，characterized by a strong expansion at the shoulder and flow separation in the rear of the body，with the consequent shear layer and flow reattachment over the sting，with a local peak heating． The separation point location depends on the boundary layer thickness，the body geometry
and the laminar or turbulent regime of the flow．Non－equilibrium freestream air in fully laminar flow conditions and non－equilibrium freestream ionized air with flow transition in the region of the afterbody（around the reattachment point）have been considered． The experiments have been performed at the Calspan－UB Research Center LENS facility （US）using air as working gas．The test－case is also included in the AGARD－FDP Working Group 18.

Navier Stokes computations are found to accurately predict the pressure and heat transfer measurements on the forebody of the probe；however，a smaller separated region is predicted with respect to that one measured in the experiment．Also，discrepancies are ob－ served for the heat transfer in the recircula－ tion region．

3．13 Rarefied Cylinder Wake

The test（Fig．14）has been proposed to study the effects of rarefaction on the wake of a cylinder exposed to a nitrogen free jet plume．A rectangular flat plate is placed in the cylinder wake such that there is no direct line of sight from the plate surface to the noz－ zle orifice．For this configuration，free molec－ ular flow with line of sight shading would predict a zero impingement pressure on the plate．Experiments have been conducted at NASA Johnson Space Center（US），providing the pressure near the stagnation point on the windward side of the cylinder and at a point on the leeward（or wake side）of the cylinder， and the force acting on the flat plate induced by the presence of the plume．

The reported results show that the predic－ tions of the pressure distribution on the cylin－ der surface and the force on the plate are af－ fected by the model used for particle reflec－ tion．The best compromise to obtain good comparison with experiments is to use differ－ ent models for the cylinder and the plate．

4 Conclusions

Computational Fluid Dynamics can play an essential role for the understanding of the con－ trolling mechanisms of the physical phenom－ ena typical of high speed flows，as well as the design process，provided the aspect of vali－ dation is always addressed with an emphasis on the uncertainties that arise from either the physics，the numerics or the experiments．

The analysis of the critical issues of vali－ dation has lead us to conclude that：i）sim－ ple representative experiments may be of lit－ tle use when physical models are lacking；ii） theoreticians should closely interact with ex－ perimentalists to minimize the sources of un－ certainties in defining test cases for CFD vali－ dation；iii）detailed analysis of the sensitivity of the computed solution to the physical and numerical models should be carried out；iv） grid independence should always be assessed； v）the use of databases is of great help for CFD validation．
Further studies are needed especially for the modelling of laminar－to－turbulence transi－ tion mechanism，strong three dimensional ef－ fects，heat transfer in turbulent regime，non equilibrium thermo－chemistry able to drive flows close－to－equilibrium during strong ex－ pansions，and particle reflection in rarefied flows．

References

［1］Abgrall R．，Desideri J．A．，Glowinski R．， Mallet M．and Periaux J．，Hypersonic Flows for Reentry Problems，volumes 1－3， Springer－Verlag，Berlin， 1992.
［2］Bertin J．，Periaux J．and Ballmann J．， Advances in Hypersonics，volumes 1－3， Birkhauser，Boston， 1992.
［3］Borrelli S．，Grasso F．，Marini M．，and Pe－ riaux J．，Proceedings of the First Europe－ US High Speed Flow Field Database Work－
shop，Part II，Naples，to be published， 1998.
［4］Grasso F．，Leone G．and Delery J．，＇A Validation Procedure for the Analysis of Shock－Wave Boundary－Layer Interaction Problems＇，AIAA Journal，32，1820－1827， （1994）．
［5］Marini M．，Borrelli S．，and Grasso F． ＇The Role of Databases for CFD Valida－ tion：A Synthesis of The First Europe－US High Speed Flow Field Database Work－ shop，Part II＇，in Proceedings of ECCO－ MAS 98，（1998）．
［6］Bradley R．G．，＇CFD Validation Philoso－ phy＇，in AGARD Conference Proceedings， Report No．AGARD－437，（1988）．
［7］Mehta U．B．，＇Computational Require－ ments for Hypersonic Flight Performance Estimates＇，Journal of Spacecraft and Rockets，27，103－112，（1990）．
［8］Mehta U．B．，＇Aerospace Plane Design Challenge：Credible Computations＇，Jour－ nal of Aircraft，30，519－525，（1993）．

$\#$	test case	experiment performed at
T1－97	Hyperboloid Flare	DLR，Germany
T2－97	Hollow Cylinder Flare	ONERA，France
T3－97	Ogive Cylinder	ONERA，France
T4－97	Corner Flow	Univ．Braunschweig，Germany
T5－97	Blunt Fin Interaction	ONERA，France／Univ．Kyushu，Japan
T6－97	Supersonic Delta Wing	NASA LaRC，US
T7－97	ELAC－I Delta Wing	RWTH，Germany
T8－97	Multiple Bodies Interaction	ITAM，Russia
T9－97	OREX Orbital Reentry Experiment	NAL／NASDA，Japan
T10－97	Wind Tunnel Nozzle	ONERA，France
T11－97	Shock－Shock Hot Interaction	DLR，Germany
T12－97	Blunt Cone	CUBRC，US
T13－97	Rarefied Cylinder Wake	NASA JSC，US

Table 1：Test Cases for the HSFF Database．

Figure 3：Definition of the Hyperboloid－flare shape

Figure 1：Hyperboloid Flare

Hollow Cylinder Flare

Figure 2：Hollow Cylinder Flare

Figure 3：Ogive－Cylinder

Figure 4：Corner Flow

Figure 5：Blunt Fin Interaction

Figure 6：Blunt fin／plate configuration

Figure 7：Supersonic Delta Wing

Figure 8：ELAC－I Deta Wing

Figure 9：Multiple Bodies Interaction

Figure 10：OREX configuration

Figure 11：Wind Tunnel Nozzle

Figure 12：Shock－Shock Interaction

Figure 13：Blunt Cone

Figure 14：Rarefied Cylinder Wake

超音速実験機について
 －航空宇宙技術研究所「次世代超音速機技術の研究開発」—
 ○坂田公夫（航空宇宙技術研究所）

Supersonic Experimental Airplane Development Program in NAL＇s Supersonic Research
Kimio SAKATA（NAL）
Key Words：Supersonic Civil Transport，Experimental airplanes，CFD design
The R\＆D program is being promoted in NAL in order to establish the emerging technologies for the next generation supersonic civil transports．CFD（Computational Fluid Dynamics）－based aerodynamic design， composite structures and selected propulsion technologies are dealt with in the program．The non－powered and jet－propelled experimental airplanes will be developed for verifying the technological fruits．The non－ powered airplane is now under preliminary design based on the aerodynamic configuration developed by NAL and will be tested in 2001．The jet－engined airplane will be developed and tested from 99 to 2004.

1．はじめに

次世代の超音速輸送機は，今世紀はし゚めに暮を開けた航空輸送の発展の歴史から見ると，プロペラ からジェットエンジンへの変化がもたらした60年代初めのジェット輪送革命（亜音速）以降約 50 年 を経て起こる超音速輸送革命を担う。技術的には低騒音，低NOxなとの環境適合性に優れ，効率が高く，軽量であることが不可欠であり，これによって20年前に登場したコンコルドの3倍の乗客と 2 倍の航続距離の実現を目指す。技術課題は，高い空力設計技術，複合材構造技術，低公害エンシン技術，革新制御技術など極めて高い。欧米各国では，コンコルドの退役や技術の高まりを背景に，航空輸送需要の伸びから2010年頃の就航が適当として研究開発を進めている。我が国においても通産省のエン ジンや複合材の研究に加え，航技研で 1997 年より実験機を含む「次世代超音速機技衡の研究開発」を進めている。図1はこれらの計画の年次展開であり，中でも米国NASAによる総額 30 億ドルに及ぶ研究計画 HSRPが極めて大規模である。航技研の計画では，我が国および航技研にとって得意であり，将来性のある技術に絞って課題を設定し，要素研究と研究成果の適用による技術実証を目的とした小型超音速実験機の開発•飛行実験計画が中心である。研究開発に民間企業の参加を推し進め，来るべき次世代超音速機の国際共同開発において我か国産業が主要な役割を果たすことを狙いとする。

図1 次世代超音速機に向けた各国の研究開発計画

2．研究開発計画の概要

我が国の航空技術の国際レベルへの浮上を図ることを主目的とし，高い技術要求のある次世代超音速機の国際共同開発を率引出来る高度な技衡を手に入れることが出来るためには，重点化された将来性のある課題を，実験機による技術実証を通して，実用性の高い技術に育てると共に，世界に向けて研究開発をアピールすること が有効である。主要な技術課題は表1に示 すとおりであるが，その中で，今後の航空機設計に革新をもたらすと考えられるCF D（計算空気力学）を中核とした設計技術，軽量化の煡を握る複合材技術および超音速児の性能を支配するインテークなどの推進技術を取り上げた。
研究開発計画は，図3に示すように平成 7 年度より技術研究に着手し 2 年間の準備期間を経て，平成 9 年度から実験機の開発 に着手し，平成16年までの8年間でエン ジンのないクリーン形状の無動力実験機 （ロケット実験機）と，ジェットエンジン推

表1 次世代超音速機の主要な技術課題

技析分野	内容	笽考
空力	空力形迷技行 －㯕本エンジン梳合空力 ○上貶を実覞する（F）技䘕 	機本本形犾に中心的役割を果たす設険技術開発婳（重要（W） は我が国傌賣
構告	化技術 	航技研箅觬の複合材技術の超音速機への適用
推隹	 Oイテク・ス゚ル，CFD設計 \triangle 低NCX低馶音エンジン技哥	エンジン単独ではな 〈機本綡合 重点
制御	\triangle 革新々が办，人工視界	電子持楸など
システム		実験幾及厸を通して猴㝵

－本計面の実験機で探用している技術
\triangle 本計画の技術研究としている技術進によるジェット実験機の 2 種の実験機を
開発•飛行実験する予定である。実験機は高い超音速空力性能の実現を目指し，新たに開発したCFD 設計技術を形状設計に適用した無人の技術実証機であ り，無動力機によって機体の超音速高揚抗比を狙い， エンジン搭載形態のジェット実験機でさらに高度な エンジン統合に係わる最適化技術を取り込んでC F D設計を行う。両実験機の概念と目襟を表 2 に示す。 ジェット実験機には複合材技術の適用を検討してい る。また技術研究として，実験機に直結する要素研究と，低NOx化などの，重要技術の研究を同時に進めている。

図2 CFD 逆問題一最適化空力設計法の概念

3．実験機の設計開発

1998年10月の時点で は，無動力機の基本設計が最終段階に入っており，ジ エット実験機はまだ概念検討を行っている。無推力実験機（ロケット実験機）の設計の詳細はこれに続いて各内容の報告が行われるので， ここでは，その設計開発手法と狙い所を主に述べてお きたい。
実験機規模は，実験レ イノルズ数や計測システム を含む搭載機器の容量など

表2 2 種の実験機概念と目標（NEXST：NAL＇s EXperimental Airplane for SCT）

項目	$\begin{gathered} \text { 無動力(ロケット)実鋥裁 } \\ \text { (EEST-1) } \end{gathered}$	$\begin{gathered} \text { ジェット実眹幾 } \\ \text { (NEXST-2) } \end{gathered}$
基本性能 （実誢条件）	マッノ数1．6～20，高度10～18mにおける超音束言影扑比生能 （一部䔲音速我行条件），龍誢詿性能合まず。	
目的	（超音速言堨片比を目標とした機本空力形狱を設玟纹橡とする）	 エンジン機体統合技标，インテークなどの推
形笖新要	無人無隹力クリーン形状 アローウイング，水平尾鮒き （長さ 11.5 m ，スベン 4.7 m ）	無人ジェット機機本形狱は左检こ同儀 エンジン双発主爰下面陚載寸法ま紋司左
実験システ ム排要	- ロケットによる打ち上けf - 高空分離 無動力フライト - バラシュート，エアバック回収	- 航空機こよる言空発進 小型ロケット補助 - 自推力飛行実験，ラムエアシュート減速回収など
開発／飛行時期	1997～2001／2001～02	1998～2002／2003～04

を考虑し，実用機規模である 100 m の約 11% の全長 11.5 m とし，後述する主翼平面形の選択から，主翼 アスペクト比 2.2 ，従って翼幅を 4.7 m とした。技術評価のための評定条件としてマッハ数 2 ，高度 $15,000 \mathrm{~m}$ を設定した。
主翼平面形にはクランクドアローウイングの採用，翼䏤結合では衝撃波抵抗を最小化するエリアルー ル（面禎法則）の適用，さらに誘導抵抗を低減するための主翼キャンバーと捻りを最適化したワーブ，お よび絶济れて不安定を抑制するコード方向に台形㬹圧分布を持つ自然層流主翼を採用し，超音速高揚抗比 の実現を目指す。この空力形状の設計に，C F D を用いた逆問題設計手法を適用する。逆問題設計とは，目標性能を設定し，これを実現する形状を初期形状からCFDと微少擾乱法を適用して目缃性能へ近づ く様に変形して行き，高性能な形状を得る手法である。
ジェット実験機に至って完成する逆問題•最適化設計法は今後のCFDなど計算機による設計法の鍵 となると考えられるが，その概念を図示すると図2の様になる。即ち，形状定義，格子形成，可視化•流れ解析を含む狭義のC F Dを中核にして，性能解析，目標値比較検討，最適化方策適用，形状変更（逆解析適用）を経てC F D 解析に戻るルー プを持つ手法である。逆問題に微少擾乱法を用い，最適化法に勾配法あるいは遺伝アルゴリズム（GA）法を用いる方法が有力である。無動力実験機設計で設定した目標は，超音速站珄抵抗の減少を目的と した主翼上面の自然总流境界層化に適合 する翼面静圧分布であり，ワープの効果 および胴体の存在による影響を排除する ように考慮した主翼の厚みおよびキャン パー分布の決定である。境界層㟟移判定 には eN 法を用いて，Cross flow 不安定性の抑制を主目的としている。

図3はこの様にして設計した無動力実験機のC F D 計算結果として上下面の圧力分布を可視化した図である。

図3 無動力実験機の CFD による圧力分布結果

図4 無動力実験機（ロケット実験機）の搭載機器アレンジ図

3.2 無動力実験譏の全機アレンジ

構造設計，制御システム設計などは各詳論に委ねるとして，ここでは全体の機器配置を含むアレン ジについて速べる。航技研が上記のように行った空力設計を最小の変更にとどめて全機設計を行うこと が重要である。必要な搭載機器は，アクチュエータなどの制御用機器，回収に必要なパラシュートおよ びエアバッグ，計測に必要なセンサおよび関連データ機器，計測用コンビュータ，通信僟器そして全体を制御する飛行制御用コンビュータ並びに電源である。胴体長約 11.5 m ，胴体径約 60 cm の中に効率よくまた，精度を碓保しつつ搭載することも設計課題である。図 4 はC F D 検証用表面踭圧計測，境界層計測，IMU， ADS 等の装備を含む機器搭載のアレンジを示した。残る課題は，温度，振動などの環境対策を含めた飛行精度，計測精度の向上策である。アルミにより機体構造と搭載機器を合計した全機重量は約 1.95 ト ンとなった。

3.3 飛行実跧

無動力実験機の飛行実験は，固体ロケットで打ち上げ，高度約 20 km ，マッハ数約 2.2 でロケットと分離して下降をはじめ，速度と姿勢を調整しながら H18km，M2．0 のノミナル試験開始条件に投入する。 この後，迎角変化，高度変化に伴うレイノルズ数変化を中心に我行パターンを描いてデータを取得する。詳細は別報を参照されたい。

4．ジェット実験機
ジェット実験機は未だ既念検討の段階 であるから，そのシステム概要について も未定の部分が多く，ここでは実験機概念と技術課題について簡単に報告する。 ジェットエンジンは超音速槚的機用に開発された米国製の YJ69－T401 を探用する予定である。地上推力約 860dN，マッハ数2，高度 $15,000 \mathrm{~m}$ での高空推力約 290 dN である。これにインテーク，パルを統合した搭載性能は 10% 以上の低㳚と見積もるこ とが出来る。この様な推進システムを搭載した実験機の全機性能は，機体の空力抵抗により大きく異なる。エンジン形状 の特性からナセル形状をスマートにして低抵抗とすることは困雖であるため，推力增強，あるいはロケットプース他によ る補助，浅いダイブによる推力補助等の方法を検討している。いずれにしても，実験機本体の形状概念は図5に示す様に なる。図6はジェット実験機の飛行想像図である。

図5 ジェット実験機の概念と技術課題

5．おわりに
航技研が21世紀に向けて進める本計画は無人実験機という新しいチャレンジ でもある。産学官の連携でこれを成功さ

図6 ジェット実験機の飛行想像図 せ，今後につなげたいと切に願う。本計画推進に参加する民問企業，大学なと関係各位に深く感謝する。 ［参考文献］
（1）科技庁航電審答申，1994－6，
（2）Sakata，K．，CFD Workshop，March 1998，
（3）坂田，流体力学

会年会 98 講演，1998－7，（4）坂田，堀之内ほか，第 36 回飛行機冰貄講演集，1998－10
（1）Yoshida，K．，VKI Lecture Series 1998，1998－6

H－II ロケットにおけるSRB分離の数値解析

大山 健 ${ }^{*}{ }^{*}$ ，海田 武司 ${ }^{*}$ ，清水 隆三 ${ }^{*}{ }^{2}$

Numerical Analysis of SRB Separation from H－II Rocket

by

Ken－ichi Ohyama ${ }^{* 1}$ ，Takeshi Kaiden ${ }^{* 1}$ ，Ryuzo Shimizu ${ }^{*}{ }^{2}$

Abstract

The phenomena of the SRB separation from the H－II rocket are simulated numerically by the time－accurate flow solver coupled with the equations of motion for the validation of CFD application to dynamic problems．The numerical method for the flow simulation is based on the Chimera technique．Overset grid technique is used to represent the each geometric component and LU－ADI procedure is adopted to solve the three－dimensional thin－layer Navier－Stokes equations．The motion of the SRB after the separation from the H－II rocket is calculated by solving the equations of motion．Computational result is compared with the picture obtained during the SRB separation in the actual launch．And also the phenomena of the SRB－A separation from the H－IIA rocket which is being developped are simulated．The phenomena of the SRB－A separation from the H－IIA rocket are quite different from those of the case of the H－II rocket．

1．はじめに
近年，スーパーコンビュータの発達により複雑な流れを解析できるようになり，三菱重工業においてもCFDの開発 －検証を行うとともに航空機メーカーとしてCFDを用いた実機を対象とした設計を積極的に行ってきた。 ${ }^{1}$ ） 2$)_{\text {また，ス }}$ ーパーコンピュータの発達は単にCFDの複雑形状への適用 を容易にするばかりでなく，構造解析や運動解析とCFDと の統合という新たな分野での解析も可能にした。ここでは H－IIロケットを対象にコア機体からのSRB分離について，運動解析とCFDとを融合させた分離シミエレーションを行 ったので報告する。実機飛行では搭載カメラからの分離の様子が取得されており解析結果の検証も同時に行つた。さ らに現在開発中のH－IIAロケットにおけるSRB－A分離解析 も行い，CFDの適用範囲の拡大を図った。なお，本研究の一部（H－II AロケットSRB－A分離解析）は平成 8 年度 NASDA委託業務として実施したものである。

2．解析手法

本分離解析は，SRBに作用する空気力を求める流れ場解析とSRB分離軌跡を求める 6 自由度の運動解析とを統合さ

[^0]せて時間ステッブを進めながら行った。流れ場解析には， コア機体とSRBに各々独立に生成された計算格子を重ね合 せて，流れ場情報を受け渡すChimera手法 ${ }^{3}$ ）を採用した。 この手法の特徴は，重ね合せる相手側の物体を全く無視し て計算格子を生成する点にあり，複雑形状への適用に優れ ている。また，本解析の様に物体が移動•回転する場合に は，毎回計算格子を生成する必要がない点が優れている。
計算格子は，重ね合せ格子を採用した。各物体は単純形状のため格子生成法には代数的内装法を用いている。解析効率を考虑して，計算格子は半截形状のみに生成した。格子点数は，H－II ロケットで 48 万点，H－IIAロケットで 93 万点である。解析を行った格子を図1に示す。流れ場の支配方程式には，3次元薄層近似圧縮性Navier －Stokes方程式を用いて，対流項をRoeのFlux Difference SplittingにMUSCL法を組み込えた高解像度風上差分法4）で離散化した。また，乱流モデルにはBaldwin－Lomaxの代数型モデル5）を使用している。時間積分には，陰解法を用い LU－ADI法を採用した。
運動解析においては，位置，姿勢角，物体移動速度，物体角速度について各々3個の計 12 個の末知数を持つ運動方程式に支配される。この運動方程式は，連立常微分方程式 であり，これをルンゲ・クッタ法により求めた。詳細な式 については参考文献6）を参照されたい。全体の解析の流れを図2に示す。

3．解析結果

解析は，実飛行におけるSRB分離時の条件で行い， Mach $=3.66, ~ \alpha=0.63^{\circ}, ~ \operatorname{Re}=4 \times 10^{5}$（ 15 m 基準）である。解析結果として表面圧力分布についてまとめたものを図 3 に示す。定常状態（ $\mathrm{t}=0.0$ 秒）においては，コア機体と SRBの隙間により流れが塞ぎ止められるために隙間近傍の圧力が高くなっている。また，SRBの先端に発生した高圧領域がコア機体へ影響を及ぼしている様子が分かる。分離後，コア機体とSRBとの干渉により圧力の高い領域が分離 とともに圧力干渉が減少しながら後方へ移動していくのが分かる。次にSRB分離過程における実機CCDカメラにて取得された映像と解析結果との比較を行う。ロケットの搭載 カメラと同じ視点における解析結果を図4，飛行結果を図 5に示す。実機ではSRBの分離軌跡を測定していないため定性的な比較になるが，SRBの分離後の位置と姿勢角は，両者良く一致している。この比較により今回の流れ場解析 と分離運動解析との統合による手法の妥当性が示されたと言える。

次に，平成6年頃の次期ロケット候補形状であったH－II発展型ロケットにおけるSRB分離解析結果を示す。図6 に表面圧力分布，図7に表面流跡線のSRB分離に伴う各々 の変化を示す。表面圧力分布では，H－II ロケットの場合と同様にコア機体とSRBとの間に干渉による圧力の高い領域 が存在している。上下に装着されたLRBブースタとコア機体との間についても同様のことが言える。また，機体表面 の流れ場については，LRBブースタの影響を受けコア機体表面で大きく湾曲した流れがSRBへ流入している等の複雑 な流れを見せている。次にH－II 発展型ロケットの分離特性とH－II ロケットの分離特性とを比較した結果を図8～9 に示す。H－II 発展型ロケットでは，上下のLRBブースタ の影響によりSRBの横方向の力に変化が見られ，その結果 Y方向の分離軌跡にすずかな違いが見られる。先に示した流れ場の違いは両者の分離特性を大きく変化させる程では なく，全体的には両者ほぼ同様の特性を示している。

また，現在開発中のH－IIAロケットにおけるSRB－A分離解析も行った。ここでは，解析と同時期に行われた風試結果との比較についても示す。図10～11は，ロケット全機の軸力特性と横力特性の比較である。軸力については，定性的には良く一致しており，軸力値の差は風試模型に付加されて解析モデルにない各ブースタの取付け部の抵抗分 と思われる。また，取付け部の影響が小さいと思われる横力については非常に良い一致を示している。図12は，機体表面圧力分布の比較である。頭部フェアリングでの圧縮

及び膨張領域やLRBブースタとコア機体との干渉領域な どにおいて両者の圧力分布は，良い一致を示している。以上により本解析に使用しているCFDコードの有効性が示されたと言える。このCFDコードを用いて行った分離解析の結果を図13～14に示す。H－II発展型ロケットと同様に，SRB－A近傍の流れ場はLRBブースタの影響を受 けた複雑な流れ場であることが分かる。また，LRB1本 が装着されたH－IIA ロケットでは上下方向（Z方向）に対 して非対称な形態となる。図13においてもLRBから SRB－A，SRB－AからLRBへ干渉は上下非対称でありSRB－A分離特性のZ 方向への影響が懸念される。さらに図14の空間圧力分布に示される様にLRBブースタ頭部（胴体中央）から発生した衝撃波とSRB－Aの衝撃波とが干渉し複雑な流れ場を形成していることがわかる。この現象は，衝撃波同士の3次元的な干渉を考慮する必要があり SRB－A分離特性にも大きく影響を与えることが予想され る。

4．まとめ

Navier－Stokes方程式による流れ場解析と運動解析を統合 した分離解析コードの検証を目的に，計算結果と H－II ロ ケットで実写された映像とを比較した。その結果，両者 の分離の様子は良い一致を示しており，本コードの有効性を確認した。また，H－II 発展型ロケットについて分離解析を行いその影響を調べた。その結果，分離特性は同条件であれば現H－II ロケットと大きな差異はないことを確認した。更に，H－IIA ロケットについてCFD結果と風試結果とを比較しCFD解析の妥当性を確認した。また， H－IIA ロケットを対象とした分離解析によりH－IIA ロケッ ト特有の現象を抽出した。今後は，抽出された現象を考慮しつつ様々な解析条件において分離解析を行いSRB－A の分離特性を検討する必要がある。

参考文献

1）Kaiden，T．，Ogino，J．，and Takanashi，S．，＂Non－planar Wing Design by Navier－Stokes Inverse Computation，＂ AIAA－92－0285，Jan． 1992

2）Kaiden，T．，Hosaka，S．，and Maeda，T．，＂A Validation of Numerical Simulation with Field Testing of JR Maglev Vehicle，＂STEC＇93 Japan，Nov． 1993
3）NASA Ames Space Shuttle Flow Simulation Group， Buning，P．，Chiu，I．，Martin，F．，Meakin，R．，Obayashi，S．， Rizk，Y．，Steger，J．，and Yarrow，M．，＂Numerical

Simulation of the Integrated Space Shuttle Vehicle in Ascent，＂4th Internat．Conf．on Super Computing，Santa Clara，Calif．，April． 1989
4）Fujii，K．，and Obayashi，S．，＂High－Resolution Upwind Scheme for Vortical－Flow Simulations＂， J．Aircraft，＂Vol．26，No．12（1989）

5）Baldwin，B．S．，and Lomax，H．，＂Thin Layer
Approximation and Algebraic Model for Separated Turbulence Flows，＂AIAA－78－257，Jan． 1978

6 ）Kaiden，T．，and Tamura，Y．，＂Time－Accurate Numerical Simulation of Separation between H－II and SRB，＂5th ISCFD－Sendai，Sep． 1993

図1計算格子（H－II 発展型ロケット）

図2 計算フローチャート

$\mathrm{t}=0.0$ 秒

図 3 SRB 分離過程における圧力分布変化（H－II；Mach＝3．66，$\alpha=0.63^{\circ}$ ）

$t=0.0$ 秒

$t=0.45$ 秒

$t=0.90$ 秒

$t=1.19$ 秒

図4 分離するSRBの様子（CFD；圧力分布）

$\mathrm{t}=0.0$ 秒

$t=0.45$ 秒

$$
\mathrm{t}=0.90 \text { 秒 }
$$

$$
t=1.19 \text { 秒 }
$$

図5 分離するSRBの様子（飛行結果）

図 6 SRB分離過程における圧力分布変化（H－II 発展型； $\mathrm{Mach}=3.66, \alpha=0.63^{\circ}$ ）

$\mathrm{t}=0.0$ 秒

$\mathrm{t}=1.12$ 秒

図7 SRB分離過程における表面流跡線の変化（H－II 発展型；Mach $=3.66, \alpha=0.63^{\circ}$ ）

図8 分離過程におけるSRB空気力の比較 $\left(\right.$ Mach $\left.=3.66, \alpha=0.63^{\circ}\right)$

図 9 SRB分離軌跡及び姿勢角の比較（ $\mathrm{Mach}=3.66, \alpha=0.63^{\circ}$ ）

図10 風試結果との比較－全機軸力－ （H－IIA；$\alpha=0^{\circ}$ ）

図11 風試結果との比較－全機横力ー （H－IIA ；Mach $=1.6, \phi=90^{\circ}$ ）

図12 風試結果との比較－表面圧力分布－ （H－IIA ；Mach＝1．2，$\alpha=0^{\circ}$ ）

図 13 SRB分離過程における表面流跳線 （ H －IIA $;$ Mach $=4.0, \alpha=2.5^{\circ}$ ）

図 14 SRB 分離過程における空間圧力分布（H－IIA；Mach＝4．0，$\alpha=0^{\circ}$ ）

HOPE における静的空力弾性解析

本多淑恵 ${ }^{* 1}$ ，海田武司 ${ }^{* 1}$ ，長畑正史 ${ }^{* 1}$ ，中道二郎 ${ }^{* 2}$

Static Aeroelastic Analysis for HOPE

by
Yoshie HONDA＊${ }^{* 1}$ ，Takeshi KAIDEN ${ }^{* 1}$ ，Masashi NAGAHATA＊1，Jiro NAKAMICHI ${ }^{* 2}$
ABSTRACT

Static aeroelastic analysis that was combined with CFD analysis code（Navier－Stokes solver）and structural analysis code（NASTRAN）was performed．The method is an iterative procedure of both codes．This analysis was carried out for HOPE configuration．The computational results were compared with those of wind tunnel tests with the elastic model in order to validate this analysis code．It concludes that CFD analysis code generally gives better results than the linear code that was used so far．

1．はじめに
空力，構造の統合解析が必要となる静的空力弾性解析において，従来は一般に線形の空力解析を用いている ため，特に遷音速域において妥当な結果を得ることができ なかった。

そこで，空力解析に圧縮性及び粘性の影響が考慮でき る N－S 解析を組み込んで推算精度の向上を図り，HOPE に対して静的空力弾性解析を実施した。更に，風洞試験結果と比較し，解析ツールの検証を行った。

本研究は平成 9 年度 NASDA 委託業務として実施した ものである。

2．解析モデルと解析ツール

エレボン舵角 0° の空力モデル（計算格子）を図 2－1 に示す。図には全機形状を示すが，本計算は左右対称（横滑り角なし）を想定しているため，実際は半截モデルを用い ている。計算格子は構造格子の単一格子で，総格子点数 は 155 （流れ方向）$\times 183$（周方向／半截）$\times 60$（空間方向）＝約 170 万点である。また，同一の格子生成法及び総格子点数で生成したエレボン舵角 -3° の舵取り形態に対する計算格子を図 2－2 に示す。その際，舵を取ることに より生じる主翼とエレボンとの隙間については，本解析で対象とした HOPE に関しては翼厚が大きいため，-3° の舵角では隙間は生じない。従つて，舵取り形態に対して単一格子で生成することは特に問題ないと考えられるので，舵 の取っていない形態と同一な格子生成法とした。

空力解析ツールは，支配方程式に 3 次元薄層近似上 イノルズ平均 Navier－Stokes 方程式を使用し，空間の離散化手法にはMUSCL 法（Monotone Upstream－centered

Scheme for Conservation Laws）を組み込んだ Roe の Flux Difference Splitting 法を採用している。時間積分法は LU－ADI 法による陰解法を，収束加速法は局所時間刻み幅法を，乱流モデルはBaldwin－Lomax 代数モデルを使用 している。 ${ }^{[1 j \sim 3!}$

一方，構造モデルを図 2－3 に示す。HOPEについては主翼の桁構造を梁要素で，ウェブ及びリブ構造を板要素 で定義する。また，エレボン，HOPE 胴体及びロケットの構造は剛体として，風洞試験模型を模擬した。ここで，解析 の構造モデルと試験の模型でのたわみ特性は，剛性試験 として両者に同じ静的荷重をかけ，そのたわみ量を比較す ることにより整合性をとつでいる。

構造変形解析ツールは従来より実績のある NASTRAN を用いた。

3．解析手順

上述の空力解析及び構造解析を用いて静的空力弾性解析を行った解析手順を図 3－1 に示す。解析手順の概要 は，まず初期形状に対し，空力解析を行い空力荷重を求 める。次に，その空力荷重を構造モデルに負荷して，空気力負荷時の変形形状（新形状）を求める。その後，新形状 に対して格子点移動により計算格子を再生成し空力解析 を行い，再度空力荷重を求める。このとき，新形状と前形状との空力荷重を比較し，その変化量を基に収束判定を行う。収束していなければ，新形状の空力荷重を再び構造 モデルに負荷して変形計算を行い，これらの手順を収束す るまで繰り返す。本解析での収束判定基準は，垂直力の変化量が前形状の 0.1% 以下（垂直力の絶対値が小さい場合は変化量が 0.0001 以下）とした。

[^1]
4．解析ケース

解析を実施したケースを下表に示す。 $\mathrm{M}=0.8, ~ \alpha=-3^{\circ}$ ， $\delta \mathrm{e}=0^{\circ}$ をハミナルケースとし，舵角効果（遷音速領域）とし ての $\delta \mathrm{e}=-3^{\circ}$ ，迎角効果としての $\alpha=0^{\circ}$ ，マッハ数効果と しての $M=1.2$ ，また，超音速領域での舵角効果としての $\mathrm{M}=1.2, \delta \mathrm{e}=-3^{\circ}$ の計 5 ケースを実施した。

M	Re	迎角 α	エレボン舵角 δ e	備考
0.8	風試 Re 数	-3°	0°	ノミナルケース
			-3°	舵角効果（遷音速領域）
		0°	0°	迎角効果
			0°	マッハ数効果
			-3°	舵角効果（超音速领域）

5．解析結果

空力解析結果として， $\mathrm{M}=1.2, \alpha=-3^{\circ}, \delta \mathrm{e}=-3^{\circ}$ のとき の機体表面圧力分布を図 5－1 に示す。図において赤い色 になるに従い圧力が大きく，青い色になるに従い圧力が小 さいことを示している。図より，ノーズ上方に圧力上昇が見 られ，$\alpha=-3^{\circ}$ のためよどみ点がノーズ上方にあることがわ かる。また，主翼後方ではチップフィンと胴体に囲まれたチ ヤネル領域のため，圧力が上昇している。

また，そのときの弾性変形結果について図5－2に示す。図より，弾性変形後は剛体のケースよりチップフィン及び主翼が外側及び下方へ変形していることがわかる。

6．風洞試験概要

風洞試験は，航空宇宙技術研究所の 2 m 遷音速風洞 で実施した。計測項目は，HOPEに勧く2分力（垂直力， ピッチングモーメント）及び主翼，チップフィンの変位量であ る。HOPEの 2 分力は HOPE 模型内に内蔵した 2 分力天科により計測した。一方，主翼，チップフィンの変位量は風洞に取り付けたカメラで HOPE 上の計測位置を撮影し，撮影した画像データをコンピュータ処理して求めた。変位を計測した位置を図6－1 に示す。また，変位量計測精度を上 げるために計測位置を拡大して撮影している。解像度は模型スケールで 0.1 mm である。

7．試験結果との比較（迎角効果）

迎角効果におけるHOPE に働く2分力（垂直力，ピッチ ングモーメント）について，解析結果と風洞試験結果を比較 する。また，高精度化を図った本空力解析ツール（N－S）の効果を見るために，線形のポテンシャル方程式（パネル法） を用いた結果も図中に示す。

まず，$M=0.8$ ，構造が剛体での垂直力を図 7－1 に，ピッ チングモーメントを図 7－2に示す。垂直力については，N－S

解析ツールを用いた結果（ \triangle ）は試験結果（ $\mathbf{\Delta}$ ）と完全に一致した結果が得られた。パネル法を用いた解析結果（—一）は，迎角による変化に対して一致しているものの，定量的には小さくなっている。また，ビッチングモーメントについ ては，垂直力と同様，N－S 解析ツールを用いた結果（ \triangle ） は試験結果（ $\mathbf{\Delta})$ とかなり良く一致した結果が得られた。こ れに対し，パネル法を用いた解析結果（——）は迎角によ る変化において異なる傾向となった。これは，パネル法では衝撃波を考慮できないため試験結果と異なる結果になっ たと考えられ，N－S 解析との差が顕著に現える結果となっ た。

次に，構造を弾性体とした $M=0.8$ での垂直力を図 7－3 に，ピッチングモーメントを図 7－4 に示す。垂直力について は，N－S 解析ツールを用いた結果（ $\triangle, ~ ○) ~ は$ 定量的に若干大きくなっているが，試験結果（ \boldsymbol{A} ，－と良好に一致し た結果が得られた。パネル法を用いた解析結果（——っ一 －－）は，構造が剛体のケースと同様，迎角による変化に対 しては一致しているものの，定量的に小さくなっている。ま た，ピッチングモーメントについては，N－S 解析ツールを用 いた結果（ $\triangle, ~ O)$ は定量的に若干小さくなっているが，試験結果（ $\mathbf{4}$ ，）と一致した結果が得られている。パネル法 を用いた解析結果（一一，———）は，遷音速のため構造 が剛体のケースと同様，迎角による変化において異なる傾向となった。

超音速領域として $\mathrm{M}=1.2$ ，構造が弾性体での垂直力を図 7－5 に，ピッチングモーメントを図 7－6に示す。ここでの N－S 解析ツールを用いた結果は迎角が一点のみのため迎角効果を比較することはできないが，傾向として試験結果 と比較する。垂直力については，N－S 解析ツールを用いた結果（ \triangle ，○）は試験結果（ $\mathbf{\Delta}$ ，－）と一致している。パネル法を用いた解析結果（—————）は，迎角による変化に対して若干大きい。また，ピッチングモーメントについては， N－S 解析ツールを用いた結果（ \triangle ，O）は M＝0．8（図 7－4参照）より試験結果（ \mathbf{A} ，－との差が小さくなっている。パ ネル法を用いた解析結果（——————）は遷音速時と異 なり迎角による変化量に対しては一致した結果が得られ た。しかし，定量的にみると試験結果との差が大きい結果と なっている。

8．試験結果との比較（変位量）

弾性変形による主翼翼端上下変位及びチップフィン翼端左右変位について，解析結果と風洞試験結果を比較す る。ここでも，本空力解析ツール（ $\mathrm{N}-\mathrm{S}$ ）の効果を見るため に，線形のポテンシャル方程式（パネル法）を用いた結果を図中に示す。

まず，$M=0.8$ ，エレボン舵角 0° での迎角効果（ $\alpha=0^{\circ}$ ， -3° ）における主翼翼端上下変位を図8－1に，チップフィ ン翼端左右変位を図 8－2 に示す。主翼翼端上下変位に ついては，$\alpha=0^{\circ}, ~-3^{\circ}$ 共に下方へ変位していることがわ かる。N－S 解析ツールを用いた結果は $\alpha=-3^{\circ}$ では下方へ の変位量が若干小さいが，$\alpha=0^{\circ}$ で試験結果と完全に一

致した結果が得られた。また，チップフィン翼端左右変位に ついては，$\alpha=0^{\circ},-3^{\circ}$ 共に外舷方向へ変位しており， $\mathrm{N}-$ S解析ツールを用いた結果は $\alpha=0^{\circ}, ~-3^{\circ}$ 共に試験結果 と一致した結果が得られた。

次に， $\mathrm{M}=0.8$ ，迎角 -3° での舵角効果（ $\delta \mathrm{e}=0^{\circ},-3^{\circ}$ ） における主翼翼端上下変位を図8－3に，チップフィン翼端左右変位を図 8－4 に示す。主翼翼端上下変位について は， $\mathrm{N}-\mathrm{S}$ 解析ツールを用いた結果は $\delta \mathrm{e}=-3^{\circ}$ では下方へ の変位量が小さいため試験結果との差が大きくなっている のに対し，$\delta \mathrm{e}=0^{\circ}$ では試験結果とほぼ一致した結果が得 られた。また，チップフィン翼端左右変位についても，上下変位と同様，$\delta \mathrm{e}=-3^{\circ}$ では外舷方向への変位量が小さい ため試験結果との差が大きくなっているが，$\delta \mathrm{e}=0^{\circ}$ で試験結果とほぼ一致した結果が得られた。

また，超音速領域として $\mathrm{M}=1.2$ ，迎角 -3° での舵角効果（ $\delta \mathrm{e}=0^{\circ},-3^{\circ}$ ）における主翼翼端上下変位を図8－5 に，チップフィン翼端左右変位を図8－6に示す。主翼翼端上下変位については，N－S 解析ツールを用いた結果は δ $\mathrm{e}=-3^{\circ}$ では下方への変位量が小さいため，試験結果との差が大きくなっているが，$\delta \mathrm{e}=0^{\circ}$ で試験結果とほぼ一致し た結果が得られ，M＝0．8と同様の傾向を示した。また，チッ プフィン翼端左右変位についても，$\delta \mathrm{e}=-3^{\circ}$ では外舷方向への変位量が小さいが，M＝0．8（図 8－4 参照）より試験結果との差は小さくなっている。 $\delta \mathrm{e}=0^{\circ}$ では試験結果とほぼ一致した結果が得られた。

9．まとめ

静的空力弾性解析の空力部分に N－S 解析ツールを組 み込み精度向上を図った。また，試験結果と比較すること により，本解析ツールの妥当性を検証した。

その結果，縦 2 分力については，遷音速においてパネ ル法を用いた解析では特にピッチングモーメントの推算が困難であるが，N－S を用いた解析では試験結果との対応 が良好である。また，超音速においては，N－S を用いた解析は遷音速時より更に試験結果との差が小さい。従って，縦2分力に対しては，N－S 解析ツールの方が遷音速，超音速ともに高精度な推算が可能であることを確認した。
一方，変位量については，迎角／エレボン舵角を取らな い場合には試験結果との対応が良好であるのに対し，迎角を取ることによる影響が本解析ツールでは小さく見積もら れ，主翼ノチップフィンの変位量が小さくなっている。また， エレボン舵角に対しても同様に，舵角による影響が小さ い。これは，超音速での推算値は試験結果との差が小さい ものの，超音速，遷音速ともに同様の傾向である。

この，変位量に対して試験結果と差が生じる原因として は，迎角／舵角を取った場合の本解析結果と試験結果の荷重分布が異なることが考えられる。しかし，垂直力及びピ ッチングモーメントが精度良く推算できたのは，主翼ノチッ プフイン翼端変位が縦 2 分力に対し大きく影響を与えない ためと思うえる。従って，今後の課題としては，原因を究明 するため本解析結果と試験結果の表面圧力分布を比較

し，検討を行う。また，空力／構造インタフェイス，構造モデ ル等他の要素に対しても順次調査を行い，より詳細に検討 することが必要である。

10．参考文献

［1］海田，前川，岩宮，＂SST におけるナセルのブリード流 ノバイパス流を考慮した数值シミュレーション，＂第 15回航空機計算空気力学シンポジウム， 1998.
［2］Fujii，K．and Obayashi，S．，＂High－Resolution Upwind Scheme for Vortical－Flow Simulations，＂J．of Aircraft，Vol．26，No．12， 1989.
［3］Baldwin，B．S．and Lomax，H．，＂Thin Layer Approximation and Algebraic Model for Separated Turbulence Flows，＂AIAA Paper 78－257，Jan．， 1978.

図 2－1 空力モデル（計算格子）－エレボン舵角 $\delta \mathrm{e}=0^{\circ}$

図 2－2 空力モデル（計算格子）－エレボン舵角 $\delta \mathrm{e}=-3^{\circ}$

図 2－3 構造モデル

図 3－1 解析手順

図 5－1 表面圧力分布（ $\mathrm{M}=1.2, \alpha=-3^{\circ}, \delta \mathrm{e}=-3^{\circ}$ ）

図 5－2 弹性変形結果（M＝1．2，$\alpha=-3^{\circ}, \delta \mathrm{e}=-3^{\circ}$ ）

図6－1 変位計測位置

図 7－1 迎角効果（垂直力）－ $\mathrm{M}=0.8$ ，剛体

図 7－3 迎角効果（垂直力）$-\mathrm{M}=0.8$ ，弾性体

図 7－5 迎角効果（垂直力）$-M=1.2$ ，弹性体

図7－2迎角効果（ピッチンタ゚モーメント）—M＝0．8，㓮体

図 7－4 迎角効果（ピッチングモーメント）－ $\mathrm{M}=0.8$ ，弾性体

図 7－6 迎角効果（ピッチンダモーメント）－ $\mathrm{M}=1.2$ ，弾性体

図 8－1 迎角効果（主翼翼端上下変位）$-\mathrm{M}=0.8$

図 8－3 舵角効果（主翼翼端上下変位）$-\mathrm{M}=0.8$

図 8－5 舵角効果（主翼翼端上下変位）$-M=1.2$

図 8－2 迎角効果（チップフィン翼端左右変位）－ $\mathrm{M}=0.8$

図 8－4 舵角効果（チップフィン翼端左右変位）$-\mathrm{M}=0.8$

図 8－6 舵角効果（チップフィン翼端左右変位）$-\mathrm{M}=1.2$

再突入飛行実験 OREX，HYFLEXにおけるCFD／FEM連成解析による熱空力特性評価

山本 行光，黒滝卓司

Aerothermodynamic Analysis of OREX and HYFLEX by CFD／FEM Coupling Anlysis

by
Yukimitsu Yamamoto and Takuji Kurotaki

Abstract

OREX（Orbital Re－entry Experiment）is the first atmospheric re－entry flight experiment，as a part of HOPE－X project．OREX was launched by the first H－II rocket in February，1994，from Tanegashima Space Center of Japan． HYFLEX（Hypersonic Flight Experiment）was successfully conducted on Feb．12，1996．Various hypersonic lifting flight data on aerodynamics and thermal protection system，were acquired during these flights．In this paper，Navier－Stokes CFD code and FEM thermal response analysis are coupled in order to simulate more completely the aerothermal environments of OREX and HYFLEX re－entry flights．Numerical computations are made along the flight trajectory．The results of the present numerical simulation are compared with the flight data and it is demonstrated that the flight data of aerothermodynamic heating can be well simulated by the present coupling simulation technique．

1．はじめに
OREX（Orbital Re－entry Experiment）は，我国の宇宙往還輸送システム開発のための基礎データを得ることを目的 とした，最初の大気圏再突入飛行を行った実験である。実験機は平成6年2月4日に，種子島宇宙センターからH－II ロケット初号機により打ち上げられ，予定していた全ての飛行実験データを取得して，実験を無事修了した。1）

HYFLEX（Hypersonic Flight Experiment）実験機は，平成8年2月12日に種子島宇宙センターからJ－1ロケ ットの初号機によって打ち上げられ，これも我国で最初の極超音速揚力飛行を実施した。 ${ }^{2}$

このようなOREX，HYFLEX再突入飛行における熱空力環境の正確な評価解析を行うため，本研究ではOR EX，HYFLEXの飛行軌道に沿って，外部流をナビ エ・ストークス方程式を用いたC F D（計算流体力学）コ ードで解き，内部耐熱材の温度上昇を三次元F EM（有限要素法）を用いた数値計算により解析した ${ }^{31}{ }^{4)}$ 。C F D， FEM両者の手法を再突入飛行軌道に沿って交互に適用し，機体表面の温度，及び空力加熱をそれぞれの手法の境界条件として用いることにより，より正確な熱空気力学環境を再現することが可能となった。本稿ではこれらの成果の概

[^2]要について報告する。

2．OREX熱空力特性評価

2－1．OREX再突入飛行実験と計測データ

OREXの形状を図1に示す。OREXは半径 1.35 m の球頭部に半頂角 50° のコーン部が接続し，肩の曲率半径が

図2 OREX表面耐熱材構成と計測点
OREX Flight Trajectory

Time	Flight Time $\mathrm{t}(\mathrm{sec})$	$\mathrm{H}(\mathrm{km})$	$\mathrm{U} \infty(\mathrm{m} / \mathrm{sec})$	$\mathrm{T} \infty(\mathrm{K})$	$\mathrm{Poo}(\mathrm{Pa})$	Temperature （Flight Data） Ts（K）	Pressure
-50	7361.0	105.0	7451.0	217.5	0.0196	332	25.11
-40	7370.6	101.1	7454.65	195.1	0.032	365	26.53
-30	7381.0	96.77	7456.3	192.3	0.0726	422	26.72
-20	7396.0	92.816	7454.1	188.7	0.163	492	26.97
-10	7401.0	88.45	7444.3	186.87	0.231	588	27.07
0	7411.5	84.01	7415.9	188.9	0.594	690	26.82
10	7421.5	79.90	7360.2	198.64	1.0524	808	25.96
20	7431.5	75.81	7245.7	206.8	2.1717	928	25.04
30	7441.5	71.73	7049.2	214.98	4.023	1078	23.89
40	7451.5	67.66	6720.3	225.99	7.892	1251	22.22
50	7461.5	63.60	6223.4	237.14	14.02	1413	20.0
60	7271.5	59.60	5561.6	248.12	23.60	1519	17.55
70	7481.5	55.74	4759.1	258.74	39.48	1571	14.71
80	7491.5	51.99	3873.4	268.2	63.48	1557	11.8
90	7501.5	48.40	3000.0	270.65	98.5	1501	9.06

表1

100 mm の軸対称の鈍頭形状をして扮り，最大直径は3．4m である。図2の正面図にみられるように表面柎熟システム は，球頭部からC／C 材，これに接続する第 1 列目のコーン部がC／C TPS，後方の 4 列からなるコーン部が擜熟 タイルで構成ざれている。
OREX飛行実験では，図2のC／Cノーズキャッブ上の熱電対番号TH1からTH4の睘面温度，C／C TPS上のTH7から TH9の襄面温度，及びセラミックタイル上のTH22からTH24 の表面温度データが空力加熱を同定するために用いられた。
OREXの飛行軌道は表1に示される。この表では実在気体効果が䫫著に現れる高度 105 km から 48 km ，マ ッハ数にして 25 から 9 に変化する140秒間の飛行条件 が示されている。飛行迎角は軌道飛行データの平均から 0＊である。

2－2．OREX再突入飛行実験評価解析における数値

 シミュレーション手法OREXのようなマッハ数 20 を越える大気圈再突入飛行に訳いて，熱空気力学的視点から注目される評価対象は実在気体効果を伴う空力加熱である。実在気体効果とは，衝撃波直後の再圧縮加熱により空気が 2 万度から 3 万度に も達する高温になり，空気中の酸素及び空素分子が化学反疬により解離し，原子酸素，空素が生成され，電子か原子 から雜れて，イオンとなる電髅の現象が生じることを示す。従って，外部流の解析は化学反応流を考慮したナビエ・ス トークスコードを用いる。化学反応は低高度，低マッハ数 では反応の速度が流れの速度よりも大きく，これをはるか に上回るため，局所的な温度と圧力で化学種の組成が決ま る，いわゆる平衡流の仮定が成立する。しかっながら，0 REXのような高々度，高マッハ数を哌行する場合には，流れと化学反応が相互に影譻を及ほし合うため，化学反応式をナビエ・ストークス方程式に組み込んた非平衡流の解析が必要である。

さらに，OREX機体の表面温度は再突入飛行軌道に沿 って，飛行時間とともに刻々変化してゆくことから，外部流ナビエ・ストークス計算たしばしば使用される表面温度一定の仮定は成り立たなくなる。したがって，外部流C F D解析と内部耐熟材熱応答 F EM解析をカップリングさせ た統合数値シミュレーション手法によって，OREX表面温度履柲を全表面にわたり同定することが必要になってく る。図3にはF EM熱応答解析に用いられた内部耐熱材格子を示す。本来の熱構造解析では，アルミ構造枋や接触熟

抵抗などを考慮した挣析が必要となるが，複雄になりすぎ るため，ここでは表面射熱材のみの简易モデルを取り扱っ ている。C／C材などの物性値は方向依存性，䀅度依存性な どの効果を取り込み，外部流への輻射も，放射率を設定し てFEM解析を実施した。

OREX Outer Flow and Inner TPS Temperature Contours
図4 CFD／FEMカップリング解析による内部TPS及び外部济等温度線図

図5 OREX表面温度分布の変化
2－3．OREX空力加熱評価解析
高度 56 km の耐熟材温度が最も上昇する乾道上での CFD／FEMカップリング解析による内部温度分布と外部流の等温度楾図を図4に示す。図5には頭部よどみ点か ら表面に沿った而熟材表面温度分布の変化を示す。再突入飛行初期には熱伝導率の低いセラミックタイル上で温度が高くなっていることがわかる。本解析手法による表面温度計㴬デー夕との比較を図6に示す。横軸は飛行時問で，図 にみられるように，C／Cノーズキャップ，C／C TPSでほほ飛行実験デー夕を再現する解析結果が得られた。このように同定されたOREX皒行軌直に沿う表面温度分布を使用し て，空気中の並進•回転温度と振動温度の熱的非平衡を仮定した 2 温度モテル実在気体解析を行ってOREXの飛行軌道上での淀み点空力加勲の計算結果をブロットしたもの が図7である。横軠は飛行時刻，維軸は空力加熱率である。㖕算では，機体表面の境界条件として表面蚛媒性を考虑し ている。表面能媒性とは高温により解蜼した原子酸素，室素が，機体表面で再び結合して酸素分子，窒甞分子にもど

る性質を示し，完全強黚（full－catalytic）では機体表面の全 ての原子が分子に再結合する。これに対して，この効果が全く現れない場合を非騷媒壁と定義する。触媒性がある場合には，原子が分子に再結合する反応により放熱し，非触

Deg．C OREX C／C Cap Temperature

Deg．C OREX Surface Temperature

Experiment＊Numerical Temp
（b） $\mathrm{C} / \mathrm{C} ノ ー ス ゙ キ ャ ッ フ ゙(T H 2-4) ~$
図6 TPS温度計測テータとカップリング計算値との比較

図7 OREXの亚行軌道に沿った，非蚛媒，完全触媒壁 での淀み点空力加熟量の変化

図8 OREX表面に沿う空力加熱分布の触媒性による効果 （ $\mathrm{M} \infty=20$ ，高度 63 km ）
媒壁に比べて 2 倍ほどの空力加熱の増加が引き起こされる。図7ではOREX実在気体解析におけるこの結果を示して おり，完全能媒壁の淀み点空力加熱が大幅に上昇する。こ れに対してOREXの㓞行デー夕は完全触媒壁条件と非触媒壁条件との中間にある。すなわら，OREXのC／C耐熱材は表面コーティングにより有限能蝶性の性質を示すこ とがわかる。有限能媒性の影響を触媒効率係数 $\gamma(\gamma=0 \not)^{5}$非能媒壁，$\gamma=1$ か「完全触媒壁をあらわす）をバラメータ として調べるとうのわずかな増加により空力加勲が急激に上昇し，$\gamma=0.004$ の値がOREX飛行データに合う加熱量 となることが判明した。＂
図 8 にNASAのエイムズ研究所 ${ }^{6}$ でGASPコードに䏬析ぎれた高度 63.6 km ，マッハ数 20 でのOREX表面に沿 う加熱分布の γ による変化量を示す。 $y=0$ の淀み点におし て，これも $\gamma=0.004$ の加熱分布が飛行データと一致すると いう結果が得られている。また同様な彫析はNASAラン グレー研究所のMossてららによっても実施され，同様な結果 が得られた。このように触媒性がわずかでも存在すれば， それは空力加熱の増加に大きく寄与し，耐熱材の表面触媒性が再突入飛行に伴う熱空力特性の評価に重要な役割を果 たすことが判明し，合わせて触媒性の定量的評侕が可能と なった。

3．HYFLEX熱空力特性評価
3－1．HYFLEX㧼超音速飛行実験と計測データ

図9 HYFLEX萑行軌道

図10 表面温度計測点位置

図11 表面圧力計測点位置
HYFLEX Flight Trajectory

$\begin{array}{\|l} \hline \text { Time } \\ \text { t(sec) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Aititude } \\ H(\mathrm{~m}) \\ \hline \end{array}$	Velocity Uoo（m／sec）	$\begin{array}{\|l\|} \hline \text { Temperature } \\ \text { Ton }(K) \\ \hline \end{array}$	Pressure Poo（Pa）	$\begin{aligned} & \text { Density } \\ & \left.0^{\infty} \mid \mathrm{kg} / \mathrm{m} 3\right) \end{aligned}$	Moo	α
50.44	93043	3932.4	194．82	0.10982	1．8988e－DE	14.120	48.914
60.44	88167	3932.5	194.39	0.25266	4．6453e－06	14.276	49.395
70.44	82701	3933.3	200.23	0.63898	1．1981e－05	14.109	48.327
80.44	76564	3919.2	211.21	1.7277	3．1482e－05	13.643	50.519
90.44	69822	3918.8	223，44	4.8786	8．4915e－05	13.177	49.959
100．44	62632	3895，9	238．28	13.821	0.00022202	12.55	49.044
110．44	55103	3840.6	252.61	38．69	0.00056118	11.87	48.902
120.44	47963	3690.1	262.82	97.676	0.0013227	11.189	48.793
130.44	42502	3348.5	258.14	197.5	0.0027883	10.414	46.76
140.44	39575	2947.5	252.63	290.48	0.0042514	9.3145	39，236
150.44	38670	2650.4	250.95	327.94	0.0048578	3，4178	32.899
160.44	38075	2436.6	249.77	355.44	0.0053070	7.7647	28.992
170.44	37625	2259.3	248.60	377.78	0.0056757	7.2183	29.362
180.44	37411	2093.1	247.98	388．97	0.0058616	6.6953	29.414
190.44	37173	1939.1	247.21	401.74	0.0060749	6.2112	29.401
200.44	37175	1800.1	274.31	401.55	0.0060728	5.7658	29.462
220.44	36514	1606.1	245.63	439.38	0.0067110	5.1638	29，593
240.44	35697	1400.6	242.78	294．13	0.0076021	4．5246	29.689
260.44	34756	1219.0	239.93	561.87	0.0087891	3.9598	29.834
280.44	33585	1040.3	235.72	663.67	0.0105530	3.4026	30.097
300.44	32435	893.72	231.36	783.52	0.0126590	2.9434	30.25
320.44	31268	730.56	227.50	930.41	0.0151580	2.4147	34.911
340.44	29851	584.97	224.02	1150.2	0.0188380	1.9395	35.190

表2
HYFLEXのJ－1ロケットから分能後の再突入乍行起動概略図を図 9 に示す。HYFLEXは，高度 110 km の地点から，マッハ数15，迎角 49° の姿惧で大気圏に再突入し，飛行時刻 300 秒で，高度 32 km ，マッハ数は 3.0 まで鿰速する。

HYFLEXの形状，及び表面温度計測点位惪を図10 に示す。行熱材として，頭部は半径 0.4 m のC／Cノーズ キャップ，胴体下面から㑡面にかけては，耐熱タイル，朋体上面には可推断熟枋が使用されている。
表面温度計測点は，C／Cノーズキサッブ部に 5 價所，耐熟タイル部分では胴体下面を中心にして9個所，そのほ かにエレボン下面，及び胴体上面に數俔所配運され，再突大飛行時の表面温度履歴データが得られている。圧力計測 については，図11の計測点位蹎に示されるように，朋体下面を中心に飛行実験データか取得ざれた。HYFLEX

の飛行軌道及びー様流条件を表2に示す。
3－2．HYFLEX再突入飛行実験TPS評価解析に おける数値シミュレーション手法
HYFLEX飛行実験に括いて，坔気力学的視点から注目きれる重点評価項目の一つは，機体にかかる熟空力環境 である。これもOREXの解析証価と同様に，外部流C F D解析と内部橱熱枋熟応答FEM解析をカッブリングさせ た数値シミュレーション手法によって，表面温度廈歴を全表面にわたり同定した。ただし，今回のH Y F L E X 熟空力評価解析では，解析が 3 次元問題となり計算量が厭大に なること，及びマッハ数が最高で14前後と，あまり高く ならないことから，実在気体効果の影響は少ないと考え，外部流CFD解析には完全気体ナビエ・ストークスコート゚ を使用した。表面格子を図12に示す。格子数は流れ方向 に101点，周方向に89点である。

一方，内部耐熱材の熱応答解析には，当研究所でNWT用に開発した三次元並列化F EM解析コードを使用した。图13及び表3にFEM熟応答解析に用いられたHYFL E X 䫒部対称面での内部軘熟材格子，及び関連する耐鯂材物性値を示す。C／C 材などの物性値は方向依存性，温度依存性を考慮し，外部流への輻射も含め，三次元F EM游析を実施した。

图12 HYFLEX表面格子

Material	Temp （C）	Density $\left(\mathrm{kg} / \mathrm{m}^{* * 3}\right)$	Specific Heat $(\mathrm{J} / \mathrm{kg} \mathrm{C})$	Thermal Conductivity $(\mathrm{w} / \mathrm{m} \mathrm{C})$	Emissivity
C／C Nose cap	20	1500	665.6	20.34	0.85
Parallel	500		1553.0	33.91	
Direction	1000		1816.7	34.87	
	1500		2277.2	43.53	
C／CNose cap	20	1500	665.6	4.52	0.85
Parallel	500		1553.0	7.53	
Direction	1000		1816.7	7.74	
	1500		2277.2	9.67	
Ceramic Tile	25	193.6	749.0	0.029	0.85
	250		992.0	0.051	
	500		1118.0	0.076	
	750		1197.0	0.102	
	1000		1242.0	0.127	
	1200		1278.0	0.147	
	1500		1333.0	0.177	

表 3

3－3．HYFLEX空力加熱評価解析

HYFLEX飛行軌道に沿った各开行時刻での表面温度分布を図14に示す。閒体下面の耐熱タイル部では，C／ Cノーズキャッブ部分よりも耐軗タイルの熟伝導率が低い ため，表面温度が早く上昇し，飛行時刻140秒付近で最高値を示す。一方，C／Cノーズキャッブ部では飛行時刻 160 秒付近で表面温度が最高となり，C／C及び种熱夕 イル表面温度は，いずれも最高値は1450K程度まで上畀する。また飛行時刻 160 秒以降，マッハ数が 8 以下の

飛行領域では，熱伝導による空力加筫はあるものの，熱輻射により機体表面が急激に冷えてゆき，表面温度が下がっ てゆく。
機体内部の対称面内の䣓熱材内部の温度変化を図15に示す。セラミックタイルでは，熱伝導率の低いこと，及び原みのあることから，内部の面では瀕著な温度上昇が引き起ことれていないことがわかる。

CFD／FEMカッブリング解析による表面温度計測デ ー夕と計算結果との比較を図 16 に示す。横朝は飛行時刻，

図 14 HYFLEX Flight TPS Temperature Analysis by NWT FEM Computations

図15 対称面内TPS温度分布

圆16 表面温度廈歴の棌クプリング解析と兆行デー夕との比較

図17 HYFLEX（柾超音速飛行実験）の可視化とCFD統合数值
シミュレーションによる機体表面湿度の上昇解析（10秒権の図）唯剌は表面温度で，全兆行時刻で，計算結果は温度計測デ一夕を良好に再現していることが分かる。ただし，胴体下面のTA．21，及びTA30との比校図では，飛行時刻1 30 秒から150秒にかけて計測データに局所的に急激な温度上昇の現象から現れている。これはHYFLEX機体下面での乱流魀移がその原因と考えられる。

図17には，HYFLEX再突入飛行の飛行時刻50秒，高度 93 km （マッハ数 14.2 ，迎角 50^{*} ）から，死行時刻 200 秒，高度 37.2 km （マッハ数 5.8 ，迎角 30 －）まての耐熱材の表面温度変化を，10秒毎の余行時間間谝て，HYFLEXの再突入飛行姿勢と組み合わせて示 した。このような可視化表示によりHYFLEX飛行実験 の全体的な現象の理解力容易となる。

図18にCFD－FEMカップリング統合解析による空力加熱計算結果と，䁅度計湘データを基に空力加熱を導出 した死行結果との比較を示す。㘣は耐熱夕イル表面計測位睘での比較である。図から，計潤点番号21，30，33， 35 ， 38 に現れる乱流選移による急潡な加熟上昇を除き， シミュレーション結果は兆行データと非常によく一致して いる。䏱体下面中央部の30，31番では，乱流選移が死行時刻150秒程度で終了するのに比べ，35，38番の

図18 各計測点での空力加熱廈歴の飛行データと数値シ ミュレーション結果との比較

胴体下面後方では，200秒まで乱流を維持していること が，本シミュレーション結果との比較から判明する。乱流退移の生じないその他の計測点では，シミュレーション結果及び戞行実験データとも，ほぼ優れた一政が得られてい る。このように層流モデルを仮定した基本的な空力加熱特性解析から，乱流選移の状況が把掯できるようになり，今後，乱流選移の判定，及び乱流モデルの使用により，局所的な空力加熱の上异を定量的に捉える解析へと，研究を進 めてゆく予定である。

3－4．HYFLEX空力特性評価解析

HYFLEX再突入飛行実験では，図11に示される計貺点位鲁で，表面圧力に関する詳細なデータが得られてい る。図19に頭部計測点ての，マッハ数を横軸とした圧力履歴の比較を示す。圧力は，分脽後飛行時刻 50 秒から 3 40 秒にいたるまで，全ての計測点で，ほぼ完全な一致を示している。

空力特性については，垂直力，軸力係数，及び掦抗比に関する飛行データとの比較を行った。軸力係数に対する比較結果を図20に示す。なお，図では，風洞試験データを基にした推定值を，風試誤差を考慮した上下の点線ではさ まれる領域で表示した。軸力係数はCFD解析結果が飛行 データと良好な一致を示す。しかしながら，風試を基にし た予測値はマッハ数 4 以下，及びマッハ数 12 以上で，飛行データよりもかなり低い値を示す。マッハ数 12 以上の領域では，粘性干涉効果の影響により軸力係数が高くなり， マッハ数 4 以下では，風洞騳験データにスティング干渋等 の影響がでてくるものと考えられる。垂直力係数，掦抗比 についても，数値シミュレーション結果は，飛行データと良好な一致を示している。

図19各計閴点での圧力変化 の开行テータと数値シミュ V－ショn結果との比䡈

4．まとめ

OREX，HYFLEX飛行空験により得られた貫重な熱空力特性データから，数値シミュレーションによる飛行後評価解析を実施した。今回のCFDとFEM解析を力ッ ブリングさせた続合数値シミュレーションは，OREX， HYFLEX熱空力飛行特性の能明にきわめて有効であり，今後のHOPE－Xの飛行実験訐価解析を行う上での強力 なッールとなり得ることが判明した。なお，今回の解析で は，HYFLEX機体表面の温度履歴をほぼ再現できたと考える加，乱流モデルによる加熱率上昇の定量的な推定，計算デーケの詳細な解析による乱流遷移判定法の確立，射熟材の有限蜰媒壁効果も含めた実在気体効果の空力加熱特性への影響評侕等を，今後，詳細に調べて行く必要がある。

図20（a）垂直係数の飛行 デー夕との比較

图20（b）軲力係数の戒行 データとの比較

図20（c）掦抗比の飛行 データとの比較

参考文献
1）HOPE／OREXワークショップ講演論文集航空宇宙技術研究所特別資料SP－24，1994年9月
2）HYFLEX／HOPEシンポジウム請演論女集航空宇宙技術研究所特別資料SP－32，1996年 9月
3）Yamamoto，Y＂Recent Comparisons of Acrothermodynamic Results by CFD and FEM Coupling Analysis with OREX Flight Experiments．＂NAL SP－29，1996年1月 pp27－39
4）Yamamoto，Y＂Numerical Analysis of Hypersonic Aerodynamics for Atmospheric Re－Entry of HOPE and HYFLEX＂AIAA Paper 98－0277，1998年1月
5）黒漳卓司「再突入物体周りの㮀超音速非平衡沆れに及 ぽす壁面触媒侳の影響について」第14回航空機計筫空気力学シンボジウム論文集，航空宇宙技術研究所特別資料 SP－34，1997年，4月
6）G．Palmer etal＂A CFD Analysis of the Orbital Re－entry Experiment Vehicle＂PrePrint of First Europe－US High Speed Flow Field Database Workshop Part II，1997年11月
7）R．N．Gupta，J．N．Moss，and J．M．Price，＂Assessment of Thermochemical Num－equilibrium and Slip Effects for Orbital Reentry Experiment（OREX）．＂AIAA Paper 96－ 1859，June， 1996

SST形態の空力弾性数値シミュレーション
 Aeroelastic Simulation for SST Configuration

ケイランデインハミドレザ（計算力学研究センター），中道 二郎（NAL） Hamid Reza KHEIRANDISH and Jiro NAKAMICHI

1 Research Center of Computational Mechanics，Inc，Tokyo，Japan
hamid＠rccm．co．jp
3 National Aerospace Laboratory，Tokyo，Japan
jiro＠nal．go．jp

Abstract

The numerical simulation of aeroelastic response of a SST type arrow wing flutter model to the forced oscillation of flap is presented．A numerical code based on the thin－layer Navier－Stokes equations has been developed．The code uses ADI form of Hartens＇TVD type scheme to integrate the governing equations．The wing responses to flap oscillation frequencies and total pressures of $15 \mathrm{~Hz}, 30 \mathrm{~Hz}$ and $80 \mathrm{kPa}, 120 \mathrm{kPa}$ were obtained and compared to the experimental ones．The experimental tests have been done for steady and unsteady cases with fixed or oscillating flap at NAL $2 \times 2 \mathrm{~m}$ transonic wind tunnel．

Nomenclature	
a	free stream sound Velocity
C_{P}	Pressure coefficient
C_{f}	Friction coefficient
e	Total energy
J	Jacobian of transformation
M	Free stream Mach number
P	Pressure
P_{r}	Prandtl number
R	Reynolds number based on free stream sound
velocity	
t	Time
U, v, W	Velocities in physical domain
U, V, W	Contravariant velocities
ρ	Density
ξ, η, ζ	Curvilinear coordinates
μ	Dynamic viscosity
q_{i}	Generalized coordinates
$\Phi ;$	Natural modes
m_{i}	Generalized masses
k_{i}	Reduced frequencies
\bar{Q}	Non－dimensional dynamic pressure

1．INTRODUCTION

The computation of aeroelastic characteristics of supersonic transport（SST）in transonic speed is of much current interest． Since high performance modern aircraft tend to possess a high level of flexibility in order to satisfy low weight requirements， prediction of aeroelastic problems such as flutter，buffet，and buzz play an important role in primarily steps of aircraft design．To clarify these nonlinear problems，CFD tools based on Navier－ Stokes equations including turbulence model are needed．

The remarkable progress in computing resources in the last decade，tied with advances in computational methods，has motivated the development of aeroelastic application CFD codes based on Euler or Navier－Stokes equations for two and three dimensional configuration．For example Kousen and Bendikson ${ }^{1}$ ， Alonso and Jameson ${ }^{2}$ and the authors ${ }^{3}$ presented transonic flutter simulation for two DOF airfoils by simultaneously integrating Euler／Navier－Stokes equations and structural equations using different numerical methods．For three dimensional problem Guraswamy ${ }^{4}$ and Robinson et al ${ }^{5}$ demonstrated time integration of Euler and Navier－Stokes along with the structural equations of motion．Raush et al ${ }^{6}$ presented an unstructured－grid Euler code for aeroelastic analysis of complete aircraft configurations．They used this code for flutter simulation of an isolated $45-\mathrm{deg}$ swept－back wing and a supersonic transport configuration with a fuselage．The authors ${ }^{7}$ also presented numerical flutter simulation of a high aspect ratio transport wing using Navier－Stokes equations． Developing a CFD code，suitable for unsteady viscous fluid－ structure modeling of complete aircraft based on Navier－Stokes Eqs．，was the object of this work．

In the present work，numerical simulation of aeroelastic response of SST to flap oscillation is presented．The present simulation is based on the Reynold＇s averaged thin－layer Navier－ Stokes equations including Baldwin－Lomax ${ }^{8}$ turbulence model．In this study，parallel computations using NAL NWT（National aerospace laboratory Numerical Wind Tunnel）supercomputers have been employed．

2．NUMERICAL IMPLEMENTATION

To compute the aeroelastic response of an elastic wing，it is needed to integrate the governing equations for the flow field and structural dynamic equations simultaneously．In the present study， the flow is governed by the thin－layer approximated Navier－Stokes Eqs．They can be expressed in non－dimensional form as ；

$$
\begin{equation*}
\frac{\partial \hat{Q}}{\partial t}+\frac{\partial \hat{F}}{\partial \xi}+\frac{\partial \hat{G}}{\partial \eta}+\frac{\partial \hat{E}}{\partial \zeta}=R_{e}^{-1} \frac{\partial \hat{S}}{\partial \zeta} \tag{2.1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
m_{1}=\mu\left(\zeta_{x}^{2}+\zeta_{y}^{2}+\zeta_{z}^{2}\right) \\
m_{2}=\mu / 3\left(\zeta_{x} u_{亏}+\zeta_{y} v_{\bar{O}}+\zeta_{-} w_{亏}\right) \\
m_{3}=\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)_{\bar{Y}}+P_{r}^{-1}(\gamma-1)^{-1}\left(a^{2}\right)_{\zeta}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
U=\xi_{x} u+\xi_{y} v+\xi_{z} w+\xi_{i} \\
V=\eta_{x} u+\eta_{y} v+\eta_{-} u+\eta_{i} \\
W=\zeta_{x} u+\zeta_{y} v+\zeta_{z} w+\zeta_{1}
\end{array}\right.
$$

More details will be found in many literature＇s（ for example see ref．9）．The quantities used to nondimensionalize these equations are，a characteristic length．free stream values of density，sound velocity and viscosity．

The equations of motion of the structure are derived by employing modal approach ${ }^{\prime \prime}$ ．By the use of generalized coordinates，the so called flutter equations may be written in a nondimensional form as：

$$
\begin{equation*}
m_{i} \ddot{q}_{i}+k_{i}^{2} m_{i} q_{i}=\bar{Q} \iint\left(-C_{p} n_{-}+C_{f} t_{z}\right) \Phi_{i} d S \tag{2.2}
\end{equation*}
$$

where n_{z} and t_{z} are the z－direction components of normal and tangential vectors to the wing surface，respectively．The

$$
\begin{aligned}
& \hat{Q}=\frac{1}{J}\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho w \\
e
\end{array}\right) \quad \hat{F}=\frac{1}{J}\left(\begin{array}{c}
\rho U \\
\rho u U+\xi_{x} p \\
\rho v U+\xi_{y} p \\
\rho w U+\xi_{z} p \\
U(e+p)-\xi_{,} p
\end{array}\right) \\
& \hat{G}=\frac{1}{J}\left(\begin{array}{c}
\rho V \\
\rho u V+\eta_{x} p \\
\rho v V+\eta_{y} p \\
\rho v V+\eta_{z} p \\
V(e+p)-\eta_{1} p
\end{array}\right) \hat{E}=\frac{1}{J}\left(\begin{array}{c}
\rho W \\
\rho u W+\zeta_{x} p \\
\rho v W+\zeta_{y} p \\
\rho v W+\zeta_{z} p \\
W(e+p)-\zeta_{1} p
\end{array}\right), \\
& \hat{S}=\left(\begin{array}{c}
0 \\
m_{1} u_{\zeta}+m_{2} \zeta_{x} \\
m_{1} v_{\zeta}+m_{2} \zeta_{y} \\
m_{1} w_{\zeta}+m_{2} \zeta_{=} \\
m_{1} m_{3}+m_{2}\left(\zeta_{x} u+\zeta_{y} v\right)_{2}
\end{array}\right) J^{-1}
\end{aligned}
$$

symbol， $\iint_{S} d S$ ，implies the integration over the wing surface．
These equations are derived by assuming that the deformation of the body under consideration can be described by a separation of variables involving the summation of free vibration modes weighted by generalized coordinates．

The algorithm used here for integrating N－S Eqs．is composed of the Yee－Harten TVD scheme ${ }^{11,12}$ to difference hyperbolic side and a three point central difference for viscous terms．

The first eight natural modes which are obtained from FEM structural analysis are superposed to approximate the flutter mode or the static deformation of the wing．The nonlinear aerodynamic forces obtained by integrating Navier－Stokes Eqs．are substituted on the right hand side of Eqs．（2．2）and the left hand side is integrated by Wilson＇s θ method ${ }^{13}$ ．The computation advances in a time dependent manner as the following chart and the time histories of generalized coordinates are obtained in each case and investigated．

Chart 1．Algorithm of Numerical Simulation of Flutter

3．PARALLEL PROCESSING

The use of Navier－Stokes methods for three dimensional configurations can put heavy demand on exiting computer resources．These calculations are typically performed on vector supercomputers and required many hours of CPU time as well as large amount of memory．Parallel processing offers an alternative process that is both cheaper and faster．

Although parallel processing offers considerable potential for increased computational power，parallelizing modern CFD algorithm is not a trivial task．While simpler methods such as explicit schemes can be parallelized rather easily and usually exhibit high performance on parallel machines，they are much less sufficient than implicit methods because of low limit of CFL number specially at high Reynold＇s number flows which require high clustered grids near the body surface．

In this study，in order to reduce the run time and to cover high required memory，a parallel programming，based on area decomposition，has been employed to solve the 3D ADI form of the implicit scheme．The parallel program is based on NWT－ FORTRAN77 which is developed by FUJITSU Co．The decomposition is in such a manner that the mesh is divided into some blocks in the parallel direction，and each processor computes one of the blocks．

The computation and selection of parallel and vector directions are considered as follow：
In the first and second steps of ADI computation，the span－wise direction is selected as parallel direction．The vectorized directions are chord－wise and normal direction，in the first step and the second step，respectively．In the third step，the normal or chord－ wise direction can be considered as parallel direction and remained two directions as the directions to be vectorized．It is needed in advance to transform required data，which are decomposed in the first parallel direction，to the new parallel direction．This considerably time consuming step is an inevitable part of parallelizing the implicit scheme．The present parallelized code requires .61 seconds of CPU time for one iteration of 3D aeroelastic simulation when the number of processors are 39 and
the mesh has 8.1×10^{5} grid points．

4．DYNAMIC GRID

In the present computations，a moving grid strategy ${ }^{14}$ is considered for updating internal grid at each time step．In this method the outer boundaries are fixed at the initial location during the simulation and internal grids are updated with respect to the new configuration of body－wing surfaces．The wing surface is updated as follow：having computed new generalized coordinates， the chamber plane of the wing is renewed by superposing the natural modes and the new wing surface geometry is obtained by redistributing the initial wing thickness around this chamber plane．

5．SST MODEL

This model，which is shown in figure 1 ．，is composed of a rigid fuselage and an elastic wing including flap．The total length of model is about 4 m ．The wing section is NACA0003 airfoil． Vibration characteristics which are calculated by FEM analysis are also given in the table 1 and figure 2．The unsteady tests have been conducted at the flutter testing facility at NAL，which is a transonic wind tunnel．The test section size is 2 mx 2 m ．

Figure 1．a Whole Planform of SST Arrow Wing Model

Figure 1．b Plan form of Main Part of Wind tunnel Model
Table 1．Natural Frequencies for SST

Mode No	Natural Frequency（Hz）
1	8.89
2	29.73
3	47.88
4	57.73
5	81.18
6	106.43
7	127.39
8	149.94

Figure 2．Mode contours of SST Arrow wing

6．NUMERICAL RESULTS and DISCUTIONS

The grid used here is a structured one；H－H type in both the span and chord－wise directions with the size of $107 \times 77 \times 98$ ．The outer boundaries are located at a distance of 15 root－chord lengths and 5 semi－span lengths in the normal and span－wise directions， respectively．The wake boundary is located at 8 times of root－ chord length．The minimum grid size is the order of 10^{-5} of root－ chord length．The grids around the fuselage－wing are illustrated in figure 3.

A trapezoidal form of the implicit version which is second order accurate in both time and space was used．The non－ dimensional time step was set equal to .003 ．The transition point to turbulence was not controlled．On the wing and fuselage surfaces non slip condition was applied for velocity field，and pressure was determined from normal momentum equation．For the far field boundaries extrapolation from inner field or free stream was employed．

By using the present code，steady and unsteady flows were numerically simulated in the transonic region at Mach number 0.90 ，and angle of attack of 0 and 2° ．The Reynold＇s number was set to be 1.12×10^{7}（ based on the root chord length）in all cases． For the unsteady simulation the steady state solution was computed first and then the flap was forced to oscillate and the wing response was computed．

The steady state pressure distributions at several span－wise stations are shown in figure 4 in a sequence from the left to the right and top to bottom．No shock wave is seen in this region．The pressure distributions are compared with experimental one at 38 and 75 percent of span．Their agreements are good．The discrepancy at 38 percent of span about the trailing edge is due the upstream flap gap which is not included in numerical simulation．

The aeroelastic response of wing at flap oscillation frequency $=30 \mathrm{~Hz}$ ，total pressure $=120 \mathrm{kPa}, \mathrm{M}=.9, \mathrm{AOA}=0$ ，and $\operatorname{Re}=1.12 \times 10^{7}$ are given in figure 5 ．The sequence of plots from the top to the bottom are the time histories of flap oscillation deflection angle，plunge motion of two nominal points at the mid span and tip（at mod－chord），and the eight generalized coordinates． The second mode is more excited than the first mode since the flap oscillation frequency is more near to the second mode natural frequency $(29.73 \mathrm{~Hz})$ ．The responses are not converged to steady oscillation yet．The time history of pressure distributions at 38 percent of span are given in figure 6 ．Each plot corresponds to the
marked point on the time history of flap oscillation．The same result at 75 percent of span are given in figure 7 ．The 38 percent position corresponds to the middle of flap．At 38 percent of span the pressure variation is large about the trailing edge while at 75 percent it is around the leading edge．The results at flap oscillation frequency $=15 \mathrm{~Hz}$ ，total pressure $=80 \mathrm{kPa}, \mathrm{M}=9, \mathrm{AOA}=0$ ，and $\mathrm{Re}=1.12 \times 10^{7}$ are also given in figure 8．The first ++ mode is almost excited in this case since the flap oscillation frequency is more near to the first mode natural frequency $(8.89 \mathrm{~Hz})$ ．The responses are seemed to oscillate in a bump mode，although for exact confirmation it is needed to continue computation for more longer time．The time history of pressure distributions at 38 percent of span are given in figure 9．The same result at 75 percent of span are given in figure 10 ．Like the previous result，at 38 percent of span the pressure variation is large about the trailing edge while at 75 percent it is around the leading edge．

7．CONCLUSION

An unsteady Navier－Stokes code for aeroelastic simulation of three dimensional body－wing has been developed．Using the present code，the steady state solution was computed and the wing response to the forced oscillation of flap was simulated．The Steady state results were compared with experimental ones and showed good agreement．This code can be used to simulate flutter or other aeroelastic phenomena．

REFERENCES

［1］K．A．Kousen and O．O．Bendikson，Nonlinear Aspects of the Transonic Aeroelastic Stability Problem，AIAA Paper 88－2306（1988）
［2］J．J Alonso and A．Jameson，Fully－Implicit Time－Marching Aeroelastic Solutions，AIAA paper 94－0056（1994）
［3］H．Kheirandish，G．Beppu and J．Nakamichi，Numerical Flutter Simulation of a Binary System in Transonic Region，Aircraft Symposium， Hiroshima，Japan（1995）
［4］G．P．Guraswamy，Navier－Stokes Computations on Swept－Transonic Wings，Including Flexibility，Journal of Aircraft，Vol．29，No．4，pp．2497－ 2503，（1992）
［5］B．A．Robinson，J．T．Batina and H．T．Y．Yang，Aeroelastic Analysis of Wings Using the Euler Equations with a Deforming Mesh，Journal of Aircraft，Vol．28，No．11，pp．781－788，（1991）
［6］R．D．Rausch，J．T．Batina and H．T．Y．Yang，Three－Dimensional Time－ Marching Aeroelastic Analyses Using an Unstructured－Grid Euler Method， AIAI Journal Vol．31，No．9，PP 1626－1633（1993）
［7］H．Kheirandish，G．Beppu and J．Nakamichi，Numerical flutter Simulation of a High－Aspect－Ratio Swept－Back Wing Based On the Navier－Stokes Equations，航空宇宙学会誌，第45巻（1997），in Japanese．
［8］B．S．Baldwin and H．Lomax，Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows，AIAA paper 78－257（1978）
［9］T．H．Pulliam and J．L．Steger，Recent Improvements in Efficiency， Accuracy，and Convergence for Implicit Approximate Factorization Algorithms，AIAA Paper 85－0360，（1985）
［10］R．L．Bisplinhoff，H．Ashley，Principles of Aeroelasticity，Dover Pubns（1975）
［11］H．Yee and A．Harten，Implicit TVD Schemes for Hyperbolic Conservation Law in Curvilinear Coordinates，AIAA paper 85－1513 also AlAA Journal，Vol．25，No．2，（1987），pp．266－274
［12］H．Yee and G．H．Klopfer and J．L．Montagne，High－Resolution Shock－ Capturing Schemes for Inviscid and Viscous Hypersonic Flows，NASA TM－100097（1988）．
［13］K．J．Bate and E．L．Wilson，Numerical Methods in Finite Element Analysis，Prentic－Hall（1976）
［14］J．Nakamichi，Calculation of Unsteady Navier－Stokes Equations Around an Oscillating 3－D Wing Using Moving Grid System，AIAA paper 87－1158－CP（1987）

Figure 3．a Grid pints around SST Arrow Wing

Figure 3．b Planner View of SST Arrow Wing Grid Distribution

FIG10．Pressure distributions $R F=0.280, \quad$ RMP $=2.00 \quad 75 \%$ SPAN

空力構造連成解析の一手法：複合並列計算環境でのシミュレーション事例

大西㒻一＊，木村俊裁＊，武宮博＊，郭 智宏†

An Approach for Coupled Aero－Structure Analysis： Example Multi－Disciplinary Application on Multiple Parallel Computers．

by
Ryoichi ONISHI＊，Toshiya KIMURA＊，Hiroshi TAKEMIYA＊，and Zhihong GUO ${ }^{\dagger}$

Abstract

A fluid－structure interaction problem has been solved by loose coupling of Computational Fluid Dynamics and Computational Structural Dynamics codes．A dynamic coupling computations have been carried out efficiently by employing parallel and distributed processing technologies．The results from example application to a wing box structure of high aspect－ratio swept－back configuration have been presented in this article．

Nomenclature

$[C]$	減衰マトリックス
$\{f\}$	荷重ベクトル
G	変形前の流体格子点
G^{\prime}	変形後の流体格子点
$[K]$	剛性マトリックス
$[M]$	質量マトリックス
n_{g}	変形前の要素面の法線ベクトル
n_{g}^{\prime}	変形後の要素面の法線ベクトル
$\hat{Q}, \hat{E}, \hat{F}, \hat{G}$	Navier－Stokes 方程式の流束ベクトル
S	自由曲面上の点
S_{g}	変形前要素面への格子点の垂直投影点
S_{g}^{\prime}	変形後要素面への格子点の垂直投影点
t	時間

$\{u\},\{\dot{u}\},\{\ddot{u}\} \quad$ 節点の変位，速度，及び加速度
$u, v \quad$ 曲面座標
ug，vg 要素面上での格子点垂直投影点の座標
$V_{1,2,3,4}$ 変形前の要素節点
$V_{1,2,3,4}^{\prime} \quad$ 変形後の要素節点
$\xi, \eta, \zeta \quad$ Navier－Stokes 方程式の一般化座標系

はじめに

複数の並列計算機による空力構造連成解析の為の システム［1］－［4］の構築手法と，それを高アスペ クト比後退翼に適用した事例を紹介する。本シス テムは CFD（Computational Fluid Dynamics）と CSD（Computational Structural Dynamics）の疎結合（Loose Coupling）計算［5］を基礎としたもので，流体力学と構造力学の計算式を，それぞれの計算結果を交換しながら動的に解いている。計算には内部構造も含む3 3 次元形状を使用しており，複雑形状を用いた計算を可能な限り早く処理する為に複数の並列計算機を使用し，並列処理と分散処理を合わせて適用している点が特徴的である。

空弾性の解析モデル

空弾性解析では従来，二次元翼モデルや，空力パネ ルと梁質点モデルによるもの［6］などが用いられて来 た。これらの簡易モデルは，高性能計算機を使わなく とも扱いやすい利点があるが，衝撃波や後流渦など の生成を伴ら複雑な 3 次元流れや，主翼のボックス構造などを反映した精密なモデルを構築する事が出来 ない。NASTRANに代表される有限要素法構造解析 コードが出るとパネル法などの空力コードと組み合

わせ，より複雑な構造モデルを扱ら事が出来る空弾性解析コードが開発される様になった。米空軍研究所 （Air Force Research Laboratory）で開発された AS－ TROSはその代表的コードで，MSC／NASTRANと平板ボルテックスラティス法空力コード USSAERO を組み合わせ空弾性計算を行った［7］。また，空力計算の精度を上げる為に Navier－Stokes／Euler CFD コードを組み合わせた精密解析にも取り組まれて来 た。初期の事例では計算機性能の制約から静解析の み［8］，あるいは主翼を平板簡易構造とし動解析を行ったもの $[9],[10]$ が多かったが，近年では高性能計算機を利用し，ウイングボックス・モデルを用い た翼振動解析などが行われている［11］，［12］。NASA の ENSAERO［12］は，これらの著名なコードである が，有限差分法 CFDコードと有限要素法 CSDコー ドを用いた空弾性動解析コードで，本研究に於ける と同様，並列処理により CFD と CSD の同時計算 を行っている。本研究は，このレベルに位置付けら れている。表1に関連する研究の事例を年代順にま とめる。

主著者	悬成式式	コート	モデル／コート	時缼	翌文
Gunumay NASA Ames	Eulcr：PD／モード出：EEM	ATRAN3S		1986	9
AssmanAorillep Cope．		ASTROS		1992	13
CoenNaSA Langley			美旡	1992	18
YukovicMAcDonecl Deughe	linerstcory／且洨法：FEM	ASTROS		1994.5	14，15
GunssmyNASA Anes		ENSAERO		1994	8
Loctaneit George Meson Univ．	Navier－Sotes：FiM／衰发迲：FEM	FELCO66＋DYNA3D		1995－6	5，1617
			成矿	1997	11
ByonASA Amas		ENSAERO	BOXもデル僧建折	1998	19

表1：空力と構造の疎結合計算による連成計算での事例

基碟計算式

式1は空弾性計算の基礎式で，Navier－Stokes 式（式 2）より得られる空気力を用いて解かれる。数値計算 は中心差分法の直接時間積分を適用し陽的に解いて いる（式 3，4，5）。また，式 2 では変形物体周りの流 れ場を解くために，移動境界計算を行っている。動的計算に於いては，流体と構造の時間ステップのら ち小さい方の時間に合わせ，空気力と変形量を交換 しながら解いている。空間離散化は式 5 を有限要素法で，式2を有限差分法で行っている。

$$
\begin{equation*}
[\boldsymbol{M}]\{\ddot{u}\}+[\boldsymbol{C}]\{\dot{u}\}+[\boldsymbol{K}]\{u\}=\{f\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \hat{Q}}{\partial t}+\frac{\partial \hat{E}}{\partial \xi}+\frac{\partial \hat{F}}{\partial \eta}+\frac{\partial \hat{G}}{\partial \zeta}-\frac{\partial \hat{E}_{v}}{\partial \xi}-\frac{\partial \hat{F}_{v}}{\partial \eta}-\frac{\partial \hat{G}_{v}}{\partial \zeta}=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\{\ddot{u}\}_{n}=\frac{1}{\Delta t^{2}}\left(\{\mathrm{u}\}_{n+1}-2\{\mathrm{u}\}_{n}+\{\mathrm{u}\}_{n-1}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\{\dot{u}\}_{n}=\frac{1}{2 \Delta t}\left(\{u\}_{n+1}-\{u\}_{n-1}\right) \tag{4}
\end{equation*}
$$

$$
\begin{array}{r}
\left(\frac{[\boldsymbol{M}]}{\Delta t^{2}}+\frac{[\boldsymbol{C}]}{2 \Delta t}\right)\{u\}_{n+1}=\{f\}_{n}-[\boldsymbol{K}]\{u\}_{n}+ \\
\frac{2[\boldsymbol{M}]}{\Delta t^{2}}\{u\}_{n}-\left(\frac{[\boldsymbol{M}]}{\Delta t^{2}}-\frac{[\boldsymbol{C}]}{2 \Delta t}\right)\{u\}_{n-1} \tag{5}
\end{array}
$$

形状処理，格子形成，及び有限要素分割

流体計算格子と構造有限要素は，パラメトリックに定義された形状情報を用いて自動生成される。図1 は，スパン，後退角，桁位置，翼型番号などの定義状況を示しており，これより外板，桁，リブ，前縁 から構成される主翼の 3 次元形状データを生成し，流体計算格子と構造有限要素データを生成する。外板形状は平面形と断面形より生成される。桁などの内部構造は，それらの配置に合わせ外板の断面形状 を抽出し，生成している。図2は各構造物を 20 自由度四辺形シェル要素で分割した有限要素データで， これらは構造力学コードへの入力データに変換され る。入力データは，村料，拘束条件，荷重条件，要素構成，節点座標などが定義されたデータである。流体計算格子は外板形状を用いて生成される（図3）。格子形状は翼弦方向に C 型，スパン方向に H 型で ある。図4は構造要素と流体格子が結合している様子を示しており，翼表面にて流れ場の圧力と構造の変形量が，構造側節点と流体側格子点へ，それぞれ受け渡される。流体格子は構造変形に合わせて移動 し，流体の表面圧力は構造荷重として要素節点に渡 される。

図 1：主翼のサイジング

図2：外板，リブ，前縁，翼桁，及び縱通材の有限要素データ

図 3：形状データより自動生成された流体格子

図 4：流体格子と構造有限要素との結合
変形する物体周りの流れ場は，物体に応じて変形 する。このために，移動格子の形成が必要になる。図5は曲面投影法により移動格子形成を行う手順を示している。この方法では，各有限要素面を式 6 の自由曲面で表現し，流体側の表面格子点 G の変形前要素面への垂直投影点 S_{g} を求め，得られた曲面上座標（ $u g, v g$ ）を用いて変形後要素面上での対応点 S_{g}^{\prime} を求める。投影点計算では，一ステップ毎に（表

面格子数 \times 表面要素数）に比例する回数の収束計算 を行らため，全体では大きな処理量となる。（概算で は表面格子数約 2500 ，表面要素数約 1500，時間ス テップ約 10^{-5} 秒で，一秒分の計算回数は 10^{13} 以上 になる。）この為，当該要素面上に乗らない格子点 を除外する事により，不要な投影点計算を省いてい る。これは，各要素を取り囲む直方体を定義し，こ の中に入る格子点のみを投影点計算の対象とする処理である。移動後の格子点 G^{\prime} は式 9 に示す様，変形後投影点 $S^{\prime} g$ と法線方向ベクトルにより求める。以上により表面格子点の移動を行った後，流れ場中の全格子点を移動させる。各格子点の移動ベクトルは表面格子の移動ベクトル $\left(G^{\prime}-G\right)$ が外周部で 0 と なる様に線形補間し求める。以上による変形翼周囲 に形成された移動格子の例を図6に示す。

図 5：要素面の移動，垂直投影，及び格子移動の関係

$$
\begin{align*}
S(u, v) & =\left\{P_{a} h_{0}(u)+P_{b} h_{1}(u)\right\} h_{0}(v) \\
& +\left\{P_{d} h_{0}(u)+P_{c} h_{1}(u)\right\} h_{1}(v) \\
& +\left\{T_{a u} h_{2}(u)+T_{b u} h_{3}(u)\right\} h_{0}(v) \\
& +\left\{T_{d u} h_{2}(u)+T_{c u} h_{3}(u)\right\} h_{1}(v) \\
& +\left\{T_{a v} h_{2}(v)+T_{d v} h_{3}(v)\right\} h_{0}(u) \\
& +\left\{T_{b v} h_{2}(v)+T_{c v} h_{3}(v)\right\} h_{1}(u) \tag{6}
\end{align*}
$$

$0 . \leq u, v \leq 1$ ．

$$
h_{0}(x)=2 x^{3}-3 x^{2}+1, \quad h_{1}(x)=-2 x^{3}+3 x^{2}
$$

$$
h_{2}(x)=x^{3}-2 x^{2}+x, h_{3}(x)=x^{3}-x^{2}
$$

$$
\begin{gather*}
T_{a u}=T_{b u}=1.1 \times\left(P_{b}-P_{a}\right) \\
T_{d u}=T_{c u}=1.1 \times\left(P_{c}-P_{d}\right) \\
T_{a v}=T_{d v}=1.1 \times\left(P_{d}-P_{a}\right) \\
T_{b v}=T_{c v}=1.1 \times\left(P_{c}-P_{b}\right) \\
S_{g}=S\left(u_{g}, v_{g}\right) \quad, S_{g}^{\prime}=S^{\prime}\left(u_{g}, v_{g}\right) \tag{7}\\
n_{g}^{\prime}=\frac{\partial S_{g}^{\prime}}{\partial u} \times\left.\frac{\partial S_{g}^{\prime}}{\partial v}\right|_{u=u g, v=v g} \tag{8}\\
G^{\prime}=S_{g}^{\prime}+\left|G-S_{g}\right| n_{g}^{\prime} \tag{9}
\end{gather*}
$$

図6：変形翼周りの移動格子形成（前上方より）
分散並列処理環境上での統合
本研究では流体解析，構造解析，及び流体格子形成の為の計算コードを疎結合方式で異機種並列計算環境上に統合し，連成計算を行った［ 20$]$ 。異機種並列計算環境とは計 5 台のベクトル及びスカラー計算機が 800 MBPS の HIPPI スイッチにより結合さ れた環境で，計算機間通信機能を持つ通信ライブラ リStampi［21］を使って複数の計算機を単一計算機 の様に使用する事が出来る。Stampiは，メッセー ジ交換の為の標準ライブラリMPI（Message Passing Interface）に，計算機間通信機能を持たせたもので ある。システムの統合では，並列処理と分散処理を併用する事により処理時間の短縮を図っている。疎結合連成計算は各コードをインタフェースを介して結合する方式であり，プログラムのモジュラリティ を高め，コードの改良や変更を容易に行ら事が出来 る長所がある。両方のコードは計算結果を交換しな がら同時に実行され，更に，それぞれのコードの中 でも分割された計算領域毎に並列的に処理される。各コードはそれぞれ同一計算機機上別の，あるいは異機種計算機上のプロセッサグループに割り当てら れる。また，それぞれのコードの中でも計算領域毎

にプロセッサが割り当てられ並列的に実行される。前者は MPMD（Multiple Program Multiple Data），後者は SPMD（Single Program Multiple Data）と呼 ぼれる並列処理の方式である。表2は，連成計算に要した処理時間で，単一計算機上で行った場合と，流体と構造の各コードを別々の計算機に載せ実行した場合を示している。表中 RS6000／SP（スカラー機）， SR2201（スカラー機），及び VPP300（ベクター機）は使用した計算機の名称で，異機種計算ではVPP300 と SR2201を使用している。処理時間は時間ステッ プ当りの計算時間で，コード毎の処理に要した値と，通信時間を含む全ての処理に要した値が示されてい る。（プロセッサ数は左より流体，格子，構造の各 コードへの割り当て数を示す。）以上より，流体解析と格子形成の処理はVPP300の様なベクター計算機で，構造解析はSPのようなスカラ計算機で，よ り高い性能値が得られる。更に，分散処理化を図っ た場合，全ての処理に於いて単一機種で行らよりも優れた性能を示している。

CPU 名 RS6000／SP SR2201 VPP300 VPP300\＆SR2201 CPU 数 $(45,1,2) \quad(60,1,3)(8,1,6) \quad(14,1,5)$

CFD	5.139	2.501	1.645	1.315
Grid	1.183	0.956	0.071	0.071
CSD	0.991	1.139	1.795	0.793
Total	9.152	4.945	2.029	1.395

表 2：単一機，及び分散処理での処理速度の比較（秒）

結論

並列分散処理環境上で，空弾性解析等の複合シミュ レーションに適したプラットフォームを構築する一方式を示した。この様な環境では次の様なメリット が得られる。

- プロセッサ数や記憶容量を大きく確保出来る。
- それぞれのコードのアルゴリズムに応じて適切な計算機を割り当て，1台の計算機上で処理するより も高い性能を出せる。

今回，使用可能な CPU 数の制限から短時間の解析を示すに留まったが，長時間計算によりフラッタ解析を行ら事が今後の主な課題である。

参考文献

［1］Kimura，T．，Onishi，R．，Ohta，T．and Guo，Z．， ＂Parallel Computing for Fluid／Structure Cou－ pled Simulation，＂presented at the 10th Inter－ national Conference on Parallel CFD，Hsinchu， Taiwan，May 11－14，1998．
［2］Onishi，R．，Kimura，T．，Ohta，T．and Guo，Z．， ＂Development of Parallel Computing Environ－ ment for Aircraft Aero－Structural Coupled Anal－ ysis，＂presented at the 9th International Con－ ference on Parallel CFD，Manchester，U．K．，May 19－21，1997．
［3］Onishi，R．，Kimura，T．，Guo，Z．and Iwamiya，T．， ＂Computational Aeroelastics by Coupling Com－ pressible Fluid Equations with Shell Finite－ Element Structure，＂AIAA Paper 98－2407，pre－ sented at the 16th AIAA Applied Aerodynam－ ics Conference，Albuquerque，NM，June 15－ 18， 1998.
［4］Onishi，R．，Kimura，T．，Guo，Z．and Iwamiya，T．， ＂Coupled Aero－Structural Model：Approach and Application to High Aspect－Ratio Wing－ Box Structures，＂AIAA Paper 98－4837，pre－ sented at the 7th AIAA／USAF／NASA／ISSMO Symposium on Multidisciplinary Analysis and Optimization，St．Louis，MO，Sept．2－4， 1998.
［5］Loehner，R．，Yang，C．，Cebral，J．，Baum，J．D．， Luo，H．，Pelessone，D．and Charman，C．，＂Fluid／ Structure Interaction using a Loose Coupling Algorithm and Adaptive Unstructured Grids，＂ AIAA Paper $95-2259$ ，presented at the 26 th AIAA Fluid Dynamics Conference，San Diego， CA，June 19－22，1995．
［6］＂Summary of Analytical Flutter Investigations for the Model 737 Airplane，＂D6－17751，THE BOEING COMPANY COMMERCIAL AIR－ PLANE DIVISION， 1967.
［7］Neill，D．J．，Johnson，E．H．and Canfield，R．，＂AS－ TROS－A Multidisciplinary Automated Struc－ tural Design Tool，＂AIAA Journal of Aircraft， Vol．27，No．12，December 1990.
［8］MacMurdy，D．E．，Guruswamy，G．P．，Ide，H．and Ka－ pania，R．K．，＂Static Aeroelastic Analysis of Wings Using Euler／Navier－Stokes Equations Coupled
with Improved Wing－Box Finite Element Struc－ tures，＂AIAA－94－1587－CP，1994．
［9］Guruswamy，G．P．，Goorjian，P．M．，Ide，H．and Miller，G．D．，＂Transonic Aeroelastic Analysis of the B－1 Wing，＂AIAA Journal of Aircraft， Vol．23，No．7，July 1986.
［10］Rausch，R．D．，Batina，J．T．and Yang，H．T．Y．， ＂Three－Dimensional Time－Marching Aeroelas－ tic Analysis Using an Unstructured－Grid Eu－ ler Method，＂AIAA Journal of Aircraft，Vol． 31，No．9，Sept． 1993.
［11］Hamid Reza Kheirandish，別府護郎，中道二郎，＂ナビエ・ストークス方程式に基ずく高アス ペクト比後退翼のフラッタシミュレーション，＂日本航空宇宙学会誌 第 45 巻 第525号， 1997年10月
［12］Byun，C．and Guruswamy，G．P．，＂Wing－Body Aeroelasticity using Finite－Difference Fluid／ Finite－Element Structural Equations on Par－ allel Computers，＂AIAA－94－1487－CP， 1994.
［13］Ausman，J．D．，Hangen，J．A．and Acevedo，D．A．， ＂Application of a Local Panel Buckling Con－ straint Within Automated Multidisciplinary Structural Analysis and Design，＂AIAA 92－ 1116，presented at the Aerospace Design Con－ ference，Irvine CA，February 3－6， 1992.
［14］Yurkovich，R．，＂The use of Taguchi Techniques with the ASTROS Code for Optimum Wing Structural Design，＂AIAA－94－1484－CP， 1994.
［15］Yurkovich，R．，＂Optimum Wing Shape for an Active Flexible Wing，＂AIAA－95－1220－CP，1995．
［16］Baum，J．D．，Luo，H．，Loehner，R．，Yang，C．，Pe－ lessone，D．and Charman，C．，＂A Coupled Fluid／ Structure Modeling of Shock Interaction with a Truck，＂AIAA－96－0795，presented at the 34th Aerospace Sciences Meeting and Exhibit，Reno NV，Jan．15－18， 1996.
［17］Mestreau，E．and Loehner，R．，＂Airbag Simula－ tion using Fluid／Structure Coupling，＂AIAA－ 96－0798，presented at the 34th Aerospace Sci－ ences Meeting and Exhibit，Reno NV，Jan． 15－18， 1996.
［18］Coen，P．G．，Sobieski，J．S．and Dollyhigh，S．M．， ＂Preliminary Results from the High Speed Air－ frame Integration Research Project，＂AIAA－ 92－1004，presented at the Aerospace Design Conference，Irvine CA，Feb．3－6， 1992.
［19］Byun，C．and Guruswamy，G．P．，＂Aeroelastic Computations on Wing－Body－Control Config－ urations on Parallel Computers，＂Journal of Aircraft，Vol．35，No．2，March－April 1998.
［20］Kimura，T．and Takemiya，H．，＂Local Area Meta－ computing for Multidisciplinary Problems：A Case Study for Fluid／Structure Coupled Sim－ ulation．＂，presented at the 12 th ACM Inter－ national Conference on Supercomputing，Mel－ bourne，Australia，July 1998.
［21］小出洋，今村俊幸，太田浩史，川崎玩治，武宮博，桶口健二，笠原博徳，相川裕史，＂異機種並列計算機間通信ライブラリの構築，＂計算工学講演会論文集，第 3 巻 第 1 号，日本計算工学会，1998年5月

小野寺 卓郎，冨田 健夫，田村 洋＊

Numerical Study of the Flowfield around the Annular－Type Spike Nozzle

by
Takuo ONODERA，Takeo TOMITA，Hiroshi TAMURA
Kakuda Research Center，National Aerospace Laborabory

Abstract

Propulsion systems for rocket－powered SSTO vehicles are required to have good performance for a wide range of altitudes．An aerospike nozzle engine is thought to meet this requirement because it has altitude adaptation ability．Namely，the expansion ratio of the exhausted jet changes automatically accord－ ing to changes in the ambient pressure．This makes it possible to operate rocket engines which have large expansion ratios without flow separation at low altitude．Consequently，the engines show good perfor－ mance for a wide range of operational conditions．

The flowfield around the aerospike nozzle is more complicated than that in the bell－shaped nozzle， because the exhausted jets expand under the influence of the ambient pressure and because the adjacent jets interact in the case of the thrust cell clustered engines．CFD is a powerful tool for analyzing the structure of this complicated flowfield in detail．

In this study，as the first step of calculating the flowfield around the aerospike nozzle，we performed the inviscid calculations of the flowfield around the axisymmetric spike nozzle of 100% length and compared the numerical results with the experimental data（schlieren images and pressure distributions on the spike nozzle wall）．Calculations were done on two kinds of conditions，namely，at high altitude condition（pres－ sure ratio，which means the ratio of the thrust chamber pressure and the ambient pressure，is 520）and at low altitude condition（pressure ratio is 13）．The contour lines of Mach numbers from the numerical results in both conditions show the flow structure similar to the schlieren images，which consist of shock waves and expansion waves．Pressure distributions on the spike nozzle wall from the numerical results also show good agreements with the experimental data except in the flow separation region in case of the low altitude condition．

1．まえがき

低コストの宇宙輸送系の有力な候補として，ロケッ ト推進式単段宇宙往還機（SSTO）が考えられている。 SSTO 用の推進機関に対する技術要求のうちで重要な ものは，地上办ら高空に至る広範四において良好な性能を示すこと，さらには軽量であること，である。現在のロケットエンジンで使用されているベル型ノズル では，周囲の圧力が高い低高度においてノズル内の流

[^3]れが剥離するのを避ける必要があり，ノズル膨張比を大きく設定することができないので，固定形状のノズ ルでは高空での性能を上げることができない。これに対して，エアロスパイクノズルでは，周囲の圧力の変化に伴って燃焼器から排出される燃焼ガスの膨張比が自動的に変わるので，高膨張比を有するノズルを使用 することが可能である。その結果，固定形状にもかか わらず地上から高空までの広い高度範囲で良好な性能 を示す（高度適応特性）。また，多数の小型燃焼器をノ ズルの周囲に配置するクラスター型のエアロスパイク エンジンを用いた場合，小型燃焼器ごとの推力制御を

行なえば（いわゆる差動推力制御），エンジンのジンバ ル機構が不要となり，エンジンも含めた機体全体の重量の軽減の可能性が見込まれる。したがって，エアロ スパイクエンジンは，ロケット推進式SSTO用の推進機関として魅力的なものと考えられている。

一方，ノズル内部の流れについて考えてみると，ベ ル型ノズルでは燃焼ガスがノズル壁面から剥離しない限りは，流れ場の様子はほとんど高度には依存しない。 しかし，エアロスパイクノズルでは，ノズル周りの流 れ場はエンジン周囲の環境（压力や機体の速度等）の影響を大きく受ける。さらに，上述したクラスター型 のエンジンにおいては，隣接する燃焼器からの排気が ス同士，あるいは排気ガスとノズル表面との干渉に

よって流れ場はさらに複雑なものになる。性能の良い エンジンを設計するには，このような複雑なノズル周 りの流れ場を精確に把握することが必要であるが，実験から得られる情報には限りがあるので，数値計算は非常に有効な解析手段となる。

ここでは，数値計算によるエアロスパイクノズル周 りの流れ場解析の端緒として，比較的簡単な形状であ る軸対称環状型スパイクノズル周りの流れ場の数値解析を行ない，得られた計算結果を実験デーダーダ21と比較 した。

2．計算手順

図1 計算領域

（a）数娔器出口計算用格子

（b）スパイクノズル計算用格子

図2計算格子

本計算では，スパイクノズル形状の設計法として広 く用いられる，特性曲線法を利用した方法 ${ }^{31}$ によって設計された形状を有する軸対称フルスパイクノズル （途中で切り落とさない形体のノズル）周りの流れ場を解析の対象としている。

流れは圧縮•非粘性であると仮定し，基礎方程式と して一般曲線座標系表示のEuler 方程式を用いる。計算に使用したスキームは，Explicit Symmetric TVD scheme ${ }^{(1+51)}$ である。作動気体は，実験結果との比較のた めに窒素とした（比熱比1．4，気体定数 296．8）。

図1に計算領域を，図2には計算格子を示した。後述する境界条件の説明の便宜上，図1の中に番号を付記している。格子点数は，図 2 （a）の場合は 282×41点，図2（b）では 201×101 点である。

本計算では計算の便宜上，2つの段階を経て数値解 を求めた。つまり，まず図 2 （a）に示した格子を用いて燃焼器出口面での流れ場の状態を求めた。次に，その結果を図1に示した境界（1）における流入条件として与 えて，図2（b）の格子を用いたノズル周りの計算を行 なった。

また，実験はスパイクノズル全体が圧力容器に装着 された状態でおこなわれており，ノズル周囲の外気は ほとんど静止していると考えられる。このような状態 を模擬するために，図1の境界（2）は壁面とした。他の境界も含め，本計算で使用した境界条件を以下に記す。
（1）：燃焼器出口条件（固定）
（2）：壁面条件
（3）：壁面条件
（4）：軸対称条件
（5）：流出条件（亜音速の場合は，静圧を固定）
（6）：流出条件（亜音速の場合は，静圧を固定）

ただし，壁面ではslip条件によって速度成分を，壁面の法線方向の運動量式から圧力を求め，さらに温度 の壁面の法線方向微分を0として壁面温度を求めた。

使用した計算条件を表1に示す。ケース1では主流

表1 計算条件

	ケース1	ケース2
主流全圧［MPa］	4.155	1.049
主流全温［K］	270.624	265.553
外部圧力 $[\mathrm{MPa}]$	0.008	0.078
外部温度 $[\mathrm{K}]$	270.624	265.553

全圧と外部圧力との比（圧力比）が519．4，ケース2 では圧力比が13．4となる。用いたスパイクノズルの設計圧力比は約71であるので，ケース1は設計高度より も高空にある状態，ケース 2 は設計高度よりも低空に ある状態に，それぞれ対応する。

3．計算結果

図 2 （a）の格子を用いて求めた計算結果のうち，燃焼器出口付近の流れ場の様子を図3に示す（マッハ数分布，ケース1）。図中で「Chamber Exit Plane」で示し た面が燃焼器出口であり，この面での各物理量を，前項で述べたように燃焼器出口条件として図1の境界（1） に固定条件として与えた。図3に矢印で示した箇所 （2箇所）では，壁面が極わずかなコーナ一西を形成して いるために弱い衝撃波が生じている。これら2つの弱 い衝撃波は燃焼器出口を過ぎてから1つにまとまって下流へ伸びる様子が見られる。

図 4 および図 5 に，ケース 1 の条件で求めたスパイ クノズル周りの流れ場の数値解析の結果を，同じ条件下の実験結果と比較して示した。図4の上側の図は計算結果のマッハ数分布を示し，下側の図は実験のシュ リーレン写真である。ケース1の条件では，燃焼器出口において燃焼器からの流れは不足膨張状態にあるの で，燃焼器出口の端部から膨張波が発生する。この膨張波は燃焼器出口の下流で（図中に矢印で示した箇所） さらに外側に変形しているが，これは，上述した燃焼器内部から生じている弱い衝撃波との干渉の結果と考 えられる。図4下側のシュリーレン写真にも，計算結

図3 燃焼器出口付近の流れ場

図5 スパイクノズル壁面における任力分布（ケース1）

図4 計算結果と実験結果との比較（ケース1）

計算結果（マッハ数分布）

シュリーレン映像

図7 スパイクノズル壁面における圧力分布（ケース2）

図6 計算結果と実験結果との比較（ケース2）

図8 ノズル壁面上の流れ場の様子（ケース2）

果ほど大きくはないが同様な膨張波の変形が見られる。図5は，スパイクノズル表面での圧力分布を示してい る。軸方向距離が $0.05[\mathrm{~m}]$ の付近では計算値が実験値よ りも若干小さいものの，全体としては計算結果と実験結果とは良い一致を示していると言える。

図6および図7に，ケース2の条件で求めた計算結果を，実験結果とともに示す。ケース2の条件では，燃焼器出口において，出口端部に近い部分（出口面内の外側）は過膨張状態にある（一方では，中心軸に近い部分の圧力は外部圧力よりも高い）ので，出口端部か らは中心軸に向かう斜め衝撃波が生じる。この衝撃波 はノズル表面や噴流境界で反射を繰り返し，複雑な流 れ場を形成する。また，燃焼器出口端部からの噴流境界は，ケース1の場合と同様に燃焼器内部から生じて いる弱い衝撃波の影響を受けて外側に曲げられている様子が分かる。図6の計算結果と実験のシュリーレン写真とを比較すると，嘖流の構造は良い一致を示して いると言える。図7にスパイクノズル表面の圧力分布 を示す。軸方向距離が0．05 mj の付近では計算値が実験値から大きく外れているが，それ以外の領域では両者 は近い値を示している。

図8には，ケース2の条件で行なった実験におい て，SSLC（shear sensitive liquid crystal，前断力感応液晶）を用いてノズル表面の様子を可視化した写真を示した。図中に矢印で示した位置は壁面圧力の計測箇所である（ただし，図7に示した計測値の中で軸方问距離が $0.02[\mathrm{~m} 1$ 付近の計測点は燃焼器内部にあるため に，図8には示されていない）。図8から，軸方向距離 が 0.05 m 付近の計測点はちょうど剥離領域に入ってい ることが分かる。前項で述べたように，本計算は圧縮非粘性流れを仮定して行なっているために，このよう な剥離領域を捕らえることはできず，その結果として，図7のグラフに示されたような大きな相違を生じたと

考えられる。

4．まとめ

ここでは，エアロスパイクノズル周りの流れ場の数値解析として，比較的簡単な形状である軸対称の環状型スパイクノズル（フルスパイクノズル）を対象に圧縮非粘性流を仮定した計算を行ない，得られた計算結果を実験結果と比較した。検討した2つの計算条件に おいて，燃焼器出口から生じる膨張波や衝撃波等の，噴流の構造を明らかにすることができた。また，ノズ ル表面の圧力分布についても，剥離領域を除いて実験結果と比較的良い一致を示す計算結果が得られた。今後は，粘性流への対応を行なうとともに，リニア型の エアロスパイク等の計算を実施していく予定である。

参考文献

［1］Tomita，T．，Tamura，H．and Takahashi，M．，＂An Experimental Evaluation of Plug Nozzle Flow Field＂， AIAA－96－2632， 1996
［2］富田，高橋，田村：「コールドフロー試験による プラグノズル流れの可視化」，日本航空宇宙学会北部支部1997年講演会および第7回ラム／スク ラムジェットシンポジウム講演論文集，1997年 2 月
［3］O＇Brien，C．J．，＂Unconventional Nozzle Tradeoff Study， Final Report＂，NASA CR－159520，1979
［4］Yee，H．C．，＂Construction of Explicit and Implicit Symmetric TVD Schemes and Their Appiications＂， Journal of Computational Physics，vol．68，pp．151－ 179， 1987
［5］Yee，H．C．and Warming，R．F．，＂Implicit Total Variation Diminishing（TVD）Schemes for Steady－State Calculations＂，Journal of Computational Physics， vol．57，pp．327－360， 1985

エアロスパイクノズルの表面流れ特性

富田 健夫，高橋 守，小野寺 卓郎，田村 洋

Surface Flow Characteristics of Aerospike Nozzles

Takeo TOMITA，Mamoru TAKAHASHI，Takuo ONODERA and Hiroshi TAMURA

Abstract

To obtain data to confirm CFD codes for aerospike nozzle flow，flow fields of annular clustered aerospike nozzles were investigated with cold flow tests．The tests were carried out over 6 －， 12 －，and 24 －module clustered aerospike nozzles with full and 20% lengths of spike．Pressure distributions on surface of the nozzle were measured．Surface flow fields were visualized with a shear sensitive liquid crystal（SSLC）．

Wedge－like surface flow structures were observed at sea level condition．This structures were considered to be constructed by interactions between the nozzle surface and the shock waves of diamond cones of exhaust．Triangle－like surface flow structures were observed at low and high altitude conditions．This structures were considered to be caused by interactions among neighboring exhausted jets．Observed structures above were constructed with shock waves，which was confirmed by the pressure distributions on the surface of the nozzle．White circle was observed on base in case of truncated nozzle at high altitude condition．The circle was considered to be caused by recirculation of wake of the base．Essential flow fields of 6 r，12－，and 24 －module clustered aerospike nozzles were the same． Only the difference，namely，dimensions of the flow structures，was come from the difference of size of gaps between the modules． Flow fields which were estimated above by the surface flow fields will be confirmed with CFD which is undergoing．The results of CFD will be certified with measured pressure distributions and visualized surface flow fields obtained in these tests．

1．はじめに

我が国の将来の広範な宇宙活動を支えるため，輸送 コストの大幅な削減を可能とする再使用型ロケットの実現が期待される。このため軽量で高性能，且つ，高 い信頼性を持つロケットエンジンが必要とされる。エ アロスパイクエンジンは地上から高空まで高い性能を有し，前述の条件を満たす再使用型ロケットェンジン として注目を集めている。

エアロスパイクエンジンは，その形状から，軸対称型と二次元型の二つに分類される。著者らは数年前よ りこれらのエンジンの技術課題の抽出とその解決にむ けた研究を進めてきた［1－6］。ここでは軸対称型の中 でも実用的なクラスタ型のエアロスパインクノズルにつ いての流れの可視化の結果を示す。本ノズルは円錐も しくは円錐台状のノズルと，その周辺に配置されたモ ジュールと呼ばれる複数の小型燃焼器から構成され

る。ノズルの表面にはモジュールからの排気から生ず る衝撃波が存在する。この衝撃波及びその干渉はノで ル表面の圧力分布や熱流束分布を変化させ，エンジン の推力やノズル部の椧却に影響を与えるため，エアロ スパイクノズルの設計法の確立にはその特性について詳細な知見が必要である。

クラスタ型ェアロスパイクノズルの流れは三次元的 であり，ノズル表面の正確且つ詳細な圧力及び熱流束分布を得るためにはCFD は欠かせないが，ここで示 すコールドフロー実験による流れの可視化，表面圧力分布の測定データは，現在進めているCFD 解析の検証データとなるものである。

2．実験

実験装置は，供試体，低圧容器及びディフューザー から構成される（図 1 参照）。供試体は低圧容器内氾設

図1実験装置

（a） 20% 長さのノズルを持つ 6 モジュールから構成される エアロスパイクノズル

（b） 20% 長さのノズルを持つ 12 モジュールから構成さえる エアロスパイクノズル

（c） 20% 辰きのノズルを持つ 24 モジュールがら構成される エアロスパイクノズル

（d）最大長さのノズルを持つ 12 モジュールから構成されるエアロスバイクノスル
図2供試体

置し，容器内は供試体の排気のエセクタ効果により減圧される。流れを視察することを目的に三つの光学窓 を，軸対称の供試体の中心朝方向に対してそれぞれ左

右及び上方に㥢惪した。
供試体は approximate method［7］で設計された円䧾状 またはその 20% の長さで切断した円雖台状のエアロス

パイクノズルと，その周辺に配置された 6，12 または 24 個のモジュールと呼ばれる半頂角 10° のコニカルノ ズルから構成される（図2参照）。モジュールの腈張比 は共通して 1.69 （設計 $\mathrm{NPR}=7.9$ ；NPR $=\mathrm{Pc} / \mathrm{Pa}$ ， Pc ；チゅ ンパー圧力，Pa；環境圧力），エアロスバイクノズル の膨張比は共通して 6.5 （股計 $\mathrm{NPR}=71$ ）である。モジ ユール出口亘経に対するモジュール間谝の比は 6 モジ ュールの場合約 $1.29, ~ 12$ モジュールの場合 0.67 ， 24 モジュールの場合 0.20 である。ノズル表面圧力分布測定のため，円錐状のノズル表面に $6 ~ 7$ 点の圧力測定孔を設けた。この圧力測定孔はノズルの中心軸に沿 って㞆当な位直に配惪した。ノスルは中心呻周りに自由に回転させることができ，周方向の任意の点で圧力 を測定できる。

可視化法として，空閭的な流えの可視化にシュリー レン法，表面流れの可視化に剪断応力感応液晶（SSLC） Shear sensitive liquid crystal）を涂布する方法を探用した。 SSLC を塗布した表面では，首断応力が強い債域で骨白色，弱い領域で赤色または褐色が観察される。また，衝軗波の位置や循環領城の境界で白い線が䘽察され る。

3．実䄼結果

本報告では主に12モジュールの可視化像及びNDP分布（無次元圧力 $\mathrm{NDP}=(\mathrm{Pi}-\mathrm{Pa}) / \mathrm{Pc} ; \mathrm{Pi}$ はそれでれの点での㴬定圧力）から流れの特性をを示し，6及び 24 モジュールの可視化結果と比較する。

12 モジュールエアロスバイクノズルの流れ

図 3（a），図 4（a）及び图 5（a）に最大長さのエアロス バイクノズルの（i）モジュールの設計 NPR よりも低い NPR $=6$ ，（ii）モジュールの設計 NPRよりは大きく， エアロスパイクノズルの設計 NPRより小さい $\mathrm{NPR}=15$ ，（iii）エアロスバイクノズルの設計 NPR より も大きい NPR＝ 150 における SSLC の可挸化結果を示 す。これらのNPRの値はそれぞれ，（i）地上付近，（ii）低高度，（iii）高高度の条件に対応する。また，図3（b），図 4（b）及び図 5（b）にはそれぞれの条件におけるノス ル表面の1 モジュール分のNDP 分布を痈状に展開し て図示した。 Y＝0はモジュール中心を表し，Yの正負

図3（a）最大長さの 12 モジュールエアロスパイクノ ズルの地上条件におけるノズル表面 SSLC 可視化像

図 3（b）最大長さの 12 モジェールエアロスバイクノ ズルの地上条件におけるNDP 分布等高線

それぞれの方向共に隣接するモジュールとの中間まで の範囲が示されている。 x 軸はノズル先端を原点とし て，ノズル最大長さで無次元化して示す。赤い点は圧力測定点である。

図3（a）では上流〈写真左〉付近でモジュール同士の中間に白い線に挟まれた楊色の傾域が観察される。ま た，モジュール中心付近に褐色の楼状の傾域が観察さ れる。この条件においてはモジュールからの排気はモ ジュール出ロで過䧐張であり，モジュールからの排気同士の干渋は弱く，ストリームチューブが形成されて いる。図3（a）で䚉察されたモジュール中間の䄑色の領域はそのストリームチューブ同士の境界と推察され る。モジュール中心付近に観察される嫩状の褐色の傾城は図6（a）の様にモジュールの排気のダイヤモンド コーンの円鐩状の衝軗波がノズル表面に衝突して生じ たものと推察される。図3（b）ではこの橪状の須域に対応して圧力の上昇が倠察される。

図4（a），図5（a）の表面流れ可視化像ではともに上

図4（a）最大長さの12モジュールエアロスパイクノ ズルの低高度条件におけるノズル表面 SSLC 可視化像

図 4 （b）最大品さの12モジュールエアロスパイクノ ズルの低高度条件に扮けるNDP 分布等高線

流部モジュール出口付近に白線から構成される三渙形 が絸察される。これはモジュール出口で不足焴張であ る排気流れがノズルにもって偐張し，隣接するモジェ一ルの排気流れと干渉して出来た衝撃波及びその逞慗㝿同士の干渉であると推察される。図6（b）にその模式図を示す。図4（a）では $X=-0.895$ の位葍の圧力測定孔が三角形の下流側頂点の直ぐ上流に，図 $5(\mathrm{a})$ では下流に親察される。この変化は，排気流れが図 6 （b） で推察された通りであれば，NPRの違いによる排気
 る。図5（b）では $Y=0, ~ X=-0.895$ のNDPの値は図 4 （b） の同位置でのNDPに比く，かなり低い値を示す。こ れは図5（b）の $Y=0, ~ X=-0.895$ の点が図 6 （b）にねけ る三角形上流の膨張領城にあることで説明される。

図フにノズルを 20% の長さで切断した 12 モジュー ルのエアロスパイクノズルの，高高度条件における SSLCによる可視化写真を示す。切断面より上流の可視化像は最大長さのノズルの場合と同じである。切断

図 5（a）最大長さの 12 モジュールエアロスパイクノ ズルの高高度条件におけるノズル表面 SSLC 可視化像

図5（b）最大長さの 12 モジュールエアロスパイクノ ズルの高高度条件におけるNDP 分布等高線

面外周より若干内側に環状の白線が絸察される。また，切断面中心より白線に向かって SSLC が流される様子 が垡察される。これらの数察結果から，切断面の後流 に锒德流か存在すると推察される。切断面中心圧力の NPR に対する変化は参考文献［2］に詳述されている。

12 モジュールと 6 及ぴ 24 モジュールの特性の比較
図 8 及䛜 9 に最大長さのスパイクを有する 6 モジ ェール及び 24 モジュールのエアロスパイクノズルの高高度条件における剪断応力感応液晶の可視化結果を示す。12モジュールエアロスパイクノズルの流れで䘽察されたモジュール出口付近の白袙から構成される三角形は図8及び図9でも就察される。図8では本質的な流れの様子は図 $5(\mathrm{a})$ と同じであるが，観察され る三角形は図5（a）のものより大きい。6モジュールの エアロスバイクノズルは12モジュールのものと比較 して，モジュール出口直径に対するモジュール問䦜の比が大きい。従って，表面流れが図 6（b）で推察され

図 6（a）ダイアモンドコーンとノズルの地上条件にお ける干渉の模式図

図 6（b）低高度及び高高度条件で観察される表面流れ の模式図

図7 20% 長さの 12 モジュールエアロスパイクノズル の高高度条件におけるノズル表面SSLC 可視化像 た通りであれば，6モジュールの場合の方が詸の排気 と干渉するまでにより䐧張し，干渉位四は下流且つモ ジュール中心から離れた点となる。逆に 24 モジュー ルの可視化結果の図9は12モジュールの場合の図 5 （a）と比較して白線加ら構成される三角形は小さ い。

4．結論

剪断応力感応液晶とNDP 分布加ら，12モジュール から楧成されるェアロスバイクの高度に応じてのスパ イク表面流れを観察した。低高度の条件では，ダイア モンドコーンとスパイクの干渉と考えられる，揭色の㗛形が覩察された。また高高度の条件では，瞵接する排気同士の干渉と考えられる，白線から構成される三角形が観察された。NDP 分布からそれらが街撃波か ら構成されることが磪認された。12モジュールから構成さえる 20% の長さで切断したノズルではペース面上に循環流によると考えられる環状の白線が斍察され た。可視化像で䭒察されるこれらの特徴は 6 モジュー ルや 24 モジェールの場合でも，モジュール出口直径 とモジュール間隔の比が異なることによる影響はある が，本質的には同じである。これらの可視化像や NDP分布は現在進めている CFD 解析の検証データとして用いる。CFD 解析により実験結果から推測された流 れの様子を磪認し，設計に役立てる。

参考文献

1）Tomita，T，et．al＂Flow Field of Clustered Plug Nozzles．＂ ALAA paper 97－3219， 1997

2）Tomita，T．，et．al＂An Experimental Evaluation of Plug Nozzle Flow Field．＂AlAA paper 96－2632， 1996
3）田村 洋 他，＂エアロスパイクノズル燃焼器の技術課題（1）＂，第38回航空原動機•宇宙推進講演会

4）畐田㯬夫 他，＂コールドフロー試験によるブラグ ノズル流れの親察（1111）＂，第38回航空原動機•宇宙推進講演会

5）畐田㯬夫 他，＂コールドフロー試験によるプラグ ノズル流れの観察（II）＂，第 37 回航空原動機•宇宙推進講演会

6）宫田徤夫 他，＂コールドフロー試験によるプラグ ノズル流れの観察＂，第 36 回航空原舠機•宇宙推進講演会
7）Angelino，G．，＂Approximate Method for Plug Nozzle Design．＂AlAA Journal，vol．2，1964，pp．1834－1835

図8（a）最大長さの 6 モジュールエアロスバイクノズ ルの高高度条件におけるノズル表面 SSLC 可視化像

图8（b）最大長さの 24 モジュールエアロスパイクノズ ルの高高度条件におけるノズル表面 SSLC 可視化像

微小重力環境における気液界面挙動の数値解析
 姫野 武洋 ${ }^{*}$ ，渡辺 紀徳 ${ }^{* 2}$
 Numerical Analysis of Two－Phase Flow under Microgravity by
 Takehiro HIMENO＊${ }^{* 1}$ ，Toshinori WATANABE ${ }^{* 2}$

Abstract

A C－CUP method with a level set function was developed to numerically simulate incompressible and compressible two－phase flows including surface tension，adhesion phenomena and gravity effect．A CIP scheme was applied to the re－initialization and the advection of the level set function．With the developed code，the flow fields in a rocket tank of liquid propellant at a re－ignition under microgravity were successfully simulated．

1．研究目的

人間の活動領域が地球周回軌道上まで拡大するのに伴い，溶融材料を始め液体燃料や液体椧却材の貯藏や輸送など，宇宙で液体を扱う機会は増大しつつある。通常こらした液体には気体も共存するが，微小重力環境下では重力に代わつて界面張力や濡れ性が流れ場に対して支配的となるため，気液界面の挙動は地上の場合と大きく異なり，地上試験を基に設計された液体の貯蔵及び補給機器は軌道上で予定通り作動しない恐れ がある。
これら液体補給機器の計画と設計および実現には，微小重力環境での熱流体管理技術の確立が不可欠である。しかし落下塔や航空機を用いた実験で微小重力環境を人為的に創出でき る機会は現在のところ限られており，機会に恵まれても微小重力 の質と持続時間に制約を受けるため，特に熱流体工学分野で の知見の望積が不十分だと言える。
本研究ではこのような認識に立ち，数値流体解析の支援を得 つつ，微小重力環境における熱流体管理技術の検討と構築に必要な流動と专熱の特性を的確に事前評価するための基礎的知見を得ることを目的とする。

2．解析対象

Fig．2．1 微小重力環境下での液体輸送

[^4]本研究で解析したのは，微小重力環境に置かれた液体貯蔵夕 ンク内の気液界面挙動である。微小重力環境下でタンクから吸引ポートを通じて液体を輸送しよりとすると，タンク内の気液界面 が吸引ポートの方へ大きく落ち込み，液体を使いきる前に気相 が吸い込まれてしまうことが判っている。この現象は落下塔を使 った地上実験でも確認されているが，微小重力環境持続時間の制約などのため，これら液体補給機器の設計に用いるほど十分 な実験データの蓄積は無いのが現状である。

3．数値解析法

3.1 界面捕捉

解析対象の流れ場で気液界面が大きく変形すること，および数値解析手法における多次元への拡張性とアルゴリズムの簡明 さを考慮した結果，二次元一般曲線座標系で記述された均質一相流の Navier－Stokes 方程式（以下 N－S 方程式）を基礎式と して，気液両相をひとつの計算領域内で統一的に扱う方針を採 った。
さらに今回，物理量（特に密度）が不連続に変化する気液界面 が数値拡散のせいでボヤけてしまうのを抑えるために，スキーム としてN－S 方程式の移流項に CIP（Cubic－Interpolated Pseudo Particle）法を用いる C－CUP（CIP Combined Unified Procedure）法 ${ }^{(1)}$ を採用した（Fig．3．1 を参照）。

界面が大きく変形するのに対応•多次元への扰張性を重
視•簡明なアルゴリズム
【界面捕捉】：固定格子でオイラ一的に捕捉
\downarrow

均質流の仮定をした Navier－Stokes 方程式
4 4．$\% \%$ 者 $\%$
密度が不連続な気液界面を精度良く移流する必要性

$$
\begin{gathered}
\text { 移流項を解くのにCIP 法を採用 } \\
\downarrow \\
\text { C-CUP 法 }
\end{gathered}
$$

- 圧力項：圧力のポアソン方程式を陰的に解く。
- 対流項：CIP 法を適用して高精度に移流。
- 粘性項：中心差分で評価し生成項として付加。

高密度比でも安定なLevel Set 関数法 を採用。

CSF 法を用いて，体積力として組み込む。

Fig．3．1 数値解析手法

Table 3.1 界面捕捉方法の長所上短所

䜌等		特准
$\begin{gathered} \text { 直接追跡法 } \\ \text { (ラグランジュ法) } \end{gathered}$	あり	- 境界格子は界面の流体粒子の流速に合わせて移動。 - 移動境界を陽に表せるが，大きな移動を伴ら場合には格子の歪みが大きくなる。 - 計算格子は各タイムステップ毎に変更する必要あり。
間接追跡法 （オイラー法）	なし	- 計算格子は空間に固定 - 移動境界を表すには特別な工夫を要する。 - 計算格子のタイムステップ毎の変更を含まないので，アルゴリズムは簡単

3．2 C－CUP（CIP Combined Unified Procedure）法
C－CUP 法は，矢部［Yabe］らによって提案されたスキームで，簡明なアルゴリズムで圧縮性流体と非圧縮性流体とを同一計算頜域中で統一的に扱うことができる。
3．2．1 フェイズ分割
N－S 方程式は圧力項と移流項および拡散項から成り，それぞ れの項は流えにおける 3 種類の基本性質を表している。すなわ ち，圧力項は音波として伝わるミクロな情報の伝播の流れを，移流項はマク口な流体運動によって流体の実質部分が空間を移動する流れを，そして拡散項は一様化の進む流れを表している。

実質部分の移動（移流）が流体のママワな速度Uで表されるのに対し，情報の伝播は分子間衝突によるものであり，その伝播速度は音速 C_{S} である。また，一様化に関しては粘性係数あるいは熱伝導倸数等が関連する速度が重要になる。
流れ場は組織的な秩序だったマクロな運動と，変化の情報と，無秩序に全体を一様化しようとするミクロな機能の共存ないしは釣り合いで成り立っていると言える訳だが，流れ場の変化を特性速度ごとのフェイズ（phase）に分離して扱うのが C－CUP 法の特徴である。
［フェイズ分割］
$\frac{\partial}{\partial t}=\left(\frac{\partial}{\partial t}\right)_{I S O}+\left(\frac{\partial}{\partial t}\right)_{D I F F}+\left(\frac{\partial}{\partial t}\right)_{A D V}$

Fig．3．3 C－CUP 法におけるフェイズ分割

具体的には，以下に示す $\mathrm{N}-\mathrm{S}$ 方程式の $(1) \sim(3)$ 式，

$$
\begin{array}{ll}
\frac{\partial \rho}{\partial t}+(\vec{u} \cdot \nabla) \rho=-\rho \nabla \cdot \vec{u} & \cdots \text { 連続式 } \\
\frac{\partial \vec{u}}{\partial t}+(\vec{u} \cdot \nabla) \vec{u}=-\frac{\nabla p}{\rho}+\vec{S}_{U}+\vec{F}_{S V}+\vec{g} & \cdots \text { 運動量式 }
\end{array}
$$

$$
\frac{\partial e}{\partial t}+(\vec{u} \cdot \nabla) e=-\frac{p}{\rho} \nabla \cdot \vec{u}+S_{E} \quad \ldots \text { 熱エネルギ式 (3) }
$$ の右辺第一項に現れた圧力項を等エントロピの仮定の下，線形差分化して得るポアソン方程式，

$$
\nabla \cdot\left(\frac{\nabla p^{*}}{\rho^{n}}\right)=\frac{p^{*}-p^{n}}{\rho^{n} C_{s}^{2} \Delta^{2}}+\frac{\nabla \cdot \vec{u}^{n}}{\Delta t}
$$

を線順法で反復的に解き，以下順次拡散項（（2）（3）式右辺第二項）を生成項として扱い，対流項（（1）～（3）式左辺第二項）は CIP法を用いた高精度な移流を行って，全体として1タイムステップ を構成する。
3．2．2 CIP 法
対流項の解法に用いられる CIP（Cubic－Interpolated Pseudo－ Particle）法は，不連続のある移流方程式を扱うのに適している。 この解法では，例えば，2次元の移流方程式，

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+U_{c} \frac{\partial Q}{\partial \xi}+V_{C} \frac{\partial Q}{\partial \eta}=0 \tag{5}
\end{equation*}
$$

を格子点（ ξ_{0}, η_{0} ）周りで解く場合，まず現時刻（ n 時刻）における変数 Q の分布を，風上側近傍4点の値と傾きを参照して，

$$
\begin{align*}
& Q^{n}(\xi, \eta)=a \xi^{3}+b \xi^{2} \eta+c \xi \eta^{2}+d \eta^{3} \tag{6}\\
&+e \xi^{2}+f \xi \eta+g \eta^{2}+h \xi+i \eta+j
\end{align*}
$$

のような3次の10項式で推定（内挿補間）したうえで，次の時刻 $(n+1$ 時刻）における値を移流方程式の解析解から，

$$
\begin{equation*}
Q^{n+1}\left(\xi_{0}, \eta_{0}\right)=Q^{n}\left(\xi_{0}-U_{c} \Delta t, \eta_{0}-V_{c} \Delta t\right) \tag{7}
\end{equation*}
$$

で与える（Fig．3．2を参照）。

Fig． 3.2 2次元 CIP 法
CIP 法は高次精度な移流を行える長所がある反面で，各格子点における物理量の値に加えてその空間方向の勾配値もメモリ に格納しておかねばならず，計算コストが高くつくといら短所も併 せ持っている。

3．3 Level Set 関数法

3．3．1 Level Set 関数の定義

一つの計算領域中で気相と液相を区別して，界面形状を表現 する手法としてLevel Set 関数法を用いた。この方法でSussman $ら^{(2)(3)}$ が提案する密度関数 $F(\vec{r}, t)$ の具体的な表現は，初期値 $F(\vec{r}, 0)$ を気液界面からの符号付きの距離で定義するもので，こ れを「Level Set関数」と称する。すると，

$$
\begin{array}{ll}
F>0 & \text { :液相が存在する } \\
F<0 & \text { :気相が存在する } \\
F=0 & \text { :気液界面 }
\end{array}
$$

のように計算頜域内の各点が意味付けされ，$F=0$ の等値面 （zero level set）が気液界面位置であると陰的に表現される。
Level Set 関数法では，さらに「Heaviside 関数」HをFの関数 として，

$$
\begin{array}{ll}
H=0.5 & : \text { if } F>\alpha \\
H=-0.5 & : \text { if } F<-\alpha \\
H=0.5 \cdot\left(\frac{F}{\alpha}+\frac{1}{\pi} \sin \left(\frac{\pi F}{\alpha}\right)\right) & : \text { otherwise }
\end{array}
$$

のように定義する。従ってHeaviside 関数もまた密度関数である。 ここに現れた α の大きさは代表格子幅（ h ）の程度であり，界面を旱さ 2α で捕提することを意味している。
ここで，Fig．3．3 に水中に浮かぶ球形気泡について Level Set関数と Heaviside 関数を定義した例を示L，Fig．3．4には，Level Set 関数と Heaviside 関数の対応関係を示す。

Level Set 関数 Heaviside 関数

Fig．3．3 Level Set 関数と Heaviside 関数の定義

Fig．3．4 Level Set 関数から Heaviside 関数への変換

このとき各格子点での流体の物性値は，

$$
\rho(\vec{r}, t)=0.5 \cdot\left(\rho_{L i q}+\rho_{G a s}\right)+\left(\rho_{\text {Liq }}-\rho_{G a s}\right) \cdot H(\vec{r}, t)+\hat{\rho}(\vec{r}, t)
$$

$$
\mu(\vec{r}, t)=0.5 \cdot\left(\mu_{L i q}+\mu_{G a s}\right)+\left(\mu_{L i q}-\mu_{G a s}\right) \cdot H(\vec{r}, t)
$$

というように Heaviside 関数の重み付き線形和で与える。 わざわざ界面に厚さを持たせるのは，不連続密度比 $\rho_{\text {Liq }} / \rho_{\text {Gas }}$ は 10^{3} 程度になる）を緩和して界面付近での差分計算を安定に進めるためといら数値解析側からの要請であるが，有限厚さの「界面内」を物理的にどう解釈すれば良いのかという問題は残っ ている。

3．3．2 Level Set 関数の再初期化

初期条件で密度関数 $F(\vec{r}, 0)$ を気液界面からの距離で定義し たことによって，Fには「距離関数（distance function）」としての性質，すなわち

$$
|\nabla F|=1
$$

が備わっている。このため，上のような Heaviside 関数 H で定義 された界面は，少なくとも初期の状態 $(t=0)$ では，いたるところで一定の厚み（ 2α ）を持っていることになる。
しかし，時間を進めてFを移流方程式に載せて流した途端に， この距離関数としての性質は失われてしまい，界面厚さに不均一を生じる。さらに時間を進めると界面厚さは著しく不均一となり，不連続がきつくなったところで差分計算が発散して止まってしま う。

これを回避する方法として Sussman らが提案するのは，各タイ ムステップ毎 F に距離関数としての性質を回復させるような「再初期化（re－initialization）」を施すことである。具体的には，移流方程式で得られた F の分布 $F(\vec{r}, t)$ に対して，

$$
\begin{aligned}
& \frac{\partial F}{\partial \widetilde{t}}=S(F) \cdot(1-|\nabla F|) \\
& \quad \text { 但し, } S(F) \equiv \frac{F}{\sqrt{F^{2}+\delta^{2}}} \approx \operatorname{sgn}(F)
\end{aligned}
$$

というフィルタをかけることを提案している。この式は，各点で勾配 $|\nabla F|$ が 1 から外れた分を error とし，これに比例した量を F に加えて次の時刻の初期値とすることを意味している。
因子 $S(F)$ が乗じられることにより，ある値の error に対する補正量は $F<0$ or $F>0$ で正負逆になる。これと併せ，界面近く $(F \rightarrow 0)$ で因子 $S(F)$ は 0 に近づくから，この処理によって界面 である $F=0($ zero level set）は動かないといら仕掛けになってい る。
結局のところ，これは Level Set 関数の等高線を等閒隔にする「界面縁取り」の画像処理であるから，再初期化に関する時間刻 み $\Delta \widetilde{t}$ は，現象の数値解析に関する時間刻み Δ と関係なく定め て良い。また，F が距離関数の性質を十分回復するまで Δt の間 に再初期化を反復して構わない。
Sussman らは，この再初期化の式に中心差分法及びENO ス キームによる2次精度の上流化差分法を適用し，結果として密度比 1000 倍の気液共存系で精度良く界面形状を捕捉すること に成功している。Level Set 関数を用いた気液共存系の数値解法は界面捕捉に優れているばかりでなく，界面の位置を陽に特定する必要がないためアルゴリズムが簡単で 3 次元への拡張も容易であるといえる。
3．3．3 CIP－Level Set 関数法
Level Set 関数法を採用して面倒なのは，再初期化の式をどう効率よく解くかという点である。中心差分で離散化して解いたと ころ収束が悪く発散しやすいことが分かった。どうやら（5）式は単調性に気を配って解かなくてはならないようだが，だからといっ て Sussman らのやったように ENO スキームを適用するには，計算コードにさらに大きなサブルーチンを付け足さなくてはならず とても面倒である。
そこで，今回は（5）式を，

$$
\begin{aligned}
\frac{\partial F}{\partial \tilde{t}}+\vec{w} \cdot(\nabla F) & =S(F) \\
& \text { 但し, } \vec{w}=S(F) \cdot \frac{\nabla F}{|\nabla F|}
\end{aligned}
$$

といら具合に移流方程式へ変形 ${ }^{(4)}$ ，w \vec{w} を陽的に評価したらえで CIP 法を適用して解くことにした。
Fig．3．5 に示す再初期化はこの方法によったものであるが，計算開始から時間が経過しても界面厚さは一定に保たれるのがわ かる。Level Set関数法にCIP法を適用した修正は有効であり， サブルーチンの共有といら点で，Level Set 関数法と C－CUP 法 は互いに相性が良いと言える。

【再初期化せす】

【再初期化あり】

Fig．3．5 Level Set 関数の再初期化

3．4 CSF 法

界面張力の表面圧成分 $F_{S V}$ は，

$$
\begin{aligned}
& \vec{F}_{s V}=-\kappa \sigma \cdot \vec{n}_{s} \\
& \vec{n}_{S} \quad \text { :界面単位法線ベクトル } \\
& \kappa \equiv \nabla \cdot \vec{n}_{s} \quad \text { : 界面曲率 }
\end{aligned}
$$

と表され，その大きさと方向が界面形状に敏感に依存するから，界面張力を考慮する気液二相流の数値解析には気液界面の形状を高解像度で捕捉できることが求められる。本研究では界面張力は Brackbill らの提案するCSF 法（5）を用いて，

$$
\vec{F}_{s V}=-\sigma\left\{\nabla \cdot\left(\frac{\nabla F}{|\nabla F|}\right)\right\} \cdot \nabla H
$$

と与え，体積力として運動方程式に加えられる（Fig．3．6 を参照）。

Fig．3．6CSF 法により体積力として組み込まれた界面張力 （鉛直管内単一上昇気泡）

壁面の濡れ性はC－CUP 法の移流フェイズにおいて，壁面と界面の接触点近傍に限り，Level Set 関数 (F) の值を壁面に向か つて接触角の方向から移流させることで表現した。接触点近傍以外の壁面は粘性壁としている。ただし，接触角に関し㷙准接

触角と後退接触角の違い（ヒステリシス）は考慮されていない。

4．数値解析結果

以上に述べた手法を用い，吸引ポート付き液体タンク内の気液界面を有する流れ場を数値的に模擬した結果を報告する。

4.1 計算条件］

以下 Table 4.1 に示すように，今回は空気と水を気液の組み合 わせとし，吸引流量を揃えて重力加速度を色々に変えたときの気液界面形状の変化を比較した。ここで，流れ場は軸対称であ るとし仮定して，計算領域の1つの子午面のみを解いている。

Table 4.1 計算条件

$\because \because \# \# 1$	タンク径 $=D_{T}=0.20[\mathrm{~m}]$ ポート径 $=0.30 \times D_{T}$ 円筒部高さ $=1.00 \times D_{T}$ 絞り部高さ $=0.75 \times D_{T}$ ポート部高さ $=0.25 \times D_{T}$
㴖体 初期餀面加濑魔	気相：空気／液相：水（ $\left.\sigma=72.5 \times 10^{-3}[\mathrm{~N} / \mathrm{mi}]\right)$円筒部下端から $0.80 \times D_{T}$ の位置に平面で与えた。 管軸方向に $0.00 \mathrm{G}, 0.001 \mathrm{G} 0.10 \mathrm{G}$ ，1．00Gを加える。
 嗸苗繶界	静圧固定（ $\mathrm{p}_{\mathrm{in}}=1.0 \times 10^{5}[\mathrm{~Pa}]$ ） 吸込相対圧力として $-500[\mathrm{~Pa}]$ を課す。 （出口流速 Uex $\fallingdotseq 1.0[\mathrm{~m} / \mathrm{sec}]$ ） 粘性壁条件，平衡接触角（ $\theta_{\text {ed }}$ ）は $90[\mathrm{deg}]$

4.2 計算結果

流れ場の時系列変化を，加えた重力加速度毎に整理して以下 のFig．4．1に示す。

Fig．4．1 パラメータとして重力加速度を変化させた場合の気液界面形状

重力加速度を加之ない場合（ $0.00[\mathrm{G}]$ のケース）では，液相の吸引に伴って気液界面はまず中心軸上において䣄い（小さい）曲率で準み始める。落込み部が吸引ポートへ近づくにつれて，そ の界面曲率は徐々に鋭く（大きく）なり，ついには気相吸込み （Drop Out）に至る様子が模擬されている。吸引流量を一定とし ているため，気液界面が吸引ポートへ向けて落込んでいく速さも，曲率の増大とともに大きくなっている。
加える重力加速度を $0.10[G]$ とした場合には，重力が気液界面 の落込みに対する復元力として卓越してくるようになり，気相吸込み時刻が遅れるようになる（Fig．4．2 を参照）。さらに重力加速度を地上レバル（1．00［G］）とすると，もはや気液界面の落込みは ほとんど生じず，気相吸込み時刻はさらに遅れて，気相吸込み に至るまでとタンク内初期液料の99\％をタンク外へ輸送できるよ らになる（Fig．4．3を参照）。

Fig．4．2タンク対称軸上の気液界面高さ時系列変化

今回の模擬は数値解析手法を構築する段階での数値実験とし て行ったものである。実際の流れ場として液体ロケット再着火時 の推楽タンク内流動を模擬した結果については，著者らの既報 （6）を参照されたい。

5．まとめ

現在までの数値解析によって得られた知見を以下にまとめる。
（1）Level Set 関数法における移流と再初期化に CIP 法を適用で きる。
（2）CIP 法を適用した CIP－Level Set 関数法とC－CUP 法および CSF 法を併用することで，微小重力環境におらける液体貯蔵タン ク内の吸引を伴う流動現象を有効に模擬できる。

参 考 文 献

（1）T．Yabe，Rev．Laser Engrg．20，（1992），pp．691－696
（2）M．Sussman，P．Smereka，and S．Osher，J．Comput．Phys．114， （1994），pp．146－159
（3）村井伸彦，第10回数値流体力学シンポジウム講演論文集， （1996），pp．400－401
（4）姫野武洋 渡辺紀徳，第 11 回数値流体力学シンポジウム講演論文集，（1997），pp．345－346
（5）J．C．Brackbill，D．B．Kothe，and C．Zemach，J．Comput．Phys． 100，（1992），pp．335－354
（6）姫野武洋 渡辺紀徳，日本機械学会流体工学部門講演会講演論文集．No．98－15，（1998），pp．115－116

Fig．4．3気相吸込み時におけるタンク内残液量

ハイブリッド非構造格子法を用いた反応流の数値計算

小寺正敏 ${ }^{1}$ ，中橋和博 ${ }^{2}$
Computations of Reacting Flows by Hybrid Unstructured Grid Method
by
Masatoshi KODERA ${ }^{1}$ and Kazuhiro NAKAHASHI ${ }^{2}$

Abstract

The hybrid grid method has been developed to compute the compressible Navier－Stokes equations and applied to internal complex flows inside of scramjet engine．In this paper，the method is extended to compute supersonic combustion flows．The numerical method on hybrid grid to solve the Navier－Stokes equations and species conservation equations is developed using a finite volume cell vertex scheme and the LU－SGS implicit time integration algorithm．To eliminate the stiffness problem due to chemical reactions，the efficient diagonal algorithm for point implicit method is implemented into the unstructured LU－SGS method．One－equation turbulence model of Spalart－ Allmaras is employed as the turbulence closure．The numerical accuracy and the efficiency are validated by applying the method to compute several well－known test cases including hypervelocity projectiles and swept ramp hydrogen injection problem．And the capabil－ ity of this method is also investigated．

1．はじめに

宇宙往還機用のエンジンの一つとしてスクラムジ ェットエンジンが有望視され，多くの研究が試みが なされている．その燃焼器を設計するにあたっては，高マッハ数での燃料•空気の混合促進と制御が非常 に重要になってくる［1］．そのため，燃焼器内の物理現象をより深く理解する必要があり，CFDによ る解析が要求される。

スクラムジェット燃焼器の形状もまた構造格子で容易に扱えるほど単純ではなく，複雑な物体形状に対してより効率的で柔軟性のある計算方法が求めら れる。また燃焼の計算は格子依存性が高いため，精度を高めるためには解適合格子の使用が効果的であ る。このように，複雑形状に対応でき，解適合格子 を容易に形成することが出来る手法として非構造格子法が一般的に適用されつつある［2］．

ナビエ・ストークス方程式を解く場合には，効率 よく格子を配置するハイブリッド非構造格子が有効 であると考えられている［3］．また，LU－SGS 陰解法をハイブリッド非構造格子法に適用したより効率的な計算方法が提案されている［4］．

そこで本研究では，このハイブリッド非構造格子

法に化学反応モデルを組み込み，燃焼器内の反応流 を解くための，新たな陰的非構造 NS 反応流計算法 を構築する。今回の方法の精度と効率を検証するた めに，水素•空気系の燃焼問題に適用する。

2．計算方法

支眍方程式

レイノルズ平均 3 次元ナビエ・ストークス方程式 が化学反応生成項を含んで解かれる。この時全体の質量保存式は各化学種の保存式に置き換えられる。 その積分形を以下に示す。

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega} \mathbf{Q} d V+\int_{\partial \Omega}(\mathbf{F}(\mathbf{Q})-\mathbf{G}(\mathbf{Q})) d S=\int_{\Omega} \mathbf{S} d V \tag{1}
\end{equation*}
$$

ここで， \mathbf{Q} は保存変数で $\mathbf{Q}=\left(\rho u_{1}, \rho u_{2}, \rho u_{3}, E, \rho_{s}\right)(s$ $\left.=1, \ldots, N_{s}\right), \mathbf{F}(\mathbf{Q}), \mathbf{G}(\mathbf{Q}), \mathbf{S}$ はそれぞれ非粘性流束べ クトル，粘性流束ベクトルと生成項である。また ρ_{s} は各化学種の密度， $\mathbf{n}=\left[n_{1}, n_{2}, n_{3}\right]^{T}$ は検査体積 Ω の境界面 $\partial \Omega$ の外向き法線ベクトル，ρ は全密度，p は圧力および E は全エネルギー，N_{s} は化学種の数で ある。

また，化学種 s の定圧比熱はJANAF 表で示され ているデータに4次精度の最小自乗近似を行い，温

[^5]度の多項式で表した。一方で拡散速度は Fick の法則を用いて次式から求められる。

$$
\begin{equation*}
\rho_{s} v_{i s}=-\rho D_{s} \frac{\partial f_{s}}{\partial x_{i}} \tag{2}
\end{equation*}
$$

ここでiは各方向の成分，D_{s} は拡散係数，f_{s} は質量分率である。拡散速度は質量保存則が厳密に成り立つように次のように修正される。

$$
\begin{equation*}
v_{i s}=\hat{v}_{i s}+v_{c}, \quad v_{c}=-\sum_{s=1}^{N_{s}} f_{s} \hat{v}_{i s} \tag{3}
\end{equation*}
$$

ここで $\hat{v}_{i s}$ は式（2）で求められる拡散速度である。

計算アルゴリズム

離散化の方法はセル節点有限体積法を用いる。
流束の計算には近似リーマン解法の流束差分離法 と流束べクトル分離法を組み合わせた AUSM－DV法［5］を用いる。高次精度化するために節点 i 周りの検査体積内の基本変数 $\mathbf{q}=\left(u_{1}, u_{2}, u_{3}, p, \rho_{s}\right)$ はその勾配 $\nabla \mathbf{q}_{i}$ を用いて以下のように線形再構築される。

$$
\begin{equation*}
\mathbf{q}(x, y, z)=\mathbf{q}_{i}+\psi_{i} \nabla \mathbf{q}_{i} \cdot\left(\mathbf{r}-\mathbf{r}_{i}\right) \tag{4}
\end{equation*}
$$

ここで r は検査体積内の点 (x, y, z) の位置ベクトル である。また ψ_{i} は TVD 条件を満たすようにする制限関数で，定常解への収束性がよく過度の制限を加 えて空間精度を悪化させることのないVenkatak－ rishnann［6］のものを用いる。
時間積分には LU－SGS 陰解法［4］を使用する。以下に LU－SGS 法の式を節点iに対して求める形で簡単に示す。
前進スイープ：

$$
\begin{align*}
& \Delta \mathbf{Q}_{i}^{*}=\mathbf{D}^{-}\left[\mathbf{R}_{i}-0.5 \sum_{j: j \in L(i)} \Delta S_{i j}\left[(\mathbf{A} \Delta \mathbf{Q})_{j}^{*}-\rho_{A} \Delta \mathbf{Q}_{j}^{*}\right]\right] \tag{5.a}\\
& \mathbf{R}_{i}=-\sum_{j, j \in i} \Delta S_{i j}\left(\mathbf{F}_{i j}-\mathbf{G}_{i j}\right)+V_{i} \mathbf{S}_{i}
\end{align*}
$$

後退スイープ：
$\Delta \mathbf{Q}_{i}=\Delta \mathbf{Q}_{i}^{*}-0.5 \mathbf{D}^{-1} \sum_{j, j \in U(t)} \Delta S_{i j}\left[(\mathbf{A} \Delta \mathbf{Q})_{j}-\rho_{A} \Delta \mathbf{Q}_{j}\right]$
ここで $\Delta \mathbf{Q}=\mathbf{Q}^{n+1}-\mathbf{Q}^{n}, \mathbf{A}=\partial \mathbf{F} / \partial \mathbf{Q}, V_{i}$ は検査体積の体積である。 $\sum_{j, j \in i}$ は点に連結するすべての点に対する総和を示し，$j \in L(i), j \in U(i)$ はそれらの点を L 亡 $U 2$ つのグループに分けている。非構造格子だ LU－SGS 解法を実現するのに最も重要な点はこの $L(i) お よ ひ ゙ ~ U(i), ~ つ ま り 下 三$ 角要素および上三角要素を決める方法である。しかし非構造格子 では構造格子のように自動的にハイパー面を構成す

ることが出来ない。そこで格子点番号の並べ変えを行い，上下の要素がバランス良く配置されるように ハイパー面を構成し，かつベクトル化を可能にする。並べ替え手法の詳細は文献［4］を参照。

また ρ_{A} はA のスペクトル半径に粘性流に対する補正を加えたもので，

$$
\begin{equation*}
\rho_{A}=\chi\left(\left|u_{i} n_{i}\right|+a\right)+2 \mu /(\rho h) \tag{6}
\end{equation*}
$$

である． h は節点 $i j$ 間の距離で，a は音速である。 χ は1．5の値をとる。ただし各化学種の保存式に対 しては拡散項に対する補正を考慮した次の式を用い る。

$$
\begin{equation*}
\rho_{A}=\chi\left(\left|u_{i} n_{i}\right|+a\right)+2 D_{s} / h \tag{7}
\end{equation*}
$$

式（5）中のDは Jameson－Turkel のヤコビ行列の分割法によって対角化された項である。
化学反応の硬直性を解消するために点陰解法 （point－implicit）が一般に良く用いられる。しかしこ れを LU－SGS 法と組み合わせる場合，Dは対角項 でなくなり非効率になる。そこでこの項に対角化処理をほどこし，効率を良くする。具体的には，Dは次の式で表される。

$$
\begin{equation*}
\mathbf{D}=\left(\frac{V_{i}}{\Delta t}+0.5 \sum_{j, j \in i} \Delta S_{i j} \rho_{A}+\frac{V_{i}}{\tau_{s}}\right) \mathbf{I} \tag{8}
\end{equation*}
$$

ここで τ_{s} は化学種 S の生成，減衰に対する特性時間である。特性時間の求め方は Eberhaldt［7］の方法を改良したJu［8］の方法を用いる。

格子には粘性領域に対して精度と効率を両立する ために物体近傍ではプリズム格子，その他の領域で四面体格子から構成されるハイブリッド非構造格子 を使用する。その作成方法は文献［3］に詳しい。

物理モデル

化学反応モデルとして9種17反応のモデル［9］ を用いる．このモデルにおける化学種は， $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}, \mathrm{HO}_{2}, \mathrm{OH}, \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{~N}_{2}$ で， N_{2} については温度が着火過程で窒素の解離が開始する上で十分に高くないため，他の化学種との反応が起 こらないと仮定する。

乱流モデルは Spalart－Allmaras の1方程式乱流 モデル［10］を用いる。

3．計算例

3． 1 高速度で飛行する半球の計算

今回計算対象として，まず化学反応モデルの精度 を検証するために， 7.5 mm の半径（ R ）を持つ球が水素／酸素または水素／空気の混合気体中を超音速

で通過する場合の流れ場について，粘性項を省いた オイラー計算を行った。この時混合気体は化学量論比で混合されている。図1にこのとき用いたプリズ ム格子の断面図および球表面上の三角形格子につい て示す。

今回はマッハ数および混合気体の異なる2つの計算条件を与えた。表1にそれぞれのケースについて計算条件の詳細（静圧 p_{∞} ，静温 T_{∞} ，混合気体の組成）を示す。

計算領域は球の半分より上流側の領域のみとする。壁面はSlip 条件を与え，断熱壁を仮定する。

マッハ数 6.46

図 2 に一様流の値で無次元化した静温の対称面上での等高線図を示す。Lehr［11］による実験で求め られた衝撃波位置も同時に示す。この時用いた格子 の点数は 128,100 点である。衝撃波位置について計算値と実験値は良く一致している。ただし，よど み点より下流では衝撃波の位置が実験値より上流側 にずれる傾向がみられる。これは今回用いた反応モ デルの放熱率が実験よりも若干大きいためと考えら れる。

図 3 によどみ流線上での各物理量の分布を示す。各物理量はそれぞれの一様流の値で無次元化してい る。グラフの横軸の目盛はよどみ点を 0 として，球半径（R）で無次元化した x 方向の座標である。 x 方向は流れ方向に一致している。このグラクでは衝撃波による圧力上昇が起こる位置で，密度，温度とも に同じように上昇してその下流では比較的一定の値 になっている。流れ場について，このケースでは十分な放熱が行われず，デトネーションは起こらない ことがわかっている。従って化学反応が流れ場に与 える影響はあまり強くなく，計算結果においてもそ のことを反映していて，衝撃波の下流で各物理量の変化は見られない。

マッハ数 3.55

図4（a）にマッハ数 6.46 のケースと同じ格子を用 いて得られた温度の等高線図を Lher の実験での衝撃波位置と共に示す。計算による衝撃波位置は実験 と一致せず，より上流側に移動している。そこで，次に球表面の格子解像度を一様に増加させてみる。 この時球の半径方向の格子点分布は，マッハ 6.46 のケースとほぼ同じにする。図4（b）にその格子によ って得られた結果を示す。この時の格子点数は 434，448点である。この計算結果は実験値にほほ一致した。衝撃波位置のような流れ特性は，局所的な反応による影響に加えて，ノーズ近傍領域の流れ場

による影響に加えて，ノーズ近傍領域の流れ場によ っても影響を受けることがわかっている，従って今回一様に壁面の格子点数を増やしたことにより，ノ ーズ近傍流れ場の精度が改善され，実験値と一致す るようになったと考えられる。

このケースの条件ではデトネーション速度より遅く，衝撃波と燃焼面（Combustion Front）が明確 に分離される。衝撃波と燃焼面の間は誘導領域で，燃焼面とノーズの間が燃焼領域である。その様子が図4から確認できる。

図5によどみ流線上での各物理量を示す。温度分布は誘導領域で一定値をとり，その下流の燃焼領域で増加している。圧力分布は燃焼領域でほとんど放熱の影響を受けず，その結果密度は温度分布と逆 の傾向を示している。

以上2つのケースを計算した結果，衝撃波位置 とその形は反応領域において放熱量に強く依存する にもかかわらず実験値と良く一致し，今回用いた反応モデルの精度を確認できた。

3． 2 後退角付きランプ隤射器による水素隤射

次に，ダクト内超音速流気流中に後退角の付い たランプを置き，そのベース部から水素を主流と平行に噴射した場合の計算を行った。表2にその計算条件を示す。ここでダクト主流の流れはマッハ数が 2.7 で，一度燃焼加熱された空気である。図6に今回計算するダクトとランプの形状を示す。ランプは 10.3° の角度を持ち，その側壁も 10.3° の後退角 を持つ，これにより互いに逆向きの縦渦を発生させ，燃料と㝌気の混合促進をねらつている。噴射器の出口直径は 7.1 mm で，マッハ数 1.7 の水素が主流方向に対して 10° の角度で噴射される。

境界条件について，計算領域は燃料噴射孔を通過する中心面を対称面として，その半分の領域につ いて計算を行う。ダクト底面と上面およびランプ表面は壁面境界で Non－Slip 条件を取り入れ，熱伝達 に関しては670K の等温壁とする。流入境界はラン プ前縁よりわずかに上流にとり，速度分布が $1 / 7$ 乗法則に従う境界層を厚さ 5.6 mm でダクト底面に与 える。対称面よりスパン方向に 21.2 mm 離れた場所に，対称境界を置く。これを側面対称境界と呼ん でおく，流出面はランプベース部より 0.477 m 下流 にとり，その物理量は内部点からの外挿で与える。

図7にランプ近傍での計算境界表面上の格子を ハイブリッド空間格子の断面図と共に示す。なお格

子点数は 313189 点である。このようにハイブリッ ド格子は壁面近傍である断面上では構造格子的な格子の並びになっており，境界層を精度良く解像でき るようにしてある。また，非構造格子の利点として噴射孔外縁を正確に定義することができる。壁面垂直方向の最小格子幅は $10 \mu \mathrm{~m}$ とした。

実験作，SPARKコードとの比較

まず計算精度を確認するため実験値との比較を行う。図8に側面対称境界とダクト上面，底面の交線上での壁圧分布を示す。グラフは縦軸に圧力値を単位 $[\mathrm{kPa}]$ とし，横軸は $\mathrm{G}=76.2 \mathrm{~mm}$ で無次元化した ランプベース部からの主流方向の距離をとってある。横軸の 0 地点が噴射孔位置である。また，ラベルに は六種類の結果を示し，それらは燃料噴射の有無に よる今回の計算値および実験値［1］，SPARK コード での計算値［1］である。これらを見ると，燃料噴射 を行わない結果では全てのケースがおおむね一致し ている。一方反応の伴う燃料噴射を行った場合，噴射孔近傍では，計算と実験で若干のずれが生じてい る。これはSPARKコードでも同じである。しかし噴射孔より離れた場所においては計算と実験はほほ一致し，SPARK コードと今回の計算値も定性的に一致している。したがって，今回の計算法はSPARK コードと同程度の精度を有することを確認した。

流れ場について

図 9 に燃料噴射がない場合とある場合での側面対称境界面上での等圧力線図を示す。なお，等高線 の幅は両者で一致させている。この図より，反応の ない場合はランプ前縁から発生した衝撃波の反射系 に流れ場が支配されている。その衝撃波はダクト下流の膨張領域において次第に弱まっている。一方で反応がある場合は，ランプからの衝撃波がダクト上面で反射し，もう一度底面に反射する場所で衝撃波誘導による燃焼が発生する。それにより燃焼面が形成され，それが上流に移動し噴射孔近傍の流れ場ま で影響を与え，反応なしの流れとはかなり異なって いる。その流れ場の様子はかなり複雑になっており，図8の圧力値では噴射孔付近で大きく変動している。図10，図11に各スパン断面での OH と水の質量分率分布をそれぞれ示す。図の各スパン断面間の距離 は等しく，$x / G=0.5$ である。燃料噴射孔付近から反応が起きて， OH と水が生成されている様子が観察される。

図 12 に $x / G=1.0$ スパン断面での速度ベクトル投影図について示す。左側は反応あり，右側は反応

なしのケースである。反応がない場合は対称面の底面近傍で巻き上がる渦が生じている。しかし，反応 がある場合は，その渦が弱まっている。この様子は文献［1］で指摘されているように，反応による熱放出が原因で渦が弱くなることを示している。

4．おわりに

ハイブリッド非構造格子法を反応流計算に拡張し，新たな陰的非構造粘性反応流計算法を開発した。今回はまだ不充分であるが実験値および SPARK コー ドの計算値と比較し，良好な結果を得た。また，ク ーラン数が 2 から 100 の間で計算を安定に行える ことを確認した。並列化によるさらなる計算時間の短縮および解適合格子による精度の向上などが今後望まれる。

参考文献

［1］Eklund，D．R．，Stouffer，S．D．，and Northam，G．B．， ＂Study of a Supersonic Combustor Employing Swept Ramp Fuel Injectors，＂Journal of Propulsion and Power，Vol． 13，No．6，1997，pp．697－704．
［2］Venkatakrishnan，V．，＂A Perspective on Unstructured Grid Flow Solvers，＂AIAA Paper 9－0667， 1995.
［3］Sharov，D．，and Nakahashi，K．，＂Hybrid Pris－ matic／Tetrahedral Grid Generation for Viscous Flow Applications，＂ATAA Journal，Vol．36，No．2，1998，pp． 157－162．
［4］Sharov，D．，and Nakahashi，K．，＂Reordering of 3－D Hybrid Unstructured Grids for Lower－Upper Symmetric Gauss－ Seidel Computations，＂AIAA Journal，Vol．36，No．3，1998， pp．484－486．
［5］Wada，Y．，and Liou，M－S，＂A Flux Splitting Scheme with High－Resolution and Robustness for Discontinuities，＂ AIAA Paper 94－0083， 1994.
［6］Venkatakrishnan，V．，＂On the Accuracy of Limiters and Convergence to Steady State Solutions，＂AIAA Paper 93－0880， 1993.
［7］Eberhardt，S．，and Imlay，S．，＂Diagonal Implicit Scheme for Comput ing Flows with Finite Rate Chemistry，＂Journal of Thermophysics and Heat Transfer，Vol．6，No．2，1992， pp．208－216．
［8］Ju，Y．，＂Lower－Upper Scheme for Chemically React ing Flow with Finite Rate Chemistry，＂AIAA Journal，Vol．33，No． 8，1995，pp．1418－1425．
［9］Ju，Y．，＂Analytical and Numerical Study on Ignition and Combustion in a Supersonic Mixing Layer，＂A Dissertation Subnitted to Tohoku University for the Degree of Doctor of Engineering， 1994.
［10］Spalart，P．R．and Allmaras，S．R．，＂A One－Equation Turbulence Model for Aerodynamic Flows，＂AIAA Paper 92－0439， 1992.
［11］Lehr，H．F．，＂Experiments on Shock－Induced Combustion，＂ Astronautica Acta，Vol．17，1972，pp．589－597．

表1 計算条件（半球）

MACH NO．	$P_{\infty}(\mathrm{PA})$	$T_{\infty}(\mathrm{K})$	COMPOSITION
6.46	42663.	292.	$\mathrm{H}_{2} /$ Air
3.55	24800.	292.	$\mathrm{H}_{2} / \mathrm{O}_{2}$

表2 計算条件（ランプ噴射器）

PARAMETER	VITIATED STREAM	INJECTOR
p, kPa	104	222
$\mathrm{~T}, \mathrm{~K}$	932	190
$\mathrm{U}, \mathrm{m} / \mathrm{s}$	1710	1781
Mach No	2.7	1.7
H^{2}	$0.164 \mathrm{E}-5$	1
O^{2}	0.256 E 0	0
$\mathrm{H}^{2} \mathrm{O}$	0.191 E 0	0
OH	$0.704 \mathrm{E}-3$	0
H	$0.365 \mathrm{E}-7$	0
O	$0.223 \mathrm{E}-4$	0
$\mathrm{~N}^{2}$	0.552 E 0	0

図3よどみ流線に沿った各物理量の分布 （マッハ6．46）

図1 半球に対する格子形状

（a）粗い表面格子

（b）細かい表面格子

図4 温度分布（マッハ 3．55）

図5 よどみ流線に沿った各物理量の分布
(マッハ 3.55)

図6 ダクトおよびランプ形状

図7－ランプ近傍での表面格子と ハイブリッド空間格子の断面図

（a）

図8 側面対称境界での壁圧分布 （a）上面，（b）底面

（a）

（b）
図 9 側面対称境界面上の等圧線図 （a）反応なし，（b）反応あり

図 10 質量分率分布 (OH)

図 11 質量分率分布（生成 $\mathrm{H}_{2} \mathrm{O}$ ）

（a）
（b）

図 $12 x / G=1.0$ スパン断面上の速度ベクトル図
（a）反応あり，（b）反応なし

衝撃波入射による剪断流混合促進

小幡茂男

Shock Enhanced Mixing in Shear Flow
by
Shigeo Obata

Abstract

The effects of Baroclinic Torque，which is caused by shock passing through 2－D shear flows，on fuel－air mixing enhancement are investigated by a numerical simulation technique．Subsonic injection of three kinds of chemical species（air，carbon dioxide，helium）into a main air stream constructs each individual turbulent shear flow．After a normal shock wave goes through the shear flow，the interaction between concentration gradient and pressure difference generates Baroclinic Torque． To describe mixing characteristics of turbulent shear flow the q－ω type 2 equation turbulent model is adopted with N－S equation and main－jet species conservation equations as governing equations，and both upwind TVD and LU－ADI methods are employed as numerical solver．The comparison of all simulation results show that neither air nor carbon dioxide injection case indicates obvious mixing promotion for almost all range of shock strength．On the other hand only in helium jet case a pair of large scale vortexes appears on jet center line behind shock and the mixing magnitude defined by average concentration ratio is extremely improved with an increase of shock strength．

1）はじめに

超音速燃焼という未完の技術を核とするスクラムジェットエン ジンは，有限サイズの燃焼器を極短時間で通過してしまう超音速空気流中での燃焼を要求するため，噴射燃料と空気との混合を速やからに効率良く行うことが必要不可欠である。これまで燃料噴射圧力•噴射形状の制御，流路形状の変更等の研究が精力的に行われてきたが，最近では渦と衝撃波の干渉による混合促進手法 $1,2,3,4,5$ が注目を集めている。本研究では圧力勾配と密度勾配の組み合わせにより発生するBaroclinic Torque能力に着目し，燃料一空気境界面での密度変化に衝撃波の圧力変化を作用させた場合の混合層の変化を数値解析するこ とを目的とした。

超音速燃焼のための流れ形状としては，壁から燃料を主流と垂直方向に噴射するものと，主流と平行に噴射する形態との二 つに大別できる。本研究では衝撃波と混合層の干渉の，より基礎的な性質の理解を目的として，噴流周りの流れ構造が比較的単純な平行噴射による剪断流を採用した。また，混合に対す る純粋な圧縮性の効果を確認するため，混合場である剪断層 を非圧縮•二次元で構成し，そこを衝撃波管から発生させた垂直衝撃波が通過する過程をシミュレーションした。
近年，次世代超音速輸送機の運行が現実味を増し始め，既存の空港設備の継続使用や高価な泠却機器を必要としない経済性，また燃料タンクの小型化による機体サイズ・重量の軽減 の可能性という利点から，炭化水素采燃料による超音速燃焼が検討され始めている。従来研究の行われてきた水素と比べて，発熱量や着火性能に劣るこれらの燃料は，また密度や拡散等

[^6]の物理特性も水素とは大いに異なり，混合促進のための特別な手段の必要性が予測される。このため，本研究では燃料種の多岐化に対応した基礎研究として，密度の異なる三種類の気体（空気，炭酸ガス，へリウム）を模擬燃料として用いた場合の それぞれの混合層が受ける圧縮性の影響を調べた。炭酸ガス とヘリウムとでは主流空気に対する密度勾配の向きが逆転する が，このような場合にBaroclinic Torqueが混合促進の正負，ど ちらに作用するのかに注目した解析を行らことを特色とした。

図 1：二次元剪断流と通過衝撃波
2）計算条件と数値解析手法
図1に示す通り二次元剪断流は噴流と，それをはさんで上下対称に配置された空気の主流加ら構成される。二流の流入圧力は共に1［atm］，流入温度は噴流が350［K］，主流は300［K］と した。空気，炭酸ガス，ヘリウム，三種類の噴流気体の流入速度は，それぞれ，206［m／s］，193［m／s］，531［m／s］で，いずれも要音速であり，噴管の高さを基準とした場合のレイノルズ数は，各々，10700，20100，1400である。主流空気は，噴流の化学種 に応じて， $6.5[\mathrm{~m} / \mathrm{s}], ~ 6.5[\mathrm{~m} / \mathrm{s}], ~ 11[\mathrm{~m} / \mathrm{s}], ~ の$ 流速を与えた。衝撃波は図1の主流上流部に接続された衝撃波管から発生

し，剪断層を左から右へと通過しながら，密度勾配と圧力勾配 の直行的空間配置によりBaroclinic Torqueを発生させる。噴流 と主流の混合を左右するパラメータは剪断層内外の密度差と マッハ数である。本研究ではスクラムジェットエンジン燃焼機内部の流れ場を想定しているため，Ma 52 程度のやや弱い衝撃波を数種類使用し，衝撃波強度と剪断層の密度勾配とが混合 に及ぼす影響を比較した。

図 2 ：計算用グリッド

図2に示す計算用グリッドは流れ場全体をカバーする矩形で，流れ (x) 方向に $100[\mathrm{~cm}]$ ，垂直（ y ）方向に50［cm］とし，それぞれ の方向に115点と28点のグリッドを配置し，噴管内部には5点を割いた。ただし，主流は流速の大きな噴流によって急激に加速 されるので，噴管後縁端（図 2 下辺部の小緛棒）より上流部に助走領域が35［cm］，15点分を占めている。また，噴流により吸引さ れる空気主流の流量確保のため上側境界は空気流開放，噴管表面では滑り壁条件，下側境界は上下対称条件，流入境界 にはリーマン不変量，出口には流入部と同じ1［atm］の背圧を与 えた。衝撃波の通過時には流入境界をランキンーエゴニ方関係の衝撃波背後状態で固定とした。
支配方程式は，下式のように $\mathrm{N}-\mathrm{S}$ 方程式を基礎式とし，空気と噴流の化学種の拡散の二式，さらに乱流特性量を扱う二方程式から構成される。流れの乱れ状態は，噴射管内の流れ に関してはレイノルズ数から判断する限りへリウムを除いて完全乱流であるが，噴流と主流の剪断速度差が非常に大きな非圧縮剪断層内部は三種類全ての噴射条件において乱流支配の物質輸送が起きていると考えられる。そこで数値的な安定性に優れた2方程式のq－ $\mathrm{\omega}$ 乱流モデル ${ }^{6}$ を採用し，乱流粘性係数 から算出される乱流拡散•乱流伝熱を評価した。ここでのは応力
$\dot{\rho}+\nabla \cdot \rho \boldsymbol{U}=0$
$\rho \dot{\boldsymbol{U}}+\boldsymbol{U} \nabla \cdot \rho \boldsymbol{U}=\nabla \cdot \sigma$
$\rho \dot{e}+\nabla \cdot \rho(e+p) \boldsymbol{U}=\nabla \cdot(\boldsymbol{U} \cdot \sigma)-\nabla \cdot \boldsymbol{K}$
$\dot{f}_{k}+\nabla \cdot f_{k} \boldsymbol{U}=-\nabla \cdot J\left\{\begin{array}{l}J=-\left(D_{l m n r}+D_{\text {turb }}\right)_{k} \nabla \cdot f_{k} \\ D=\frac{v_{k}}{P_{r} L_{e}}\end{array}\right.$
$\left.\begin{array}{l}\rho \dot{q}+\nabla \cdot q \boldsymbol{U}=\nabla \cdot G_{q}+H_{q} \\ \rho \dot{\omega}+\nabla \cdot \omega \boldsymbol{U}=\nabla \cdot G_{\omega}+H_{\omega}\end{array}\right\} \rightarrow \mu_{\text {turb }} \propto \frac{\rho q^{2}}{\omega}$

テンソル，Kはエネルギー流東ベタトル， f_{k} は化学種の濃度， Dは拡散係数，乱流パラメータのqとんはそれぞれ渦のエネル ギーと周波数を表す。上記の方程式系はUpwind TVD ${ }^{7,8}$ による流東評価とLU－ADI 陰解法との組み合わせにより解かれるる。

3）二次元剪断流

図3と図4に，三通りの噴流により形成される二次元剪断流の噴射物質濃度等高線図と渦度等高線図とをそれぞれ示す。両図とも上から順に空気，炭酸がス，へリウムの噴射結果である。
図3は5 \％濃度毎の等高線図である。どの噴射条件でも流出境界へ向かってほぼ一定の広がり角度を維持して，噴射物質 が主流中へ浸透していることがわかる。一方，種の違いによる差としては，軽量な単原子のヘリウムが最も大きく主流中へと浸透し，続いて空気，炭酸ガス，の順となっており，これらの傾向 はHermansonらによる一連の実験結果 ${ }^{5}$ と一致している。
図4は10 ${ }^{5}[1 / \mathrm{s}]$ までの $5000[1 / \mathrm{s}]$ 渦度毎の等高線図である。噴射管後端部の空白は $10^{5}[1 / \mathrm{s}]$ 以上の部分において線引を省略 した結果である。全体像からは濃度等高線図に現われたような三種のガスによる昭確な差を確認できないが，混合開始時の渦度はへ师ムが最も大きい。また，渦度の帯が濃度線とは異なり，噴流中心部に沿って下流へと伸びていることから，噴射物質が主流と運動量の交換を行った後に主流中へと浸透する2段階 の混合過程を理解できる。運動量交換後は拡散能力の差が顕著に表れ，拡散能力の高いヘ师ムが最も主流中へ広がる図3 の結果を説明できる。

4）垂直衝撃波通過

通過衝撃波の波面の進行マッハ数はMa＝1．05，1．10，1．15， 1．20，1．40，1．60，1．80，2．00の8通りでシミュレーションを行った。代表例としてMa＝1．40の衝撃波が進行していく様子を圧力等高線図（左：0．1 1 atm$]$ 每）と濃度等高線図（右： 5% 毎）で上から順 に時間方向に並べて，図5～7に示す。それぞれ空気，炭酸が ス，ヘリウム噴射の結果である。
いずれの噴射条件においても衝撃波背後の高速•高圧空気 によって，形成済みの剪断層が急速に下流へと押しつぶされ，噴管からの後続の噴射物質から切り離される様子が捉えられて いる。また，特にガス定数の大きなへ帰ウム噴射において顕著で あるが，主流よりも1割以上高い温度に伴う音速の上昇と，主流一噴流の物質境界面におうる反射とにより，衝撃波の下端部分が厚みを増し，波面が鈍っている。
空気と炭酸ガスの場合は，衝撃波が出口境界に近づくにつ れ，押しつぶされた剪断層の上流面がやや切り立った格好に なってゆく以外は，衝撃波の通過後といえども剪断層の形状に大きな変化は認められない。一方でへリウムの場合，衝撃波面背後すぐの剪断層内部に，噴流中心線側から湧き上がるような高濃度のヘ少官ム塊の巻き込みが生じ，衝撃波が進行するにつ れ規模を大きくしていく。これはへりウム噴射にのみ特徴的な大規模な渦構造で，噴流中心を対象に一対で形成され，流れ構造の大きな変化の発生を示しており，Hermansonらの結果5とも

一致している。また，衝撃波通過の最終段階における各噴射が ス（上から順に空気，炭酸ガス，ヘリウム噴射）の渦度等高線を図8に5000［1／s］毎に示す。剪断流の場合の三種噴射ガスに相似な渦度分布とは異なり，ヘリウムの渦中心が噴流中心線から主流方向に立ち上がった位置に形成されており，噴流側から主流方向への物質輸送が活発に行われていることを示してい る。この渦構造は図9（Ma＝2条件の衝撃波通過時の濃度等高線）に示す通り，衝撃波強度を上げると，より明確になるが，空気上炭酸がス噴射においては剪断層の構造に顕著な変化は認 められず，混合が衝撃波強度に対して非常に鈍感であることが確認された。
全ての衝撃波マッハ数条件において三種類の噴射がスに対 する混合促進効果を比較するために，図10のように衝撃波通過により剪断層内の一定領域が物質を保存したまま衝撃波背後の流速に応じて圧縮されると仮定し，この領域内部の噴射物質濃度が 1% 以上の部分を面積積分して平均濃度を定義し，衝撃波が出口境界に達した時点での値と衝撃波通過前の剪断層での値との比R c を縦軸に，衝撃波の進行マッハ数を横軸 に表したのが図11である。R は，小さいほど混合のより良い促進を示すが，マッハ数の増大に応じてへ少ウム剪断層の混合が大きく改善される様子がわかる。一方，空気と炭酸がスに関して はMa＝1．2以上に強い衝撃波を導入しても，その混合に及ぼす

影響は僅かである。このことはスクラムジェットエンジン用の燃料 として炭化水素系物質を用いる際に，通常の水素燃料に対し て用いられてきた衝撃波導入手法が有効に衝かない可能性の存在を示唆している。

5）結諭
以上の計算結果から得られた知見を以下にまとめる。
1．衝撃波導入によるBaroclinic Torqueの混合促進効果は特に へリウム噴射の剪断層に対して有効である。
2．衝撃波背後に形成される大規模渦の存在の有無が混合促進を大きく左右する。

参考文献
1．R．C．Rogers et．Al．，J．Prop．Power，Vol 9，No 1，pp127－， 1993
2．J．Yang et．Al．，AIAA Journal，Vol 31，No 5，pp854－， 1993
3．B．M．Cetegen et．Al．，Comb．Flame，Vol 100，pp232－， 1944
4．F．E．Marble， 25 th Symp．（International）Comb．，ppl－， 1994
5．J．C．Hermanson，27th Symp．（International）Comb．， 1998
6．T．J．Coakley，AIAA 83－1693， 1983
7．S．R．Chakravarthy et．al．，AIAA 85－0363， 1985
8．W．K．Anderson et．al．，AIAA 85－0122， 1985
9．S．Obayashi et．al．，ALAA 86－0338， 1983

図3：噴射物質濃度等高線図

図4：渦度等高線図

図5：空気噴射剪断層の衝撃波通過（左：圧力等高線図，右：噴射空気濃度等高線図）

図6：炭酸ガス噴射剪断層の衝撃波通過（左：圧力等高線図，右：炭酸ガス濃度等高線図）

図7：ヘリウム噴射剪断層の衝撃波通過（左：圧力等高線図，右：へリウム濃度等高線図）

$$
\bar{C}=\frac{\int_{\text {jet }=1 \%}^{j e t=100 \%} C d A}{\int_{\text {jet }=1 \%}^{j e t}=100 \%} d A \quad \Rightarrow R_{c}=\frac{\overline{C_{\text {shock }}}}{\overline{C_{\text {shear }}}}
$$

図 10 ：平均混合濃度算出図

図11：衝撃波通過による剪断層混合促進効果

航技研角田センターにおける数値宇宙エンジンの開発

長谷川進＊，須浪徹治＊，高橋政浩＊，望月宗和＊，谷香一郎＊，佐藤茂＊，伊藤勝宏＊，宮島博＊

Development of the NumericalSpace Engine
in NAL－Kakuda Research Center

Susumu Hasegawa，Tetsuji Sunami，Masahiro Takahashi，MunekazuMochizuki， KouichirouTani，ShigeruSato，Katsuhiro Itoh，Hiroshi Miyajima

Abstract

To accelerate the research of advanced space engines，such as scramjet engine and reusable rocket engine，synergistic operation between experiment and computation is indispensable．To enhance the synergistic operation，a numerical space engine（NSE）has been developed in National Aerospace Laboratory，Kakuda Research Center．The main feature of the NSE system is described in this paper．

1．緒言

スクラムジェットエンジンや再使用型ロケット エンジン等の先進的宇宙エンジンを開発するため には，実験と計算科学の効果的な相互協力が必要 である。航空宇宙技術研究所角田宇宙推進技術研究センター（NAL－KRC）では，ラムジェット試験設備，高温衝撃風洞等の大型試験設備による風洞実験に加え，数値宇宙エンジン（NSE）を開発している ［1］。NSEの開発により，以上のような大型実験設備による研究開発がより促進されることが期待される。ここで，数値宇宙エンジンとは，スー パーコンピュータ，およよ゙各種サーバーからなる システム上に構成される仮想エンジン試験台であ る。NSE は，単なる計算機能にとどまらず，高度 な周辺機能を実現することでエンジンの研究開発 を支援するための，柔軟で創造的な計算ツールと なることを目標としている。その結果，風洞実験 に業務している実験研究者が容易にシミュレーシ ヨンを行える環境を提供する。

[^7]2．数値宇宙エンジン
数値宇宙エンジンは，ソフトウエア，ミドルゥ エア，ハードウエア，およびデータから構成され る。ここで，ソフトウエアとは，航研角田で開発 された CFD コード，および商用汎用ソフトである。商用沉用ソフトには，格子生成ソフト （ICEM／CFD，Gridgen），後処理用ソフト （FieldView，AVS），構造解析ソフト（FEM，MARC），流体解析ソフト（ α－FLOW），等がある。ミドルウエ アはSPINEware［2］，RVSlib［3］である。また， ハードウエア構成は，次のようになっている。

構成：NEC SX4／25cpu，
ビデオデータベースサーバー，後処理用グラフィ ックサーバ，CADサーバー，EWS 端末 ネットワーク：ATM（155Mbps）， HIPPI（ 800 Mbps ）
性能（NEC SX4／25cpu）：
共有メモリ型ベクトル並列マシン
最大演算処理能力 50GFLOPS
主記憶容量 8 GB
拡張記憶容量 8 GB
高速デイスクアレイ装置 400 GB
カートリッジ MT 装置 800GB

本システムでは，高速テイスクアレイ贊固と後処利用グラフィックサーバが HIPPIで，ビデオデータペ ースサーパー，後犹理用グラフィックサーバ，CAD サーバー，EWS 靖末がATMで接箱されて招り，高速にデータの送信が出来る。また，ミドルウエア SPINEwareを用いて，ネットワーク上の異蟣種分散

㳟境を統合している。きらに，実時間可視化とス テアリングのためのライブラリRVSlib，ビデオ， オン・デマンド・シスデム HyperMS などの画像を中心としたシミェレーション環境を，各研㝝室の EWS 靖末から利用できる。次に，数値宇宙エンジ ンの特幑的な事項について述べていく。

図 1．異機種分散環境䖻合ミドルウエアSPINEware を用いて策築された数値宇宙エンジンのGUI䴗境を示す。

3．メタコンビューテイング
オブジェクト指向技術を用いたミドルウエアSPI NEwareの利用により異機種分散㳟境を統合する。 これにより，コーザーがネットワーク上に存在す る異なる種類の計算機群を意識する必要のない，仮想的なシングルシステムイメージをつくりGUI嫄境を実現する。図1に，数値宇宙エンジンのウイ ンドウを示す。右下のウインドウは，数値宇宙エ ンジンの環境を表わしている。スーバーコンビュ一夕，抁よび各種サーバーが仮想的なテイレクト リとして表示されている。ここでは，リモート処

理（rsh，ftp，telnet）を隐蔽しており，ログイン の際には，アイコンをクリックするだけでよい。 きらに，アプリケーション・テイレントリ，ソル バ・テイレクトリ，ソルパへの入力ファイルを指定するフフイル（供試体：testobj）のデイレクトリ がアイコン化ぎれている。また，右上のウインド ウは，アブリケーション・テイレクトリの内容で あり，各種のアプリケーションがアイコン化きれ ている。これらのアブリケーションは各種サーバ にインストールされているが，ユーザーはそれを意識することなく使うことができる。左上のウイ

ンドウはソルパの入力ファイルを指定するファ イルの内容であり，ファイルは各種の供試体を示 す。左下のウインドウはンルバ・デイレクトリの内容であり，各種のソルバ（試験台）がアイコン化芈れている。SPINEwareにより，アイコンのドラ ッグ\＆ドロップ操作により，計算の実行，および アブリケーションソフトの起動等が可能になる。 どらには，プラットフォームを統一することによ

り，データ，ブログラムへのアクセスの向上をは かることができる。また，ソフトウエアの共同開発のためのドキュメント，バージョン管理をする こともできる。これらにより，シミュレーション の専門家以外にも容易に使えるようになった。ま た，シミュレーションの専門家にとっても，開発， および共同作業の効率向上が期待できる。

図 2．RVSlibのクライアント・ウインドウを表示する。計算結果の実時間可視化を左バネルに示す。右バネルは，ステアリングのメニューを表わしている。

4．リアルタイム可視化とスデアリング
数値実験としてのシミュレーション機能の拡張 により，従来のバッチ処理型のシミュレーション ではなく計算の過程を，あたかも目で見る様にリ アルタイムに可視化し，必要に応して人間が介在 して計算を制御出来る（ステアリング）機能をRV Slibにより実現する。よって，流体計算等の途中結果を任意の視点で任意の物理量（圧力，流速等） について3次元画像化して表示することができ

る。またステアリング機能の追加により計算の途中で境界条件等を自由に制御可能となった。これ により，あたかも実際の風泀実験を覨湘，制御し ているような感覚でシミュレーション画になる。 とらに，動宿ベースの解析コードのテバッグ，動画による計算結果の保存も可能になった。よって，時間の進行が遅い3次元の大規模シミュレーショ ンに抽いても，画像を動面として保存するための ッールとLてRVSlibは利用可能である。図2の左

パネルは，計算結果をRVSlibにより実時間で表示 している。ここでは，超音速ダクト内のバックス テップ周りの流れのシュリーレン図を表示してい る。右パネルは，ステアリングのメニューを表わ している。

5．数値宇宙エンジンにおけるGU操作 とコンピュータプロセス
数値宇宙エンジンにおいては前述の分散環境統合ミドルウエアSPINEwareとリアルタイム可視化 とステアリングのためのライブラリRVSlibを組み合わせて使用する。よって，数値宇宙エンジンで は，インタラクテイブ・ジョブを投入し計算を開始する。その手順を以下で説明する。
（1）ソルバへの入カファイルを指定するファイル群（testobj，供試体）の中から実行したいアイコンを クリックして，それをソルバ・デイレクトリのア イコンヘドロップする。その際，入カアイコンと

ソルバ・アイコンの属性が一致する時のみジョブ が投入される。
（2）RVSlibのクライアント・パネルが起動され， ソルバに対応するRVSLibの設定ファイルを指定す ると計算を実行するための設定が完了する。
（3）RVSIibのステアリング・パネルからジョブの パラメータを選択し，計算を開始する。

以上のように，GU操作によってパラメータの選択 から実行までが可能である。図3に，ユーザーが ジョブの投入までに行う作業のイメージを示す。

上記の作業（1）－（3）を行うために実行されるコ ンピュータのプロセスは，データの転送，ジョブ の投入，画像データの作成•転送，ユーザのEWS上への画像表示等である。これらの組み合わさっ た複雑なプロセスを数値宇宙エンジンでは，SPINE wareを用いることにより隠蔽しており，ユーザーは GU操作のみで計算の実行ができる。

Window Process

図3．ユーザーが数値宇宙エンジンを利用して計算を実行する際のGU操作のイメージ図を示す。

次に，ユーザーが数値宇宙エンジンを利用して計算を実行する際に隠蔽されているコマンド実行 のフローを以下で記述する。図4において，ユー ザーEWS端末，NEC UP4800／610（SPINEwareサー バー），スーパーコンピューターNEC SX4（メイ ンサーバー，RVSlibサーバー），SGI ONYX2（RV Slibクライアント）が示されている。また，図4の （1）－（8）はコマンド実行のフローを示しており計算

を実行する際には，（1）から（8）まで，順にコマンド が実行される。次に，コマンド（1）－（8）の内容に ついて記述する。
（1）mwmメニューから「数値宇宙エンジン」を選ぶ。 \rightarrow NEC UP4800／610にrshを実行させる。
（2）vtbの画面表示。
（3）vtbの画面上でドラッグ\＆ドロップにより，ジョ

ブの実行。
（4）rshでSX4上のソルバ実行シェルを起動する。

（5）rshでSGI ONYX2上のRVSクライアントを起動 する。
\rightarrow RVSが起動される。（クライアント側）
（6）SX4とSGI ONYX2間でRVSによる通信開始。
（7）実行結果をEWSの画面上に表示させる。
（8）ステアリングを行う。

図4に示したとおり，SPINEware Serverを中継して NEC SX4，SGI ONYXに各種の設定ファイルが送 られる。また，一旦計算がはじまるとユーザーは，図 4 の（6）－（8）のフローでステアリング，およびリア ルタイム可視化を利用する。このように，コマン ドのフロー図，および計算機上のプロセスも複雑 であるが，図3に示したとおうユーザーの行う操作は非常に簡単であり，シミュレーションの専門家以外にも容易に行なえるものである。

図4．数値宇宙エンジンにおけるコマンド実行のフロー図。

6．ビデオ・オン・デマンド（VOD）
VODシステムHYPER－MSを採用することによ り，計算結果の数値データを磁気ディスクに格納 する代わりに，ビデオ画像化して保存する。しか もそのデータはいつでも容易に検索し即時に表示 できるものとする。HYPER－MSによりRVSLIBの作 る画像をMPEG2圧縮して保存し，後から即時に再生して見ることが可能となった。パラメトリック

スタディにおいては多数のケースを計算して最適解を求める必要がある。ディスク容量の制約を考 えると，大規模計算の際に出力される膨大な数値 データを保存せずに画像のみで結果のチェックを行い必要に応じて再計算できる。
図5に数値宇宙エンジンのデータの流れを示す。 RVSlibによってトラッキングされた動画は，まずR VSフォーマットによってファイルに保存される。次にその動画を再生しデータバース化しておきた い場合はMPEG2に変換することにより，自動的にH YPER－MSに保存され登録される。よって，ユーザ一はEWSよりATMネットワークを用いて所内のど こからでもデータベースを利用できる。

図5．数値宇宙エンジンにおけるデータのフロー図

7．格子生成
数値流体力学において，最もユーザーの負担と なるものの一つに格子生成がある。その作業を効率的かつ容易にするために，数値宇宙エンジンで は各種格子生成ソフト（ICEM／CFD，Gridgen）が使え る。この作業は，専門家にとっても時間のかかる ものである。格子生成ソフトの機能を用い，困難 な作業をカプセル化することにより自動化してい くことが必要である。図6に，ICEM／CFD を用いた格子生成の流れを示す。

図6．ICEM／CFDを用いた格子生成の流れ

8．結言，および今後の課題
以上，述べたように数値宇宙エンジンは「高度 な計算を手軽にできるスーパーコンピュータ」を目標として開発されている。さらに使いやすくす るためには，前処理における形状，格子生成を効率化する必要がある。さらに，エンジン性能解析用のツールを作成する。それによって，ユーザー が計算の1次データからエンジン解析に必要な 2次データを容易に求めることができるようにする必要がある。

現在，2次元流れにおいてはリアルタイム可視化およびステアリングの機能を生かした研究がな されており，計算結果と実験との比較検討が行わ れている。スクラムジェットエンジン内の流れを

解明するためには，3 次元の乱流，さららには乱流燃焼等の現象解明が不可欠である。それらの研究 にリアルタイム可視化およびステアリングの機能 を生かすためには，現在のスーパーコンピュータ の能力では不可能であり，今後のさらなる性能向上が求められる。
計算機性能の向上とともに数値宇宙エンジンは，上述の課題を解決し，前処理（格子生成）から後処理（データ解析）までの一連の作業を統合的に効率化し「エンジンの設計ツール」とすることを目標としている。

参考文献

［1］Doi，S．（1997）Virtual Test Bed for Space En gine Simulation－A Case Study of Metacomputing System Integration．in the 8th NEC Research Sy mposium（Berlin）．
［2］Baalbergen，E．H．and Loeve W．（1994）SPINE： Software Platform for Computer Supported Coope rative Work in Heterogeneous Computer and Soft ware Environments，NLR TP 94359，National Aer ospace Laboratory，Amsterdam，Netherland．
［3］リアルタイム可視化システムRVSlib利用の手引，NEC Corporation

謝辞
これらの研究は，日本電気株式会社と共同で行わ れた。挙尾真一氏，土肥俊氏，高原宏志氏，伊藤一憲氏をはじめとする共同研究者の皆様に感謝し ます。

高温衝撃風洞 HIEST の作動特性

伊藤勝宏 ${ }^{+1}$ ，植田修一 ${ }^{-1}$ ，高橋政浩 ${ }^{41}$ ，丹野英幸 ${ }^{+1}$ ，小室智幸 ${ }^{+1}$ ，佐藤和雄 ${ }^{*}$

Characteristics of the High Enthalpy Shock Tunnel HIEST

K．Itoh，S．Ueda，M．Takahashi，H．Tanno，T．Komuro and K．Sato

Abstract

NAL has been proceeding development of a 80 meter long large high enthalpy shock tunnel HIEST for hypervelocity ground testing of HOPE－X and the scramjet engine．The design of HIEST was based on the tuned piston operation theory and carried out so as to duplicate the high－temperature real gas effect caused mainly by molecular dissociation along the HOPE－X reentry path in the velocity range of $4-7 \mathrm{~km} / \mathrm{sec}$ ．For these testing requirements，a stagnation enthalpy of up to $25 \mathrm{MJ} / \mathrm{kg}$ and a stagnation pressure of up to 150 MPa are required at the nozzle reservoir condition when the 500 mm model is used．The construction phase of the HIEST was completed in October 1997 and a series of initial calibrations which mainly concerned with the characteristics of the free piston driver and the shock tube was proceeded until the end of January 1998．Since the HIEST became operational 80 shots have been conducted so far，for the measurements of driver gas contamination，the nozzle flow calibration，the force and heat flux measurements around the HOPE－X model．Here，the initial calibration results are shown by focusing on the performances of the free piston driver and the shock tube with the tuned operation．Moreover，some critical issues of the high enthalpy nozzle flows which were encountered in the further calibration are discussed．

1．はじめに
大気圏に再突入する宇宙往還機まわりの気流は 1 万度を越える高温となるため，気体分子の解離や原子の電離が起こり，往還機の熱•空力特性に大きく影響する。また，超高速域のスクラ ムジェット作動特性においてもこの実在気体効果は重要となる。このような秒速 4 km を越え る超高速の実在気体流れを作ることができる唯一の試験設備が高温衝撃風洞である。航空宇宙技術研究所では平成7年度より，宇宙開発事業団と共同で，HOPE およびスクラムジェットの研究開発データを取得するため，世界最大の高温衝撃風洞 HIEST（High Enthalpy Shock Tunnel）の建設を進めてきた ${ }^{(1,2)}$ 。平成 9 年 6 月に据付•組立を完了し，各種調整試験を経，10月に風洞基本性能を確認するための総合作動試験を開始 した。この初期の総合作動試験では，主に自由 ピストンドライバー及び衝撃波管の作動特性の把握に重点を置き，本風洞設計の基本概念であ る最適作動法 ${ }^{(4)}$ を実証した。その後，駆動気体 による試験気体汚染計測及びピトー圧•熱流束 ンーキによるノズル流検定試験を行つて主流条件を設定し，現在，HOPE の空力試験を行って いるところである。

高温衝撃風洞は，空気貯気槽，圧縮管，衝撃波管，ノズルおよび測定部からなる。高圧空気で ＊1航空宇宙技術研究所角田宇宙推進技術研究センター

ピストンを王縮管へ押しだし，毎秒 400 m を越 える速度で圧縮管中のヘリウムガスを圧縮す る。この高速ピストンによる断熱圧縮によりへ リウムガスは最大 1,500 気圧，4，000度の高温高圧状態になる。ヘリウムガスが所定の圧力に達 すると圧縮管と衝撃波管を仕切つているステン ンス製の隔膜が破裂し，衝撃波管中に非常に強 い衝撃波を発生する。この衝撃波によって衝撃波管に充填された試験気体が圧縮加熱され，最大 1,500 気圧， 10,000 度ほどになり，ノズルで加速膨張され超高速の試験気流となる。ヘリウ ムガスをピストンで断熱圧縮してから衝撃波を発生させるとこるが高温衝撃風洞の最も特徴的 なところであり，それによって発生する衝撃波 が飛躍的に強くなるので極めて高温高圧の試験気流淀み点状態を作ることができる。HIEST $の$主要な仕様は以下の通りである。

圧縮管	長さ：42m	内径： 600 mm
衝撃波管	長さ： 17 m	内径： 180 mm
空気2次貯気槽		容量： $7.7 \mathrm{~m}^{3}$
ピストン 質量： $300,440,580 \mathrm{~kg}$		
ノズル	出口径	$: 1200 \mathrm{~mm}$
	スロート㪀	： $24-50 \mathrm{~mm}$

[^8]ところだ，本格的な高エンタルピ流試験設備は世界的にも稀少である。高エンタルピ域のCFD技術に関して，検証データの少なさが物理モデ ルの難易度と相まって信頼性の向上を阻んでい ることは間違いない。したがって，HIEST は高 エンタルピ CFD 技術の発展に大いに活用す心゙ きである。そのためにはこの設備が作る流れの素性をしつかりと把握しておかな打ればならな いのだが，高エンタルピノズル流れの不明瞭さ やノズルスロート溶融問題など苛酷な高温環境 に起因する厄介な問題があり，主流条件を精度良く知ることが非常に難しい ${ }^{(5,6)}$ 。このように不確定要因が切実な設備を有効利用するには， CFDとの相互補完が必要不可欠である。既存 の高エンタルピ設備より格段に大きく，温度，圧力が高い HIEST では，スロート溶融問題が既存設備よりはるかに厳しくなっており，この問題について根本解決を目指すとともにどのよ らにCFDを活用していくかも検討していると ころである。

本報告では，初期の総合作動試験で得た自由ピ ストンドライバーや衝撃波管の特性を示すとと もに，その後の主流検定で明らがになった，CFD の検証データとして使用する際のノズル流れの問題点について述べる。

2．自由ピストンドライバー及び衝撃波管の作動特性
2． 1 総合作動試験条件
表1 総合作動試験条件

試験 No	エンタルピ $(\mathrm{MJ} / \mathrm{kg})$	隔膜破断圧 (MPa)	ピストン 質量 (kg)
1	10	20	290
2	11	25	290
3	15	20	290
4	20	50	290
5	22	50	290
6	22	50	290
7	17	50	440
8	17	50	440
9	15	50	290
10	9	50	580
11	9	50	580
12	9	50	580
13	9	50	580
14	16	70	440
15	16	70	440
16	9	100	580

主に自由ピストンドライバー及び衝撃波管の作動特性の把握に重点を置いて行つた総合作動試験の条件を表1に示す。No． 3 までは低圧条件 だピストン発射特性を主に確認した。No．3～13

においては隔膜破断圧を 50 MPa に固定し，ピ ストン質量，駆動気体組成及び淀み点エンタル ピを変化させて圧縮管，衝撃波管及びノズルの基本特性を把握するとともに，ピトー・熱流束 レーク，HOPE 力•圧力•熱模型及び光学計測装置（シュリーンン，レーザホログラフィ）の性能評価を行った。さらに No．14～16 では高圧作動時の健全性を確認した。

2． 2 自由ピストンドライバー
高温衝撃風洞では衝撃波管駆動気体を自由ピス トンで断熱圧縮することにより非常に強い衝撃波を発生し高エンタルピ流を作るが，駆動気体 を高圧縮するため作動時間が極端に短くなり， また圧力回復率も著しく低下する。HIEST 開発 にあたつて，航技研はこの自由ピストンドライ バの欠点を克服するため最適作動法 ${ }^{(4)}$ を開発し， それを設計の根拠とした。この最適作動法は， ピストンを高速作動させて駆動気体の圧力を保持し，かつ試験時間終了後の残留駆動気体によ りピストンを減速して，管端に達するときに速度 0 となるよう条件を定める方法である。この総合作動試験では，最適作動法を実証し，その効果を確認することが最大の目的であった。

最適作動法の実証には，ピストン運動の詳細な計測が必要となる。ピストン表面に酸化被膜法 で黒い縞を設け，ンーザ反射光の強度変化を検出することにより得たピストン運動のx－t 線図 を 試験No7と11について図1に示す。縦軸 は，王縮管端から 6 m 上流に設置した基点ピス トンセンサーにピストンが到達してからの時間，横軸は圧縮管端のピストンストッパーから の距離である。試験条件毎に多少異なるが，ピ ストンがストッパーの上流 600 mm あたりに達 すると隔膜が破断する。その後ストッパーに近 づくにつれピストンは急激に減速され，ストッ パー上でほぼ停止している。ピストン軌跡から求めた速度変化を図2に示す。ピストンは隔膜破断時（ストッパーから約 600 mm 上流）でも 160 ～ $180 \mathrm{~m} / \mathrm{s}$ の速度を保つており， 10% ほどのオー バーシュート以内で駆動気体圧力を一定時間持続するのに適度な大きさである。その後ピスト ンは急激に減速して管端に達するわずか手前で速度 0 となり，最適作動法が実現されたことを示している。
図 3 には，圧縮管端で計測した駆動気体の圧力変化を示す。ピストンを高速で作動させるため，圧縮過程において強い撹乱が生じ，ピストンと管端の間を往復するものの，隔膜破断後約 3ms ほど一定レベル以上の圧力が持続さえている。 なお，隔膜の破断タイミングは，駆動気体中の何らかの不純物が高温で発光する事を利用し，隔膜の下流 700 mm に設置した光センサにより検出している。

図1 Shot7と11のピストン x－t 線図

図2 Shot7のピストン速度変化

図2（続き）Shot11 のピストン速度変化

図3 駆動気体の圧力履歴

駆動気体の圧力履歴とピストン運動の軌跡から駆動気体圧縮過程のP－V線図を得る。図4にそ の対数表示を示す。ピストンを高速作動させる ことによる擾乱が現れるが，最小二乗法だ勾配 を求め，ポリトロープ指数を得る。それを淀み点エンタルピに対し整理した結果を図らに示主。自由ピストン型衝撃風洞を最適作動法に基 づいて運転するとき，淀み点エンタルピと圧力 により条件が決まる。特に，駆動気体圧縮比と

ピストン速度は主に淀み点エンタルピで決まる ので，このように整理してみた。破線は断熱指数， $1.64 ~ 1.65$ の細い領域は1／3スケール のパイロット風洞データで検証したCFDによ る予測値である ${ }^{(4)}$ 。本試験結果はこの予測値を大きく下回る $1.60 \sim 1.62$ であった。こえは 1 ／3 スケールのパイロット風洞と同程度 ${ }^{(4)}$ であ り，すなわち，相対的にパイロット風洞よりも大きな熱損が発生したことを示唆する。本風洞 もパイロット風洞もピストンストッパー材とし てポリウレタンを使用している。圧縮過程が進 み，駆動気体温度が上昇するとストッパーは熱 で溶ける。その結果煤が発生するのだが，サイ ズが大きく圧縮過程にかかる時間が長い本風洞 では，この煤の量がパイロット風洞に比べると圧倒的に多く，溶融が激しいことを示している。 このことが熱損の大きさに関与しているかもし れない。

図5 ポリトロープ指数

2．3 衝撃波管

自由ピストンドライバー最適作動法の効果に視点を置き，衝撃波管性能について考察する。図 6 は，高圧隔膜の下流 6 m の位置から衝撃波管端までの 11 m 間の衝撃波速度の変化である。衝撃波速度は下流へ向かつて徐々に減少する。 ちなみに，淀み点エンタルピは管端の衝撃波速度を用いて算出している。高圧隔膜の下流 6m の位置の速度はほぼ最高速度に近い。よって，管端での速度と 6 m 地点の速度の比で衝撃波の減衰率を定義し，図7に示す。これも先述と類似の理由で，淀み点エンタルピに対して整理し た。㲘存の高温衝撃風洞 ${ }^{(7-9)}$ では， $15 \sim 30 \%$ ほ ど衝撃波が減衰するのに対して，本風洞ではわ ずか $4 \sim 12 \%$ の減衰率であった。これは，最適作動法により駆動気体圧力が維持されているこ と，さらに適切な衝撃波管長さと内径の比（L／D） を選択したことによる。

図6 衝撃波速度の変化

図7 衝撃波減裏率

図 8 衝撃波管端圧力履歴
図8にはノズルの貯気槽圧となる衝撃波管端圧力の時刻歴を示す。立ち上がりがら 1 ms ほど は駆動気体の撹乱の影響が現れるが，その後 2 ～3msほどの一定状態を得た。この一定圧力 と隔膜破断圧の比で圧力回復率を定義し，それ を図9に示す。先述したように，本風洞の自由 ピストンドライバーのポリトロープ指数は，設計値を大きく下回り，駆動気体の熱損は相当大 きい。それにも関わらず，既存風洞 ${ }^{(7.9)}$ より十分高い $0.9 \sim 1.1$ といら圧力回復率を達成した。 これも先ほどの衝撃波減衰率と同様，最適作動

法と適切な衝撃波管L／D の選択による。

図9 衝撃波管圧力回復率
3．ノズル流えの問題
次に，ノズル流検定試験において観測された， スロート材の熱的損傷が主因とみられる主流の劣化について簡単に紹介する。まず，図10及 び 11 にそれぞれ淀み点エンタルピ $14 \mathrm{MJ} / \mathrm{kg}$ と $22 \mathrm{MJ} / \mathrm{kg}$ の時のノズル出口上下左右方向のピト一圧分布を示す。図10の14MJ／kgの場合，流 えの始動後約 1 msec では非常に一様性が良く， コアな領域が直径約 1 m ほどある。 2 msec にな ると周辺の方（境界層側）でわずかに一様性が崩れるものの，試験気流として十分使用可能で ある。一方，図11の22MJ／kg では，始動後 1 msec ですでに一様な領域が狭く，2msec になると周辺から大きく乱え，もはや試験気流として耐え るものではない。この気流の乱れに関連して， $22 \mathrm{MJ} / \mathrm{kg}$ の場合のノズル出口淀み点熱流束の履歴を図12に示す。ノズル出口中心軸上では，乱れが無く，滑らかな状態が続く。しかし周辺部ほど気流始動後すぐに乱れが現れ始め，時間 の経過とともに，また周辺ほど乱礼が激しくな る。紙面の都合上，図は省略するが，低いエン タルピでを熱流束の乱れは観測されており，そ の傾向は，エンタルピが低いほど開始時期が遅 く，またより周辺に留まる。

4．おわりに
HOPE およびスクラムジェットの研究開発デー夕を取得するため，大型高温衝撃風洞 HIEST を建設し，風洞基本性能を確諗するための総合作動試験を行った。ピストン運動と圧縮管圧力 を計測し，本風洞設計の基本概念である最適作動法を実証し，衝撃波管圧力レベルと保持時間 よりその効果を確認した。また，ノズル流れの試験に着手し，スロート材の熱的損傷が主因と みられる主流の劣化が観測された。現在，HOPE熱空力試験に着手し，またスクラムジェット試験の準備を進めているが，ノズル流れの改善へ向けたスロート材料•構造による比較試験も計画しているところである。

図10ノズル出ロビト一圧分布 $(14 \mathrm{MJ} / \mathrm{kg})$

参考文献

1）伊藤，升谷，宮島，大型高温衝撃風洞の基本設計，日本航空宇宙学会誌，第43巻，1995
2）宮島，大型衝撃風洞 HIEST の設計の特徴，第 58 回風洞研究会議，1997
3）K．Itoh，S．Ueda，T．Komuro，K．Sato，M．Takahashi， H．Miyajima and K．Koga，Design and Construction of HIEST（High Enthalpy Shock Tunnel），Proc． International Conference on Fluid Engineering， ICFE＇97． 1997
4）K．Itoh．Tuncd Operation of Free Piston Shock
Tunnel，Proc 20th International Sympojium on Shock Waves． 1995
5）C．Park，Evaluation of Real－Gas Phenomena in High－Enthalpy Impulse Test Facilities：A Review， Journal of Thermophysics and Heat Transfer，Vol．11， No．1， 1997
6）P．Sagnier and J－L．Verant，Flow Characterization in the ONERA Ft High－Enthalpy Wind Tunnel，AIAA Joumal，Vol．36．No．4，1998

図11ノユ゙ル出ロピドー圧分布 $(12 \mathrm{MJ} / \mathrm{kg})$

7）G．Eitelberg，First Results of Calibration and Use of the HEG，AIAA Paper 94－2525， 1994
8）H．Hornung，B．Sturtevant，J．Belanger，S．Sanderson， M．Brouillette and M．Jenkins，Performance Data of the New Free－Piston Shock Tunnel T5 at GALCIT，Proc． 18th International Sympojium on Shock Waves， 1991 9）D．M．Jenkins，R．J．Stalker and R．B．Morrison， Performance Consideration in the Operation of Free－Piston Driven Hypersonic Test Facilities，Proc． 18th International Sympojium on Shock Waves， 1991

図12 淀み点熱流束履歴（ $22 \mathrm{MJ} / \mathrm{kg}$ ）

高エンタルピ・スキマー流れの数値解析

高橋政浩 ${ }^{* 1}$ ，伊藤勝宏 ${ }^{* 1}$

Numerical Simulation of High Enthalpy Skimmer Flows

by
Masahiro TAKAHASHI＊${ }^{* 1}$ and Katsuhiro ITOH $^{* 1}$

ABSTRACT

Numerical study on high enthalpy skimmer flows has been performed to understand detailed flow structures around a gas sampling skimmer of a mass spectrometer and to estimate influence of disturbance produced by the skimmer，such as a shock wave，on chemical composition change of a sampled gas mixture．Results showed that sharp tip skimmers did not affect chemical composition of sampled gas mixture even in case of $13 \mathrm{MJ} / \mathrm{kg}$ of total enthalpy of the flow．With blunt－nosed skimmers，which produced a detached normal shock wave in front of the skimmer entrance，chemical composition change did occur．Numerical results of chemical composition at the exit of the skimmer were compared with experimental results done in a pilot free－piston shock tunnel HEK at NAL－KRC and showed reasonable agreement in terms of tread of chemical composition change against the skimmer tip shapes．

1．はじめに
高温衝撃風洞の試験気流組成検定を目的として質量分析計を適用する場合，技術課題の一つとなるのがコニカルス キマーによる気体採取の問題である。高温衝撃風洞が発生 する高圧•高エンタルビ流中では，熱損傷防止および機械強度維持のためスキマー先端の先鋭化には限界があり，先端周りに生じる衝撃波等の擾乱が採取した気体の組成を変化させることが懸念される。気体採取型質量分析計の精度確保のためにはスキマーが質量分析計出力に及ぼす影響を把握することが重要であるため，高エンタルピ流中におか れたスキマー先端付近の流れ場の詳細解明を目的として数

[^9]値解析を行った。また，条件パラメータとしてスキマー先端形状を変化させて衝撃波等の摄乱強度の化学組成変化へ の影響を調ベ，航技研角田に設置されているパイロット高温衝撃風洞 HEK において質量分析計を用いて行った実験結果（1）と比較した。

2．数値解法

スキマーオリフィス径を代表長さとして求めた一様流の Knudsen 数は約 0.02 であるため，スキマー先端付近の流 れは連続流域と考えられる。そこで，基礎方程式は軸対称 Navier－Stokes 方程式とした。流れは熱的平衡であるとし，化学非平衡の高温空気モデルとして Dunn－Kang モデル ${ }^{(2)}$ のうち $\mathrm{N}, ~ \mathrm{O}, ~ \mathrm{~N}_{2}, ~ \mathrm{O}_{2}, ~ \mathrm{NO}, ~ \mathrm{NO}^{+} お よ ひ ゙ \mathrm{e}$ の 7 化学種と関連する素反応のみを考虑した。基礎方程式の対流項およ

び粘性項を，それぞれ Chakravarthy－Osher TVD 法 ${ }^{(3)}{ }^{(3)}$ よび中心差分法で離散化した。時間積分については，陰解法オペレータを化学反応項と対流•粘性項に近似因子分解 し，化学反応項は Point－Implicit 法により，対流•粘性項 は点 Jacobi 緩和法によりそれぞれ時間積分した。境界条件は，スキマー壁面を Non－slip，等温壁条件とし，壁温 は300Kとした。また，実験で使用したスキマーはベリリ ウム銅合金製であるが，気流条件が連続流域であり壁表面 での触媒性による組成変化がスキマー中心付近の組成に直接的に影響することはないと考えられることから，壁の触媒性については非触媒条件とした。スキマー内外の下流境界は背圧が十分低く保たれているとして上流側のセルから の 0 次外挿により流出境界条件を与えた。

3．結果と考察

スキマー形状

数値解析および実験に用いたスキマーの先端形状を図 1 に示す。形状\＃1 は実際の質量分析試験に使用するために設計された標準型で，スキマー先端部の内外開角は半頂角 で 20 度および 30 度である。形状 \＃ 2 はスキマー先端の機械強度および熱容量を増加させるため \＃ 1 のオリフィス部に 2 mm の平行部を設けた形状である。形状\＃3および\＃4 はスキマー先端周りに生じる衝撃波等の擾乱強度を変化さ せるため先端にそれぞれ外径 1 mm および 5 mm の平坦部 を設けた形状である。オリフィス径 $\mathrm{d}_{\text {orifice }}$ は， 0.5 mm であ る。また，放電加工時の熱集中による溶融のため，実験で使用したスキマ—\＃1 および\＃2 の先端厚さは約 0.05 mm の鈍頭性を持つ。そこで，数値解析では\＃1 および\＃2 の先端

図1 スキマー先端形状

形状を半径 0.025 mm の円形とした。計算領域は，スキマ一入口から下流側 $\mathrm{x} / \mathrm{d}_{\text {orificice }}=70$（ 35 mm ）までとした。

気流条件

気流条件は実験に合わせて表1に示した 2 条件とした。 スキマーが置かれる一様流の気流条件は，実験のノズル貯気槽ノミナル条件から準 1 次元化学非平衡ノズル流解析 コード $\mathrm{NENZF}^{(4)}$ により計算した値を用いた。

表1 気流条件

条件	CASE 1	CASE 2
貯気槽圧（MPa）	22	37
全エンタルピ（MJ／kg）	8	13
総温（K）	5200	7200
マッハ数	7.4	6.9
静温（K）	640	1090
静圧（kPa）	1.16	2.35
密度（kg／m ${ }^{3}$ ）	0.006	0.007
速度（km／s）	3.8	4.6
Reynolds 数（1／m）	7.4×10^{5}	7.6×10^{5}
Knudsen 数	0.02	0.03
モル分率 N	0.000	0.000
O	0.029	0.103
N_{2}	0.743	0.719
O_{2}	0.161	0.121
NO	0.067	0.057
$\mathrm{NO}^{+}, \mathrm{e}^{-}$	0.000	0.000

等マッハ数線図

図 2 に各スキマー形状の先端付近の等マッハ数線図を示す。図2（a）から図2（c）において上段および下段はそれ ぞれ CASE 1 およびCASE 2 の結果である。\＃1では，ス キマー先端のわずかな鈍頭性により生じた bow 衝撃波が弱められながらもスキマー内に斜め衝撃波として残留し，中心軸上で正常反射している。中心軸付近のコア領域は全域超音速である。また，オリフィス径を代表長さにとった Reynolds 数が 400 程度と小さいため境界層の発達が非常 に速く，その影響が中心軸上にまで及えでいる。 \＃2 では先端から形成された斜め衝撃波が平行部内で反射を繰り返 すものの，\＃1と同様にコア領域は超音速に保たれている。 これらに対し，\＃3 および\＃4では，スキマー先端の平坦部全面を覆らように bow 衝撃波が形成され，衝撃波背後で いったん流れは亜音速に減速した後，オリフィス入口付近 を仮想スロートとして下流に向けて再加速している。気流条件の影響は，CASE 1 に比べ CASE 2 で \＃ 3 の衝撃波離脱距離が実在気体効果によりわずかに短くなっている程度 で，流れ場の構造を大きく変化させることはない。

図2（a）等マッハ数線図：スキマー\＃1，$\triangle \mathrm{M}=0.2$
（上段：CASE 1，下段：CASE 2）

図2（b）等マッハ数線図：スキマー\＃2，$\triangle \mathrm{M}=0.2$ （上段：CASE 1，下段：CASE 2）

図2（c）等マッハ数線図：スキマー\＃3，$\triangle \mathrm{M}=0.2$
（上段：CASE 1，下段：CASE 2）

図 2（d）等マッハ数線図：スキマー\＃4，$\triangle \mathrm{M}=0.2$ （CASE 1）

スキマー内の物理量の変化

図 3 にスキマー中心軸上におけるマッハ数，O 原子の モル分率，および主流値で無次元化された温度，速度，密度の分布を示す。また，図 4 に CASE 1，形状\＃ 4 の場合 のスキマー中心軸上の化学組成変化を，表2にスキマー出口における化学組成をモル分率で示す。

CASE 1 の結果として，形状\＃1，\＃3および\＃4における分布を図 3 に示した。\＃1 では，スキマー先端から生じた斜め衝撃波の入射位置で温度および密度が上昇するが，流 れの減速が小さく滞留時間が短いため O_{2} 分子の解離によ る O 原子の生成は起きていない。 $\mathrm{x} / \mathrm{d}_{\text {orifice }}=5$ より下流で は，マッハ数と速度の低下，密度の低下および温度の上昇 がみられるが，これは流路面積拡大による流れの膨張と， スキマー壁による粘性効果の影響による。形状\＃3 では， スキマー先端から $\mathrm{x} / \mathrm{d}_{\text {orifice }}$ で約 $0.3(0.15 \mathrm{~mm})$ 上流に垂直衝撃波が形成され， $\mathrm{x} / \mathrm{d}_{\text {orifice }}=0.3$ まで亜音速域が広がって いる。この領域では，温度および密度が上昇し，かつ，流速が一様流の 20% 程度まで減速して滞留時間が長くなる ため， O_{2} 分子の解離が促進されている。その後，流路拡大に伴い流れは急速に膨張し，流速も一様流の 80% 程度 まで回復するため化学反応凍結が起こる。この結果，スキ マー出口における O 原子のモル分率は衝撃波背後の再加速点での値にほぼ等しい。形状\＃4 では，スキマー先端の平坦部外径の増大に伴い垂直衝撃波の離脱距離が $\mathrm{x} / \mathrm{d}_{\text {orifice }}$ で約 2.3 （ 1.2 mm ）と大きくなり，高温•高密度の淀み領域が\＃3 の場合より広がるため， O_{2} 分子の解離がさらに促

進されている。一方，\＃4 においてもスキマー内で流れが急速に再加速し反応凍結が起こるため，スキマー出口にお ける化学組成変化は\＃3の場合よりも顕著であった。

CASE 1 に比べ高エンタルピ・高圧の CASE 2 におい ても形状\＃1および\＃2 では CASE 1 の場合と同様に，スキ マー入口に斜め衝撃波が形成されるものの，コア領域は超音速に保たれ，化学組成の変化も見られなかった。一方，形状\＃3 では，高圧•高温の淀み領域内の滞留時間に大き な変化はないものの，気流の温度および密度が高いことに より化学反応速度が CASE 1 より速く， O_{2} 分子の解離反応等が大きく促進された（図3（d））。スキマー内で流れが再加速されると CASE 1 の場合と同様に化学反応凍結が起 こるため，スキマー出口における組成変化は CASE 1 の場合よりも顕著となった。

本解析の気流条件およびスキマー形状では，スキマー先端に生じる衝撃波が引き起こす化学反応により，スキマー出口における化学組成は， O_{2} 分子の解離による O_{2} 分子の減少および O 原子の増加，NO 分子の増加という傾向を示した。これはら実験結果の傾向ともよく一致している ${ }^{(1)}$ 。 また，図 4 によれば衝撃波背後における N_{2} 分子の解離は わずかで，かつ，流れの再加速後も N 原子の再結合が進 むため，スキマー出口におけるN原子の増加はごくわずか であった。

図3（a）中心軸上の物理量変化：スキマー\＃1，CASE 1

図 3（b）中心軸上の物理量変化：スキマー\＃3，CASE 1

図 3（c）中心軸上の物理量変化：スキマー\＃4，CASE 1

図3（d）中心軸上の物理量変化：スキマー\＃3，CASE 2

図4 中心軸上の化学組成変化：スキマー\＃4，CASE 1

表2 スキマー出口における化学組成（数値解析結果）

CASE 1： $\mathrm{Ho}=8 \mathrm{MJ} / \mathrm{kg}, \mathrm{Po}=22 \mathrm{MPa}$					
スキマー		\＃1	\＃2	\＃3	\＃4
スキマー出口での モル分率	N	0.000	0.000	0.000	0.001
	0	0.029	0.029	0.039	0.128
	N_{2}	0.743	0.743	0.739	0.692
	O_{2}	0.161	0.161	0.155	0.089
	NO	0.067	0.067	0.068	0.090

CASE 2 ： $\mathrm{Ho}=13 \mathrm{MJ} / \mathrm{kg}, \mathrm{Po}=37 \mathrm{MPa}$				
スキマー		\＃1	\＃2	\＃3
スキマー出口での モル分率	N	0.000	0.000	0.004
	0	0.103	0.103	0.204
	N_{2}	0.719	0.719	0.665
	O_{2}	0.121	0.121	0.050
	NO	0.057	0.057	0.077

実験結果との比較

現状では，質量分析計の校正および計測出力の S / N 比 の悪さ等の問題により実験結果から主要化学種の組成を求 めることが困難である。そこで，数値解析から得られた組成を，質量分析計出力における各化学種のピークと N_{2} 分子ピークの面積比に換算して解析結果と実験値との比較を行った。ただし，CASE2 の実験結果は S / N 比が極端に悪 くピーク面積比を求めるのが困難であること，また，O原子と N 原子については質量分析計内で試料気体を電子衝撃によりイオン化する際に分子の解離電離により生じる原子イオンの出力への寄与を補正できていないことにより， CASE 1 の $\mathrm{O}_{2} / \mathrm{N}_{2}$ および $\mathrm{NO} / \mathrm{N}_{2}$ のみについて比較した。組成からピーク面積比への換算では，各化学種のイオン化効率の差のみ有効衝突断面積 $\sigma\left(\mathrm{A} \rightarrow \mathrm{A}^{+}\right)$で補正し， N_{2} ， NO および O_{2} の分子量がほぼ等しいことから収集効率等の補正係数 C_{1} および C_{2} は 1 と仮定した。以下に換算式を示す。

図5（a）質量分析計出力における面積比： $\mathrm{O}_{2} / \mathrm{N}_{2}$

図 5（b）質量分析計出力における面積比：NO／ N_{2}
$\frac{\operatorname{Area}\left(\mathrm{O}_{2}\right)}{\operatorname{Area}\left(\mathrm{N}_{2}\right)}=C_{1} \frac{\sigma\left(\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}\right)}{\sigma\left(N_{2} \rightarrow N_{2}^{+}\right)} \frac{X\left(\mathrm{O}_{2}\right)}{X\left(N_{2}\right)}$
$\frac{\operatorname{Area}(\mathrm{NO})}{\operatorname{Area}\left(\mathrm{N}_{2}\right)}=C_{2} \frac{\sigma\left(\mathrm{NO} \rightarrow \mathrm{NO}^{+}\right)}{\sigma\left(N_{2} \rightarrow N_{2}^{+}\right)} \frac{X(\mathrm{NO})}{X\left(N_{2}\right)}$

ここで $X(A)$ は化学種 A のモル分率を表す。 N_{2} ，NO お よび O_{2} のイオン化有効衝突断面積（電子エネルギー 250 eV ）はそれぞれ 1.68×10^{-16} ， 1.89×10^{-16} および $1.57 \times$ 10^{16} である ${ }^{(5)}$ 。

図5に比較の結果を示す。実験値のエラーバーはデー夕の標準偏差の大きさを示している。ばらつきの大きい実験結果との比較ではあるが，実験結果の平均値と数値解析結果から換算した $\mathrm{O}_{2} / \mathrm{N}_{2}$ 面積比は，スキマー形状に対す る変化傾向の一致のみならず，定量的な一致も良好であっ

た。 $\mathrm{NO} / \mathrm{N}_{2}$ 面積比の比較においても，形状\＃4において面積比が増加する傾向は一致している。実験結果の面積比が解析結果の 2 倍程度も大きいが，これは，質量分析計出力において N_{2} ピークと O_{2} ピークの間にある NO ピーク の面積が，隣接する両ピークの重なり合いの影響により過大に見積もられていることが主な原因と考えられ，実験結果の再検討が今後の課題となっている。

4．まとめ

高エンタルピ流中に置かれたスキマー先端付近の流れ場 の詳細解明と，スキマー先端周りに生じる衝撃波等の擾乱強度の化学組成変化への影響を調べることを目的として数値解析を行い，以下の知見を得た。
（1）先鋭型の\＃1 および\＃2では，CASE 1 および CASE 2 の両条件において，スキマー先端から生じる擾乱によ る化学組成の変化が見られなかった。
（2）鈍頭型の\＃3 および\＃4 では，スキマース口上流に離脱 した垂直衝撃波が形成され，その背後で化学反応が促進された。その後，スキマー内で流れが急速に再加速 され化学反応凍結が起こるため，スキマー出口におけ る化学組成は一様流条件に対して， O_{2} 分子は減少， O原子および NO 分子は増加する傾向が見られた。N 原子の増加はごくわずかであった。
（3）先端平坦部外径の大きい $\# 4$ では，\＃3 にくらべ衝撃波 の離脱距離が長くなり高温•高密度の淀み領域が大き くなるため化学組成変化がより顕著となった。
（4）両気流条件で，流れ場の構造に大差は見られなかった。 しかし，\＃3 では，気流温度および密度の上昇により化学反応が促進され，化学組成変化が顕著となった。
（5）質量分析計出力のピーク面積比についての解析結果と実験結果の比較では，スキマー先端形状変化に対する化学組成の変化傾向によい一致が得られた。

参考文献

（1）高橋，小室，佐藤，植田，伊藤，Passerel D．，前原，「高温衝撃風洞試験気流検定における質量分析計の適用について」，平成 9 年度衝撃波シンポジウム講演論文集，pp．715－718，1998．
（2）Dunn M．G．，Kang S．－W．，＂Theoretical and Experimental studies of Reentry Plasmas，＂NASA CR－2232， 1973.
（3）Chakravarthy S．R．，Osher S．，＂A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws，＂AIAA Paper 85－0363， 1985.
（4）Lordi J．A．，Mates R．E．，and Moselle J．R，＂Computer Program for the Numerical Solution of Non－ Equilibrium Expansion of Reacting Gas Mixture，＂ NASA CR－472， 1966.
（5）Skinner K．A．，＂Mass Spectrometry in Shock Tunnel Experiment of Hypersonic Combustion，＂Ph．D thesis， The University of Queensland， 1994.

中極超音速域における 2 温度モデルのふるまいについて古館美智子 ${ }^{* 1}$ ，野中聡 ${ }^{* 1}$ ，澤田恵介 ${ }^{* 1}$

Behavior of Two－Temperature Model in Intermediate Hypersonic Flow by

Furudate，M．，Nonaka，S．，and Sawada，K．

Abstract

Behavior of Park＇s two－temperature model is examined for the intermediate hypersonic regime， $2.5-4.5 \mathrm{~km} / \mathrm{s}$ ， where molecular species in air are believed to have different vibrational temperatures．Obtained shock stand－off distances for seven different cases corresponding to four binary scaling parameters $\rho \mathrm{R}, 1.0 \times 10^{-4}, 2.0 \times 10^{-4}, 4.0$ $\times 10^{-4}$ ，and $1.7 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{2}$ ，are compared with the ballistic range data．The governing equations are three－ dimensional Navier－Stokes equations．Seventeen chemical reactions are considered for five neutral air species， i．e．， $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~N}, \mathrm{O}$ and NO．We employ Park＇s reaction rates．The translational－vibrational relaxation rates are given by Landau－Teller equation．Numerical scheme is based on the cell－vertex finite volume method．We employ a prismatic unstructured grid system for avoiding grid singular lines often appearing in structured grid systems，while retaining spatial accuracy in a thin boundary layer．Calculated results show diverse tendency depending on the flight speed and the test section pressure．For lower speed conditions（around $2.6 \mathrm{~km} / \mathrm{s}$ ），the calculated shock stand－off distances agree well with the experimental data when the test section pressure is 600－ 2400 Pa ．On the other hand，when the pressure is increased to 10130 Pa ，the calculation slightly over－estimates the stand－off distances．For higher speed conditions（around $3.0 \mathrm{~km} / \mathrm{s}$ ），while the agreement can be seen in nearly equilibrium flow condition，the calculations in lower pressure conditions tend to under－estimate the shock stand－ off distances．In order to see effect of thermal relaxation on the shock stand－off distances，equilibrium and one temperature calculations are also conducted in the nearly equilibrium flow range where a slight distinction from experiment was observed．

[^10]しかし，中程度の極超音速域では，衝撃波背後で加熱が比較的弱く，解離反応が十分に進まない。このとき，衝撃層には，窒素及び酸素がいずれも分子のままで多量に存在 する。特に熱的非平衡な流れでは分子がそれぞれの振動温度をもつと考えられている。したがって，混合気体に対し て 1 つの振動温度しか定義しない 2 温度モデルをこの速度領域の流れに適用して，熱化学非平衡状態を正確に再現する のは困難であると予想される。

熱化学非平衡である流れ場がどの程度正確に再現される かを調べる目安に衝撃波離脱距離がある。衝撃層は，衝撃波で加熱された気体の化学反応や熱吸収による密度変化を敏感に反映して，その厚みを変える。したがって，化学反応速度や熱励起状態が正しく表現されていれば衝撃波離脱距離を正確に予測できることになる。

そこで，この研究では中極超音速域の非平衡化学反応流 を，熱化学非平衡を表すモデルとして現在ひろく使われて いる2温度モデルを用いたCFD コードによって解析し，衝撃波離脱距離を測定値と比較する。これにより，現在の標準的な極超音速流解析コードの中極超音速域の流れ場におう ける予測能力評価を試みる。衝撃波離脱距離の測定値とし て，東北大学流体科学研究所衝撃波研究センターでバリス ティックレンジによって測定されたデータ2を用いる。

2．数值訓算法

5 化学種（ $\left.\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~N}, \mathrm{O}, \mathrm{NO}\right)$ の質量保存則と振動•電子工ネ

[^11]ルギー保存則を含めた Navier－Stokes 方程式を 3 次元で解 く。

化学反応モデルには上記の5化学種に関する 17 反応を考慮する。反応速度係数にはPark らの値を用いた。熱非平衡 を表現するモデルには，Park の 2 温度モデルを用いる。こ こで，すべての分子は等しい振動温度をもつと仮定する。並進一振動緩和モデルには Landau－Teller 緩和方程式に高温での衝突制限時間を考慮した Park の修正を加えたものを そのまま用いる。通常，解離または再結合を起こす分子の持つ振動エネルギーは平均振動エネルギーよりもかなり高 い。そこで，解離反応あるいは再結合反応時の分子を取捨 するエネルギーを解離エネルギーの 30% とする選択的解離 モデルを使用した。また，各化学種の粘性係数は Blottner のモデルから，熱伝導係数は Euckenの関係式から求め，混合気体に対するそれらは Wilke の経験式から求める。拡散係数は全ての化学種で一定とし，シュミット数は 0.5 とし た。

計算は，プリズム格子を用いた cell－vertex 有限体積法 で行なう。3プリズム格子は，構造格子に見られる格子の特異性を避けることができ，しかも，薄い境界層に格子を集 めるのが容易であり，精度も高い。対流流束は shock－fix法を組み込んだ AUSM－DV スキームで計算する。空間精度を，物体に沿う非構造格子部分はBarthの方法を使って物理量 を補間し，物体法線方向の構造格子部分には一般的な MUSCL法を用いることで高めた。時間積分には2段階の 2 次精度 Runge－Kutta 陽解法を用いる。生成項の計算に diagonal point implicit 法を用いることで計算効率と安定性を向上 きせた。また，local time stepping 法を用いて計算効率の向上を図っている。

3．実験

実験は東北大学流体科学研究所附属衝撃波研究センター に設置されたバリスティックレンジ（二段式軽ガス銃）に より行った。バリスティックレンジでは，モデルが静止気体中を極超音速で飛行するため上流条件が明確であり，極超音速流の数値計算コード検証に理想的な実験データが得 られる。

実験装置の概略図を図1に示す。バリスティックレンジ は火薬室，圧縮管（内径 60 mm ），高圧カップリング部，発射管（内径 30 mm ），試験室より構成される。この装置は火薬の燃焼ガスによりピストンを駆動して圧縮管内のへリウムガ スを圧縮し，その高圧のヘリウムガスによってモデルを加速して試験室内に極超音速で射出し，静止気体中を約 2 m 飛

行した後，鉄製のストッパーに衝突する。モデルはマグネ シウム合金製（AZ－31－F）で半径 14 mm および 15 mm の半球円筒形状である。モデルの飛行速度は，試験室空部に間隔1m で設置された 2 本のレーザ…光モデルが遮断した際の時間差によって計算する，レーザー光遮断法により測定した。 この方法による速度測定誤差は1\％以内である。

モデル周りの流れ場はシュリーレン法により可視化され た。その光源にはパルス幅が 5 nsec の Nd－YAG レーザーを用 いた。発射管に取り付けられた 2 個の圧力変換器でモデル が通過した時間差を測定し，遅延回路によりタイミングを計算して光源を発光トリガーする。モデルの移動によって生じる衝撃波離脱距離の光学的測定誤差は 1 ※以下と見積も られる。

試験気体として乾燥空気を用いた。試験室内の不純物を取り除くために，試験室内はターボ分子ポンプにより一旦実験条件圧力の約 $1 / 10000$ まで排気され，その後試験気体を注入した。試験室内の温度は約 $20^{\circ} \mathrm{C}$ である。

4．計算条件

計算は，4種類の Binary scaling parameter に基づいた 7 つの条件下で行なった。これらは実験が行われた条件から選んだもので，Binary scaling parameter とは主流密度と代表長さとの積で定義される値で，2体衝突解離反応に対 して流れ場は相似になる。計算では球の半径を 14 mm とし て圧力および密度を調節し，実験と Binary scaling parameterを同じにしてある。表1にこれらの主流条件を示 す。壁面は 1000 K の非触媒等温壁を仮定した。図 1 に計算格子の例を示す。格子点数はどの条件でも，壁面に 2678 点，壁面の法線方向に51点である。衝撃波位置近傍に格子点を集めることで，解像度の向上を図った。

5．計算結果および考察

計算から得られた密度分布と実験で撮影された球まわり の衝撃波との比較を図 3 に示す。これより，衝撃波離脱距離は概ね一致していることがわかる。

衝撃波離脱距離の計算値と実験値の定量的な比較を図4 に示す。試験部圧力が 600 Pa と 1200 Pa のものでは，速度 が低い場合（ $2.6 \mathrm{~km} / \mathrm{s}$ 程度）には計算値と実験値はよく一致 し，速度が高い場合（ $3.0 \mathrm{~km} / \mathrm{s}$ 程度）には計算値が実験値を下回るという傾向が見られる（図4（a）（b））。試験部圧力が 2400 Pa の場合にも低速度での実験値との一致が見られる （図4（c））。

図 1 実験装置

これらの条件に対する淀み流線に沿った各化学種のモル分率をみると，飛行速度が遅い流れではどの試験部圧力に おいても解離反応がほとんど起っていないことが分かる（図 5 （a），（b），（c））。淀み流線に沿った各温度分布をみると，程度の違いはあるが，どの場合も振動温度と並進温度が衝撃層で平衡に達することはなく，似たような分布になってい る（図6（a），（b），（c））。また，飛行速度が速い流れでは，600 Pa では解離反応がほとんど見られず（図7（a）），各温度分布は飛行速度が遅いものと似た傾向になっている（図8（a））。そ れに対して 1200 Pa においては，振動温度が 3500 K を超え るあたりからわずかに解離反応が起っており，境界層近傍 で熱的平衡に達している（図7（b），図8（b））。

試験部圧力が 10130 Pa での衝撃波離脱距離は，速度が高 い場合に実験値と一致し，速度が低い場合には実験値を上回っている（図 4（d））。これらの 2 条件は平衡流に近いと考 えられる。比較のために，平衡計算コードおよび1温度モ デルコードでの解析も行なった。1温度モデルの結果は， どちらの条件においても計算値と実験値のよい一致が見ら れた。平衡コードでの計算結果も，実験値とよく一致して いるが，1温度モデルの結果をわずかに下回った。

飛行速度が遅い条件を2温度モデルで計算したときの温度履歴をみると，熱的非平衡状態から平衡状態への移行が衝撃波背後から衝撃層の中央にかけてゆっくりと起ってい る（図6（d））。この条件で平衡計算を行ったときの温度分布 は非平衡計算の結果よりも全体的に低く，この差が衝撃波離脱距離の違いを与えていると考えられる。このとき，非平衡計算では解離反応がほとんど起っていないのに対して平衡計算ではわずかに解離がみられる（図5（d））。

1 温度モデルでの計算は，衝繋波背後で即座に熱的平衡 が実現されるために，衝撃波背後の並進温度は2温度モデ ルのものよりも低くなり，衝撃波離脱距離が短くなった。解離反応は 2 温度モデルと同じくほとんどおこらない。し たがって，この条件での衝撃波離脱距離の違いは振動温度 の緩和過程に関係していると考えられる。また，選択的解離モデルや複数の振動温度と化学モデルの関係も検証する必要性があると思われる。飛行速度が速い条件では，衝撃波背後で並進温度が 5000 K 以上まで上异し，比較的衝撃波 に近いところで並進温度と平衡に達している（図8（c））。

平衡計算の結果と比較すると，衝撃波背後の温度分布には違いが見られるものの，熱平衡に到達した境界層外縁では同程度の温度になっている。各化学種のモル分率分布をみ ると，非平衡計算でのそれらのピークと平衡計算でのそれ らはほほ一致している（図7（c））。1温度モデルの計算では， 2 温度モデル計算と平衡計算の結果を平均したような結果 が得られた。

6．まとめ

Park の 2 温度モデルを用いた 3 次元極超音速解析コード で，中極超音速の非平衡化学反応流を数値解析した。 7 つ の条件について得られた衝撃波離脱距離をバリスティック レンジによる測定値と比較した。計算から得られた衝撃波離脱距離は，実験値とは概ね一致した。

参考文献

${ }^{\text {＇Park，C．，＂Assessment of Two－Temperature Kinetic Model for }}$ Ionizing Air，＂Journal of Thermophysics and Heat Transfer，Vol． 3 （1989），pp．233－244
${ }^{2}$ Nonaka，S．，Takayama，K．，and Park，C．，＂Measurement of Shock Stand－Off Distance for Sphere in Ballistic Range，＂AIAA Paper 97－0563， 1997.
${ }^{3}$ Niizuma，K．，and Sawada，K．，Nonequilibrium Flow Computation for Space Shuttle Nose Using Unstructured Meshes， AIAA Paper 97－2548， 1997

表1 主流条件

Freestream Condiion					
$\rho R\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	0.0001	0.0002	0.0004	0.0017	
$R(\mathrm{~m})$	0.014	0.014	0.014	0.014	
$\rho\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	$7.14 \mathrm{E}-03$	$1.43 \mathrm{E}-02$	$2.86 \mathrm{E}-02$	$1.21 \mathrm{E}-01$	
$\mathrm{P}(\mathrm{Pa})$	600	1200	2400	10130	
$\mathrm{U}(\mathrm{m} / \mathrm{s})$	2631	2631	2500	2564	

図 3 実験で撮影されたシュリーレン写真と計算から得られた等密度線図

図4衝撃波離脱距離の比較

（a） $\mathrm{P}=600 \mathrm{~Pa}\left(\rho \mathrm{R}=1.0 \times 10^{-4}\right)$
図5淀み流線に沿ったモル分率分布
（飛行速度 $2.6 \mathrm{~km} / \mathrm{s}$ 程度）

Normalized distance from stagnation point
（a） $\mathrm{P}=600 \mathrm{~Pa}\left(\rho \mathrm{R}=1.0 \times 10^{-4}\right)$
図6淀み流線に沿った温度分布 （飛行速度 $2.6 \mathrm{~km} / \mathrm{s}$ 程度）

Normalized distance from stagnation point
（a） $\mathrm{P}=1200 \mathrm{~Pa}\left(\rho \mathrm{R}=2.0 \times 10^{-4}\right)$
 Normalized distance from stagnation point
（c） $\mathrm{P}=2400 \mathrm{~Pa}\left(\rho \mathrm{R}=4.0 \times 10^{-4}\right)$

Normalized distance from stagnation point
（d） $\mathrm{P}=10130 \mathrm{~Pa}\left(\rho \mathrm{R}=1.7 \times 10^{-3}\right)$
図5淀み流線に沿ったモル分率分布（つづき）
（飛行速度 $2.6 \mathrm{~km} / \mathrm{s}$ 程度）

Normalized distance from stagnation point
（b） $\mathrm{P}=1200 \mathrm{~Pa}\left(\rho \mathrm{R}=2.0 \times 10^{-4}\right)$

（c） $\mathrm{P}=2400 \mathrm{~Pa}\left(\rho \mathrm{R}=4.0 \times 10^{-4}\right)$

Normalized distance from stagnation point
（d） $\mathrm{P}=10130 \mathrm{~Pa}\left(\rho \mathrm{R}=1.7 \times 10^{-3}\right)$
図 6 淀み流線に沿った温度分布（つづき）
（飛行速度 $2.6 \mathrm{~km} / \mathrm{s}$ 程度）

（a） $\mathrm{P}=600 \mathrm{~Pa}\left(\rho \mathrm{R}=1.0 \times 10^{-3}\right)$
 Normalized distance from stagnation point
（b） $\mathrm{P}=1200 \mathrm{~Pa}\left(\rho \mathrm{R}=2.0 \times 10^{-4}\right)$
 Normalized distance from stagnation point
（c） $\mathrm{P}=10130 \mathrm{~Pa}\left(\rho \mathrm{R}=1.7 \times 10^{-3}\right)$
図7淀み流線に沿ったモル分率分布 （飛行速度 $3.0 \mathrm{~km} / \mathrm{s}$ 程度）

Normalized distance from stagnation point
（a） $\mathrm{P}=600 \mathrm{~Pa}\left(\rho \mathrm{R}=1.0 \times 10^{-3}\right)$

Normalized distance from stagnation point
（b） $\mathrm{P}=1200 \mathrm{~Pa}\left(\rho \mathrm{R}=2.0 \times 10^{-4}\right)$

Normalized distance from stagnation point
（c） $\mathrm{P}=10130 \mathrm{~Pa}\left(\rho \mathrm{R}=1.7 \times 10^{-3}\right)$
図8淀み流線に沿った温度分布 （飛行速度 $3.0 \mathrm{~km} / \mathrm{s}$ 程度）

スペースシャトル及びHYFLEXまわりの高温実在気体解析

山本行光＊

CFD Analysis of High Enthalpy Flows around Space Shuttle and HYFLEX

by
Yukimitsu YAMAMOTO＊

Abstract

In order to validate real gas CFD code and construct appropriate real gas models，analysis of HEK，High Enthalpy Shock Tunnel Experiment is made by using one temperature chemically non－equilibrium CFD code．Aerothermodynamic heating distributions on the windward surface of HYFLEX 6% model are compared in detail． 4 Test conditions in HEK are selected to investigate enthalpy and binary scaling effects on heating characteristics and good agreements are obtained．To extrapolate data from ground to flight，real gas computations are also made for HYFLEX flight conditions at catalytic and non－catalytic wall assumptions．

On the other hands，at high altitude and high mach numbers like HOPE－X re－entry flight，trim capability of high angle attack is an important design factor．To investigate real gas effects of these aerodynamic characteristics，calculations are made around Space Shuttle configuration along its trajectory from Mach Number 5 to 26 ．Real gas effects on center of pressure locations are compared well with the shuttle OADB data．

1．はじめに
再突入飛行における実在気体現象解明のための実飛行実験データとして，有翼三次元形状については，我が国 では1996年2月に打ち上げられたHYFLEX ${ }^{11}$ と米国の スペースシャトルの飛行解析デーダ2）のみが使用可能と なっている。このうち，HYFLEX形状については，航技研角田の中型高温衝撃風洞（HEK）による空力加熱の実験3）が行われ，バイナリースケーリングパラメー夕による無次元化熱流速への影響が指摘されている。ま たフランスのONERAのF4アーク加熱型衝撃風洞に よる空力加熱実験も行われ ${ }^{4)}$ ，さらに航技研では大型の自由ピストン型高温衝撃風洞（HIEST）の本格的な稼働5）により実飛行実験と高エンタルピー風洞試験を結び付ける解析の必要性が生じている。このため，HYFL EXの中型高温衝撃風洞（HEK）試験に対応した実在気体C F D 解析を実施し，比較検証を行い，さらに実飛行実験との対応をとることを目的として，HYFLEX軌道飛行時刻120秒における実在気体解析を実施した。一方，HOPE－Xの飛行軌道では，より高いマッハ数 となるため，このトリム能力に与える実在気体効果が重要な設計指標となり，空力特性に与える効果を調べるた め，HOPE－Xと飛行軌道が相似なスペースシャトル まわりの一連の実在気体計算を実施し，検証解析を行っ た。スペースシャトルの飛行解析では，シャトル軌道上 でのマッハ数 $6,10,16,26$ ，迎角 40° における完全／実在気体訃算を行い，シャトルOADB侦との比較を通して，圧力中心位置に関する実在気体効果の評価，検証を行っ た。

2．HYFLEX HEK高エンタルビ衝撃風試対応解析

[^12]航技研では大型の自由ピストン型高温衝撃風洞（HI EST）の本格的な稼働 ${ }^{61}$ によりHOPE－X等の実飛行実験と高エンタルピー風洞試験を結び付ける解析の必要性が生じている。これに先立ち，航技研角田宇宙推進技術研究センターの中型高温衝撃風洞HEKにより，H YFLEX6\％形状モデルの空力加熱試験が行われた。 この試験ではバイナリースケーリングパラメータによる無次元熱流速の影響が調べられた。図1に，今回計算が設定されたHEK試験条件のエンタルピーとバイナリー スケーリングパラメータとの相関を示す。図では実線が

図 1 HYFLEX HEK試験条件 エンタルピーと
バイナリースケーリングパラメータとの相関
HYFLEXの飛行軌道を，点線がHOPE－Xの予定飛行軌道を示す。図に示されるようにRun No．294と296が バイナリースケーリングパラメータの高いケースに対応 し，Run No． 284 と 288 が低いケースに対応する。対応表を表1に示す。

	低B．S．	高B．S．
低エンタルピ	Run No． 288	Run No． 294
高エンタルピ	Run No．284	Run No． 296

表1 対応表

Rui No	$\mathrm{M} \infty$	$\operatorname{Re\infty } \mathrm{L}$	$\mathrm{T} \infty(\mathrm{K})$	$\mathrm{P} \infty(\mathrm{Pa})$	$\mu(\mathrm{ML} / \mathrm{kg})$	$\rho \mathrm{L}$	$\operatorname{Qref}(\mathrm{MW} / \mathrm{m} 2)$
284	8.82	6.3×10^{4}	561.2	332.0	10.9	0.00197	5.41
288	9.32	$9.36 \times 10^{-}$	392.8	299.0	7.9	0.00262	3.96
294	7.13	2.74×10^{9}	743.6	2435.0	8.73	0.01131	9.18
296	6.76	2.05×10^{9}	1069.0	2958.0	12.13	0.00926	13.2

表2 HEKノズル出口気流条件（ $\mathrm{L}=0.24 \mathrm{~m}$ ）

Mass Fraction of Free Stream at HEK Experiments					
Run No．	N_{2}	O_{2}	N	O	NO
284	0.7324	0.1472	0.0	0.0497	0.0707
288	0.7283	0.1820	0.0	0.0138	0.0759
294	0.7323	0.1867	0.0	0.0117	0.0693
296	0.7346	0.1578	0.0	0.0424	0.0652

表3ノズル出口気流 質量分率

図2 HYFLEX笁力加熱センサー位置

そンザo	STA	BL	ML X	X	Y ${ }^{2}$	2
T01	20	0	274	1.2	0	16.44
T02	127	0	107	7.62	0	6.42
T03	136	－99	117	8.16	－5．94	7.02
104	136	99	117	8.16	5.94	7.02
105	400	0	0	24	0	0
T06	500	0	0	30	0	0
T07	4050	－241	36	243	－14．46	2.16
T08	4050	241	36	243	14.46	2.16
109	4145	－241	36	248.7	－14．46	2.16
T10	4145	241	36	248.7	14.46	2.16
T11	4337	－241	36	260.22	－14．46	2.16
T12	4337	241	36	260.22	14.46	2.16
T13	4240	－241	36	254.4	－14．46	2.16
T14	4240	241	36	254.4	14.46	2． 16
T15	1250	－171	24	75	－10．26	1.44
T16	1250	171	24	75	10.26	1.44
T17	1250	－380	107	75	－22．8．	6.42
118	1250	380	107	75	22.8	6.42
T19	2140	－181	26	128.4	－10．86	1.56
T20	2140	181	26	128.4	10.86	1.56
121	2815	－280． 1	43.2	168.9	－16．806	2.592
122	2815	280.1	43.2	168.9	16.806	2.592
123	3565	－280．1	43.2	213.9	－16．806	2.592
T24	3565	280.1	43.2	213.9	16.806	2.592
125	3895	－280．1	43.2	233.7	－16．806	2.592
T26	3895	280.1	43.2	233.7	16.806	2.592

表4 HYFLEX空力加熱センサー座標
HEKの図1の各試験に対応するノズル出口の気流条件を表2に示す。ノズルは半項角 12° のコニカルノズ ル（出口径 390 mm ）で，ノズル出口気流条件は一次元の化学非平衡ノズルコードを用いて計算した。気流はノズ ル出口で解離しており，一様流の各試験ケースでの質量

分率を表3に示す。今回の空力加熱試験では，6\％HY FLEX縮尺モデルに対して同軸熱電対による測定が行 われた。センサ位置と座標を図 2 及び表 4 に示す。HY FLEX胴体下面に26のセンサーが分布し，センサ位置はHYFLEX飛行実験空力加熱計測位置に対応する。 センサ座標はHYFLEX原寸での値を示し，単位はmm である。なお，実在気体計算にあたっては，迎角は50 －，モデル表面で 300 K の等温壁を仮定し，非触媒及び完全触媒壁条件のもとでの解析を行った。HEK試験結果は モデルが金属製であることから，完全触媒壁条件に対応 する。なお表2の基準熱流速QrefはHYFLEXノーズよ どみ点に対応し，式（1）により計算される＂。

図3に，各試験条件でのHYFLEX対称面内での圧力ノ温度線図を示す。分布図は圧力，温度の結果とも相似であるが，圧力分布では，スケールから判別されるよ うにバイナリースケーリングパラメータの大きいRun No． 294，296のケースがよどみ点での無次元圧力が高くなる。 また当然のことであるが，温度分布では高エンタルピー条件の試験ケース，Run No． 284 と 296 が最高温度のスケー ル値が 700 K を越えている。

図4は，HEK各試験条件に対応するHYFLEX胴体下面空力加熱分布である上半分が完全触媒壁，下半分が非触媒壁条件での結果を示し，定量的には，完全触媒壁結果 が機体表面での原子の再結合により空力加熱は高くなる。 これを対称面内の空力加熱分布で比較を行ったものが図 5である。Run No．288の低バイナリスケーリングパラメ ータ，低エンタルピのHYFLEX飛行軌道に合う条件での結果は，加熱量も小さく完全触媒／非触媒の加熱量の差 もノーズよどみ点付近をのぞききわめて小さくなってい る。

図6にHEK試験結果との比較を示す。Qrefは，（1）式 により，それぞれの試験ケースでは表2に示される値を とる。胴体下面での一致は定量的に良好であるが，ノー ズ部よどみ点付近では計算値が実験値よりも低くなって いる。しかしながら，（1）図のバイナリースケーリング パラメータの低いケースではよどみ点加熱量では実験が Qrefの1．1倍，計算が1．0倍程度であり，（2）図の高いケー スではそれぞれ1．2倍，1．1倍となり，計算結果はバイナリ ースケーリングパラメータの高低によるよどみ点空力加熱量への影響について，実験と同様な傾向を示している。

3．HYFLEX飛行実験実在気体解析

前項のHEK衝撃風洞試験の結果と対応させるため，飛行時刻120秒時，高度 48 km の飛行条件での実在気体解析を実施した。一様流条件はマッハ数 11.2 ，速度 $3690 \mathrm{~m} / \mathrm{sec}$ ，静圧97．7Pa，静温 263 K である。バイナリースケーリング パラメータは0．00523とRun No．288のケースの0．00262より やや高い。空力加熱に関する計算結果を図7に示す。実際の飛行条件では，完全触媒と非触媒の間には加熱率に大きな差が生じるものの，HEK試験条件Run No．288の結

（b）温度線図 $\mathrm{T}(\mathrm{K})$
図 3 HEK 各試験条件に対応する対称面内圧力，温度線図

図4 HEK試験条件 HYFLEX胴体下面 空力加熱分布

Run NO． 284

Run NO． 294

Run NO． 288

Run NO． 296

図5 HEK試験条件 HYFLEX 胴体下面対称面内 空力加熱分布

図6 HYFLEX HEK 試験条件空力加熱分布比較

図 7 HYFLEX飛行時刻 120 秒時における空力加熱分布の触媒効果

果から得られた無次元化加熱率を使用して，図7に黒丸印で対応するブロットを行うと，実験結果は良好に飛行条件での完全蚛菻壁条件での加棅分布を再現しているこ とが結論づけられる。

4．スベースシャトルまわり飛行解析

スベース・シャトルまわりの飛行解析では，HYFLEX とは異なり，より高マッハ数での実在気体効果の検証が可能なことから，シャトルADDB及びOADBデータとの比故を目的として，その泉行䅐道に沿い完全／実在気体解折を実施した。計算ケースを表3に示す。マッハ数は，6， $10,16,26$ で迎角は 40° とし，飛行マッハ数 26 では，迎角 30° 及び50＊の計算も追加し，迎角の影響を調べた。ま た，マッハ数 9.94 ，迎角 40° でのAEDC橄超風試に対応し たケースを含め，風洞条件と実際の飛行条件の違いも明 らかにできるようにした。さらに，ボディフラップ 22.5^{*}下げの計算もマッハ数 $10, ~ 26$ ，迎角 40° のケースで実施 した。図8にシャトルのマッハ数 10 ，迎鱼 40° ，ボディ フラッブ 22.5^{*} 下げ時の圧力線㘣を示す。表面圧力分布は相似であるが，衝撃波の距離が実在気体計算にわいて小 きくなっている。

シャトルの舵面の効きをモーメント係数（CM），軸力係数（CA），及び圧力中心位置（XCP；頭部から全長で無次元化した値）でみた結果が図9である。ボディフラップ舵面がぜロの場合には実在気体効果により頭上げモーメン トが両マッハ数で生じているが，ボディフラップ22．5＊下 げでは，マッハ数 26 においてこの効果が相殺され，モー メント係数は完全／実在気体結果ともほぼ同一となる。 このことは舵面効果が実在気体ケースでは高くなり，舵面でより高い圧力上昇を引き起こしていることと関連づ けられる。
図10には，シャトル表面格子，図11には，マッハ数変化に対応した圧力中心位置のCFD結果とシャトルの ADDB値との比較を示す。圧力中心位萓に関しては，2 \％ のずれが生じているものの，マッハ数効果，及びマッハ数 26 だの迎㑲 30° 及び 50^{*} にわける圧力中心位置の変動量はほほ同一である。圧力中心位檤そのもののADDB値とのずれの原因として，一つには，シャトル後部ボデ ィフラップ付近での形状定義の違い，すなわち実機では，胴体係数からボディフラッブにかけては滑らかに曲線を描いて接続するのに対し，計算で定義した形状では平板 として，不連続につながり，これが舵角 10° をとった効果分としてあらわれていることが大きく影䁕を及ほし ている。次に，実在気体効果によるシャトル圧力中心位置の変動量を示したものが図12である。図はシャトル のOADBのデータを示して扮り，マッハ数功増加するにつ れて圧力中心が前方に移動し，マッハ数 26 ，迎角 40° で は，圧力中心移動量は0．8 \％弱である。これに対し，CFD解析では完全／実在気体計算結果のそれぞれの圧力中心位置の差をプロットした。計算結果はシャトルOADBデー夕を定量的に精度よく模擬していることがわかる。本検証解析により，現用のCFDコードで，実在気体効果によ る空力特性への影算を精度よく見積もることが可能であ ることが示され，一連のHOPE－Xの実在気体空力特性䛨価解析に適用されている＂。

図 8 スペースシャトルボティフラップ 22.5° 下げ時の完全／実在気体計算圧力分布の比較（Minf $=10.0 \alpha=40^{\circ}$ ）

図 9 実在気体効果によふボディーフラップ 22.5° 下け時 のシャトル圧力中心，モーメント倷数の変化

図11 シャトル圧力中心位置のマッハ数による変化（実在気体計算とADDB値との比較）

図12マッハ数変化に伴う実在気体効果による圧力中心位置の変動量の比較 （CFD結果とシャトルOAOB値との比較）

5．まとめ

スペースシャトル及びHYFLEXまわりの高温実在気体解析として，HYFLEX ではHEK高温衝撃風洞対応計算と飛行実験データとの対応，スペースシャトルでは飛行軌道に沿った完全／実在気体計算とシャトルOADBデータと の比較を実施し，空力／空力加熱特性について良好な結果が得られた。空力加熟に関しては今後，熱防護村の有限触蝶性の影響評価を行ってゆくことで，より高精度な実在気体評価を進めることが重要である。

参考文献

1）HYFLEX／HOPEシンポジウム講演論文集 NAL SP－32， 1996年9月
2）Weilmuenster，K．，Greene，F．A．，＂Navie－Stokes Simulations of Orbiter Aerodynamic Characteristics Including Pitch Trim and Body flap＂J of Spacecraft and Rockets No．3，May－June 1994，pp355－366
3）植田修一他「HYFLEXの空力加熱に関する実験的研究」第15回航空機計算空気力学シンポジウム論文集 NAL SP－ 37，1998年2月pp153－158
4）NAL－ONERA 共同研究資料 私信
5）伊藤勝弘他「大型高温衝撃風洞HIESTの作動特性」航空宇宙数値シミュレーションシンポジウム98，NAL SP本論文集，1999
6）山本行光「HOPEの極超音速流空力設計CFD解析」航空宇宙数値シミュレーションシンポジウム98，NAL SP 本論文集，1999

No．	気体きデル	計算コード	形状	$\begin{gathered} \text { マッハ数 } \\ (-) \end{gathered}$	静温 （K）	静圧 （Pa）	壁温 （K）	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \beta \\ (d \in g) \end{gathered}$	$\begin{gathered} \delta \theta \\ (\operatorname{deg}) \end{gathered}$	$\begin{gathered} \delta \mathrm{bf} \\ (\mathrm{deg}) \end{gathered}$	備考	計算目的
228	完全気体	FVS	Shuttle	6	252.1	263.1	1366	40	0	0	0		シャトル形状計算実在気体効果
229				10	270.7	74.76	1366	40	0	0	0		推算精度碓認
230				16	246.2	21.07	1366	40	0	0	0		）
231				26	204.7	1.764	1366	50	0	0	0		
232				26	204.73	1.764	1366	40	0	0	0		
233				26	204.73	1.764	1366	30	0	0	0		
234				9.94	50.30	99.00	300	40	0	0	0	AEDC 風試条件	
235	非平衡流	FDS		6	252.15	263.1	1366	40	0	0	0		
236				10	270.65	74.763	1366	40	0	0	0		
237				16	246.19	21.071	1366	40	0	0	0		
238				26	204.73	1.7637	1366	50	0	0	0		
239				26	204.73	1.7637	1366	40	0	0	0		
241				26	204.13	1.7637	1366	30	0	0	0		
242				9.94	50.30	99.00	300	40	0	0	0	AEDC 風試条件	

表3 スペースシャトル 飛行経路 完全／実在気体解析ケース

極超音速非平衡流における 3 次元往還機形状周りの数値解析黒湆 卓司 ${ }^{* 1}$ ，山本 行光 ${ }^{* 1}$

Numerical Analysis around 3－D Re－entry Vehicles in Hypersonic Non－equilibrium Flow

by
Takuji Kurotaki ${ }^{* 1}$ ，Yukimitsu Yamamoto ${ }^{* 1}$

Abstract

In the present study，three dimensional analyses around reentry vehicles having complex shapes are performed by solving Navier－ Stokes equations with real gas effects．Three dimensional full Navier－Stokes equations which have chemically and thermally non－ equilibrium effects are considered by using Park＇s two－temperature model and the vibrational relaxation model from SSH theory．For convective terms，AUSMDV scheme generalized into the non－equilibrium flow case is applied．

Numerical analyses around Space Shuttle and HOPE－X are performed．Comparison of pressure distributions with another CFD result shows good agreement．In the leeside of HOPE－X，an annular region of high temperature is observed，which consists of a layer of dissociating atoms peeling off with the flow separation on the body and wings．

The fore body around 6% HYFLEX are also analyzed and compared with the experimental data of NAL HEK，a medium size free－ piston shock tunnel．The agreements of CFD results and experimental data are good．

1．はじめに
大気圏再突入宇宙機等の開発では，実在気体効果が空力特性に与える影響が大きく，技術的，コスト的にも風洞試験等の地上実験に対する制約が大きいため，数値解析が設計プロセスの中で，通常の航空機の場合に較べて重要な位置を占めることが予想される。しかし，複雑な 3 次元形状周りの解析では，通常の完全気体の場合に較べ計算機のメ モリーを多く必要とし，かつそれに伴い計算に要する時間 も増加するため，十分な解析例が蓄積されているとは言い難い。従って，解析データの蓄積及び，風洞試験データや フライトデータとの比較検証を体系的に行っていくことは，意義のあることと思われる。
さらに，従来の研究では，層流域に限定された比較的単綶な形状周りの流れを，非触媒あるいは触媒壁等の簡単な境界条件の元で解析することが主流であったが，今後は，実用上の観点から，をらに物理現象に深く立ち入った研究 が必要とされることが予想される。実際，今までの再突入機体とのフライトデータと解析との比較から，設計に必要 とされる空力加熱量，6分力，電子密度分布等の項目を精密に評価するためには，少なくとも乱流，有限触媒壁条件，壁面スリップ条件等をフライト条件に応じて考慮する必要 があることがわかってきている。従って，よりシンプルな問題で，これらのモデル化の妥当性を一つ一つ検証してい くことが今後，我々に課せられた課題の一つであろう。
また，このような物理現象のモデル化の必要性と並行し て，設計要求の精密化に伴い，動翼部可動状態時の評価や，後流部での流れ等の複雑な形状周りの効率的な解析という面も無視できない。この問題は，大規模な数値計算をいか に実用的に設計に生かして行くかという CFD の持つもう一方の課題とも関連しており，今後重要性を増して来るもの と予想される。
我々は，以上に述べた，将来必要とされる両面からのア プローチから研究を進めていくことを視野に入れて，3次元極超音速解析コードの開発及び検証を行っている。本論文では，代表的な往還機である，スペースシャトル及び HOPE－X，HYFLEX を取り上げ，解析結果とフライト及び風試結果との比較について述べる。

[^13]
2．解析の概要

基礎方程式系として，化学的及び熱的非平衡を考慮した 3 次元 Full ナビエーストークス方程式を考える。気体モデル として 7 成分 24 庈応空気モデル $\left(\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{O}, \mathrm{N}, \mathrm{NO}, \mathrm{NO}^{+}, \mathrm{e}^{-}\right)$ を用い，e－を除く各化学種に連続の方程式を適用する。ま た，解離反応速度に及ぼす分子振動緩和の影響を入れるた め，Parkの 2 温度モデル｜l｜ 121 を用い，並進•回転及び振動•電子励起エネルギーモードはそれぞれ平衡状態にあるとす る（代表温度をそれぞれ T， T_{V} で表す）。これらの仮定のも とに，基整方程式はデカルト座標系で以下のように表され る。

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\frac{\partial}{\partial x}\left(E-E_{v}\right)+\frac{\partial}{\partial y}\left(F-F_{v}\right)+\frac{\partial}{\partial z}\left(G-G_{v}\right)=S \tag{1}
\end{equation*}
$$

ここに,

$$
\begin{aligned}
& Q=\left[\begin{array}{c}
\rho u \\
\rho v \\
\rho w \\
E_{t} \\
E_{v i b}+E_{e} \\
\rho_{s}
\end{array}\right], E=\left[\begin{array}{c}
\rho u^{2}+p \\
\rho u v \\
\rho u \\
u\left(E_{t}+p\right) \\
u\left(E_{v i b}+E_{e}\right) \\
\rho_{s u}
\end{array}\right], F=\left[\begin{array}{c}
\rho u v \\
\rho v^{2}+p \\
\rho v w \\
v\left(E_{t}+p\right) \\
v\left(E_{v i b}+E_{e}\right) \\
\rho_{s^{v}}
\end{array}\right], \\
& G=\left[\begin{array}{c}
\rho u w \\
\rho v w \\
\rho w^{2}+p \\
w\left(E_{t}+p\right) \\
w\left(E_{v i b}+E_{e}\right) \\
\left.\rho_{s}\right)
\end{array}\right]
\end{aligned}
$$

$\mathrm{E}_{\mathrm{v}}, \mathrm{F}_{\mathrm{v}}, \mathrm{G}_{\mathrm{v}}$ ：粘性項マトリックス， S ：ソース項マトリック ス，ρ ：密度，u, v, w ：速度，p ：圧力，E_{1} ：単位体積当た り全エネルギー， $\mathrm{E}_{\mathrm{vin}}$ ， E_{e} ：単位体積当たり振動，電子励起 エネルギー，添字 s ：気体種（ $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{O}, \mathrm{N}, \mathrm{NO}, \mathrm{NO}^{+}$）；1－6 である。化学反応速度係数は Park によって提唱されたモデ ル，輸送係数は，kinetic theoryを基礎にして構築したもの を用いた！${ }^{[1]}$ ，$|2|$ 。また，振動•電子エネルギー方程式のソー ス項に現れる分子振動緩和時間のモデル化にはSSH 理論 ${ }^{(3)]}$ 141，を使用した。また，時間積分には，陽解法（オイラー法） を使用し，対流項の定式化には，AUSMDV スキーム阿を非平衡流に拡張したものを適用した。
以上の内容で構成された解析コードは，地球周回軌道か らの往還機再突入時の熱環境をシミュレートするための必

要最小限な物理モデルを含んでおり，Park モデルというシ ンブルな物理モデルを中心に記述されているため， 3 次元問題に扮いても計算速度等の面で取り扱いやすく，今後，乱流モテルをはじめとした拡張をするための基本コードと して，比較的バランスが取れたものとなっている。

3．解析結果

3.1 スペースシャトル，HOPE－X

まず，スペースシャトル及び HOPE－X 実機形状の解析例 を取り上げる。表3．1に，解析条件を示す。どちらのケー スも，高高度，高マッハ数のフライトに対応しており，従 って，流れ場は強い非平衡流となることが予想される。特 にスベースシャトルの計算条件は，過去のデータと直接比較するため，文献［6］，［7］での值に対応している。ボディ フラッブ角は，スベースシャトルでは，実機の飛行条件に対応して 15 度（正確には14．914度），HOPE－Xでは 0 度と した。格子点数は，それぞれ 730， $800(116 \times 60 \times 105)$ 点，741， 000 （ $130 \times 60 \times 95$ ）点である。なお，今回の解析では，非触媒壁を仮定した。
図3．1 にスベースシャトルの対称面における圧力の解析結果を示す。比較のために，文献［6］で示されている風上側におけるCFD 結果を併せて描いている。㘣中，代表長Lは，機体全長 32.8 』である。機体後部のボディフラッブ部を除き，非常に良い一政を示す。ボディフラップ部の値の違 いは，主としてボディフラップ角の違い（文献［6］では 20度に対し，今回の解析ては15度）に起因すると考えられ る。
図 3.2 に，同じく対称面における空力加熟率の計算結果 を示す。比皎のため，風上測における STS－2 軌道の実測値及び他の軌道からの較正值を併記している ${ }^{[7]}$ 。空力加熟率 は，文献［6］に従い，半径 0.3048 m の球の淀み点にђける理論值で無次元化している。今回の解析では，非触媒壁を仮定しているため，解析値はフライトデータより低めとな っている。今後，有限触媒壁条件を組み込んだ解析を行い，詳細に空力加熱率の検討することを計画している。
図 3.3 及び図 3.4 に機体周りの圧力及び空力加熱率分布 をそれぞれ示す。分布自体は㳻らかであり，数値振動は見 られない。
HOPE－X に関する対称面及び機体周りにおける圧力，空力加熱率分布を図 3.5 ～图3．8に示す。图中，代表長Lは，機体全長 16.0 m である。直接比較すべき過去のデータは未だ存在しないが，今後，実機の開発に向けて，予測解析，風洞試験との比較検証等を進めて行く予定である。

表3．1 スペースシャトル，HOPE－X 解析条件

		Space Shuttle	HOPE
Altitude	$\mathrm{H}[\mathrm{km}]$	72.4	90
Velocity	$\mathrm{U}_{\infty}[\mathrm{m} / \mathrm{sec}]$	6920	7244.7
Temperature	$\mathrm{T}_{\infty}[\mathrm{K}]$	202	199.05
Pressure	$\mathrm{P}_{\infty}\left[\mathrm{N} / \mathrm{m}^{2}\right]$	3.36	1.0903
Wall temperature	$\mathrm{T}_{\mathrm{s}}[\mathrm{K}]$	1400	1366
Mach no．		M_{-}	24.3
Angle of attack	$\alpha[$［deg．$]$	40	25.522

図3．1スペースシャトル対称面圧力分布

図3．2 スベースシャトル対称面空力加熱率分布

図3．3 スペースシャトル圧力分布

図3．4 スベースシャトル空力加熟率分布

図 $3.5 \mathrm{HOPE}-\mathrm{X}$ 対称面圧力分布

图 3．6 HOPE－X 対称面空力加熱率分布

図 3．7 HOPE－X 压力分布

図 3．8 HOPE－X 空力加熟率分布

今回の解析例のような高高度，高マッハ数における非平衡流の流れ場の特㘅の一つとして，图3．9の HOPE－X周り の並進温度分布に示すように，風下側の衛撃層内で高温領域が形成されることが举げられる。特に，HOPE－X の場合 には，その形がリング状になり，機体後部において，双垂直尾翼周りの衝繋波との複雑な干渉部を形成する。高沮領域生成の原因は，図3．10 の酸素原子質量分率分布にねい て，質量分率が剥離領域に沿って急激に変化することから明らかなように，淀み点の周囲で形成された解唯原子が，剥離時に層ごと剥がれ，剥離線から下流領域において，再結合反応を通じて解離エネルギーを放出していくためであ ると考えられる。HOPE－X の場合には，訪そらく機首部の形状及び朋体所面形状が要因となって剥㒕流域が比較的大 きいため，高温領域はリング状となる。さらに，今回のよ うな高迎角領域では，主翼上面においてあ剥離が生じるた ぬ同粎な高温領域の発生が起こり，その結果，HOPE－X の璣体鲳部では，䏤体及び主翼上の剥帷によって形成された高温領域と，双垂直尾翼周りの衝撃波との複䧸な千渉部を形成する。

スペースシャトルの場合にも，図3．11 の並進温度分布に示すように，風下倨で高温領域が形成されるが，図3．12の酸素原子質量分率分布からわかるように，剥離領域が HOPE－X に比較して小さく，リング状にはなっていない。
しかし，機体後部では，朋体及び主翼上の剥離によって形成された高温領域の干渉が見られ，HOPE－X の場合のよう に双垂直尾翼との干渉こそないものの，かなり複雓な干沙 を含む流れ場となっている。
以上に述べた風下側の干涉を含を流れ場を，機体前方加 ら描いた図が，图3．13及び图3．14 である。それぞれ， HOPE－X 及びスベースシャトルに対応しており，機体全長 の 25% 毎の断面における並進温度を示している。図 3.13 の HOPE－X を例に取ると， 50% 全長位惪付近で胴体上の剥㒕 に伴うリング状の高䀅領域の発生見られ，75\％全長位置で は，それがかなり発達している。それと並行して主翼上の到雄に伴う高温領域が発生し始め， 100% 全長位惪では，両者が融合しているのが認められる。それに加えて双垂直尾覚の存在により，干渉はより複雍になっている。それに対 し，図3．14のスペースシャトルでは，胴体上の剥潅領城が小ざいため， 100% 全長位置ではむしろ主䁲上の剥離に伴う高温領城の発達の方が曊著である。このように，両機の風下側における流れ場は，双垂直尾翼の有無は別としても， かなり異なる特徵を有していることが，今回の解析で判明 した。

3．2 HYFLEX 中型高温衡撃風洞試俭对応解析
次の例は，航技研で実施した HYFLEX 模型による中型高温衝繋風洞試験結果｜지 の検証例である。航技研では，宇宙往黄機の大気圈再突入時の熟環境を模擬することができる大型の自由ビストン型高温衝撃風洞（HIEST）を建险し，稼衝試験を開始しているが，中型高温衝撃風洞（以後 HEK と称する）は，そのバイロット風洞として建設され，HIEST詳細設計のためのデータ取得，空力及び空力加熱計湘法の研究に使用されている。設備の詳細は文献［8］に缐るが， HIEST のほほ $1 / 3$ スケールの規模（圧縮管全長納 16 m ，衝繋波管全長 6.5 m ）であり，試験条件に応じて約 15 kg か ち 26 kg のビストンを圧縮管中で高圧空気により駆動する。空力加勲試験には HYFLEX6\％模型（全長約 240 mm ）を使用し，空力加熱率測定用の同軸型熱電対をノース，機体下部，エレボンに 26 点配吾している。

图 3．9 HOPE－X 並進温度分布

図 3．10 HOPE－X 酸素原子質量分率分布

図3．11 スペースシャトル並進温度分布

因3．12 スペースシャトル酸素原子質量分率分布

图3．13 前方から見た HOPE－X 並進温度分布

図3．14前方から見たスベースシャトル並進温度分布

解析条件を，表3．2に示す。解析は前胴部のみとし，格子点数は $267,000(50 \times 60 \times 89)$ 点である。また，壁面温度 は 300 K で一定とし，触媒壁条件を仮定した。
表3．2に示した解析条件は，HOPE－X 軌道を想定したケー スに相当し，実際の HYFLEX の飛行経路（高々 $8 \mathrm{MJ} / \mathrm{kg}$ ） より高エンタルピー領域での試験であるため，かなり強い非平衡流になると予想される。並進温度と振動温度の差 （T－T T_{V} ）を見ると，図 3.15 に示すように風上側ではほと んど熱的平衡が保たれているが，機首部上方の膨張流付近 ではかなり負の領域（すなわち振動温度が高い領域）が生 じており，熱的非平衡性を考慮した解析が必要であること がわかる。また，図 3.16 及び図 3.17 に，対称面における圧力と並進温度分布をそれぞれ示す。
高温衝撃風洞試験との対応解析では，空力加熱率を精密 に推定することは，次の理由から一般的に困難を伴う。ま ず，風試模型の寸法が小さいため実機フライトケースに比較して空力加熱率が大きくなること，もうつーつは，衝撃風洞の作動時間は非常に小さいため（通常数 msec），模型の壁温が室温に近くなり，いわゆる低温壁でかつ高エンタル ピー流れの解析を行わなければならないためである。特に後者の理由により，壁面付近の格子密度を大きくする必要 が生じることが予想される。本ケースの場合，格子密度を いくつか変えた予備解析を実施し，空力加熱率に対する対流及び拡散による寄与がほぼ一定になる格子密度を調べた。 その結果，淀み点に対応した壁面において，いわゆる「セ ルレイノルズ数」を，通常の解析よりかなり小さい 0.003程度に取る必要があることが判明した。
図3．18に，風上側対称面における空力加熱率の実験結果 と解析結采の比較を示す。図中，空力加熱率は，淀み点工 ンタルピー及びピトー圧から算出される基準量 Q_{rcf} で規格化 ${ }^{[8]}$ をれている。本ケースの場合 $\mathrm{Q}_{\mathrm{ref}}=13.2 \mathrm{MW} / \mathrm{m}^{2}$ である。全般にわたり，実験値と解析値の一致は非常に良い。

このような高温衝撃風洞試験結果との対応解析は，実際 のフライトデータの取得に制約がある以上，往還機等の設計には非常に重要になると考えられる。従って，今後正確 な空力加熱率を数値解析で予測するためにも，適切な格子密度の選択に関するノウハウや，全体の格子点数の影響等 を，種々の対応解析を実施することにより，把握していく必要がある。

4．結論

3 次元往還機形状周りの極超音速非平衡流解析を実施し，以下の結論を得た。
－スペースシャトル形状の従来の解析結果との圧力分布の比較では，良好な一致を見た。また，空力加熱率のフライ トデータとの比較では，有限触媒壁効果による差異が見ら $れ た 。 今$ 後，この効果を考慮し，比較検討を継続する。
－HOPE－X 及びスペースシャトル形状では，解離原子層の剥離により，風下側の下流領域に高温領域を形成する。し かし，両者の風下側の温度分布には，剥離領域の大小に関連すると思われる特徵的な違いが見られる。
－航技研 HEK で実施した HYFLEX 模型との対応解析を行 った。その結果，機首部上方の膨張流付近で強い熱的非平衡領域が見られた。また，空力加熱率の実験結果との比較 では，良好な一致を見た。ただし，本ケースのような，低温壁でかつ高エンタルピー流れにおける解析では，壁面付近の格子密度が，空力加熱率の値に大きく影響することが わかった。

参考文献

［1］Park，C．，Nonequilibrium Hypersonic Aerothermo－dynamics， John Wiley \＆Sons，Inc．， 1990.
［2］Gnoffo，P．A．，Gupta，R．N．and Shinn，J．L．，＂Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium＂，NASA TP－2867， 1989.
［3］Schwartz，R．N．，Slawsky，Z．I．and Herzfeld， R．N．，＂Calculation of Vibrational Relaxation Times in Gases＂， J．Chem．Phys．，20，pp．1591－1559， 1954.
［4］Thivet，F．，Perrin，M．Y．and Candel，S．，＂A Unified Nonequilibrium Model for Hypersonic Flows＂，Phys．Fluids， A3，pp．2799－2812，1991．
［5］Wada，Y．and Liou，M．－S．，＂A Flux Splitting Scheme with High－Resolution and Robustness for Discontinuities＂，AIAA Paper 94－0083， 1994.
［6］Weilmuenster，K．J．，Gnoffo，P．A．and Greene，F．A．，＂Navier－ Stokes Simulations of Orbiter Aerodynamic Characteristics Including Pitch Trim and Bodyflap＂，Journal of Spacecraft and Rockets，Vol．31，pp．355－366，1994．
［7］Bertin，J．J．and Campbell，C．H．，＂Recent Aerothermodynamic Flight Measurements During Shuttle Orbiter Re－Entry＂，Journal of Spacecraft and Rockets，Vol．33，pp．457－462，1996．
［8］植田修一，佐藤和雄他，＂HYFLEX の空力加熱に関する実験的研究＂，第15回航空機計算空気力学シンポジウム論文集 NAL SP－37，pp．153－159， 1998.

表 3．2 HYFLEX NAL HEK 試験䛻析条件

case	α $[\mathrm{deg}]$	H_{0} $[\mathrm{MJ} / \mathrm{kg}]$	ρ_{∞} $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	M_{∞}	T_{∞} $[\mathrm{K}]$	P_{∞} $[\mathrm{Kpa}]$	U_{∞} $[\mathrm{m} / \mathrm{s}]$
296	50	12.13	0.00929	6.76	1069	2.958	4420.8

图 3.15 並進温度と振動温度の差（T－TV）（単位 $[K]$ ）

図 3．16 HYFLEX 対称面圧力分布

図 3．17 HYFLEX 対称面並進温度分布（単位 $[\mathrm{K}]$ ）

図 3．18 HYFLEX 対称面空力加熟率分布（下面）

再突入機の周りの 3 次元高エンタルピー流れの数値シミュレーション

嶋田 徹 ${ }^{* 1}$ ，山本行光 ${ }^{* 2}$ ，廣瀬直喜 ${ }^{* 2}$
Numerical Simulation of Three－Dimensional Flow around Re－entry Vehicle
by

Toru Shimada ${ }^{*}$ ，Yukimitsu Yamamoto ${ }^{* 2}$ ，Naoki Hirose ${ }^{* 2}$

ABSTRACT

Numerical simulations of three－dimensional thermo－chemical non－equilibrium flow around HYFLEX reentry vehicle have been conducted to evaluate heat flux measurement in HEK ground tests．Computed results are compared with the experiment as well as existing correlation．The computed results agree well with the correlation，but fell short of the measured data．

1．はじめに
現在，宇宙開発の多様なニーズの中で，再突入宇宙機の重要性が認識され，それらの開発が進行している。これら の宇宙機の設計において重要な要素のひとつが，再突入時 の空力加熱や空力特性の評価技術である。この分野の研究 は以前より続けられているが，風洞試験や，実飛行のデー タが充実してくるなかで，今後一層の技術レベル向上が期待されている。

ここでは，NAL角田の中型高温衝撃風洞において実施さ れたHYFLEX空力加熱試験）を対象に，3次元高エンタルピ一流れのCFD解析を実施し，実測との比較を通して，現象 の理解，モデルの妥当性の検証，熱流束のスケーリングな どについて，検討まる。

2．解析対象

NAL角田研究センター中型高温衝撃風洞（HEK）で，半頂角12度コニカルノズル使用の試験設備において，6\％ HYFLEX模型に対し，熱流束測定等が行われている。この際の，試験条件を計算対象とする。

2.1 計算格子

図1にここで用いた計算格子を示す。物体表面から外向 きに出る方向の格子の最小格子幅は $5 \mu \mathrm{~m}$ 程であり，表1に は解析条件に対するセルレイノルズ数を示す。

2.2 解析条件

解析対象とする試験条件を表1に示す。

図 1 計算格子

[^14]表1試験条件

CASE番号	284	288	294	296
条件	12（ $\Phi 10$ ）	18（ $\Phi 10$ ）	19（ $\Phi 18$ ）	15（ $\Phi 18$ ）
貯気槽				
$p_{0}(\mathrm{MPa})$	23.5	24.5	37.1	39.0
$H_{0}(\mathrm{MJ} / \mathrm{kg})$	10.9	7.9	8.7	12.1
ノズル出口				
$p_{\infty}(\mathrm{kPa})$	0.33	0.30	2.44	2.96
$\rho_{\infty}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$2.3 \mathrm{e}-3$	$2.6 \mathrm{e}-3$	$11.3 \mathrm{e}-3$	$9.3 \mathrm{e}-3$
$U_{\infty}(\mathrm{m} / \mathrm{s})$	4272	3724	3859	4421
M_{∞}	8.8	9.3	7.1	6.8
$H_{\infty}^{T}(\mathrm{MJ} / \mathrm{kg})$	9.627	7.338	8.202	10.89
セルレイノ ルズ数	1.4	2.1	6.4	4.7

ノズル出口の値は一次元一温度化学非平衡ノズル流のため のコードで計算さえた値である。但しこの表では，主流の総エンタルピー H_{∞}^{T} を次式で $\gamma=1.4$ として求めてある。

$$
\begin{equation*}
H_{\infty}^{T}=\frac{\gamma}{\gamma-1} \frac{p_{\infty}}{\rho_{\infty}}+\frac{1}{2} U_{x}^{2} \tag{1}
\end{equation*}
$$

解析では，主流はノズル出口での条件を持つ迎角50度とな るような一様流とし，その密度，静圧およびマッハ数を設定する。また化学種の質量分率は表2のように設定する。 ここでは，酸素原子と同程度含まれると予想されるArを無視した。

表2 主流の質量分率

Case	N 2	O 2	N	O	NO
284	0.7324	0.1472	0	0.0497	0.0707
288	0.7283	0.182	0	0.0138	0.0759
294	0.7324	0.1866	0	0.0117	0.0693
296	0.7346	0.1578	0	0.0424	0.0652

壁面境界条件に関しては，HYFLEX供試体表面温度を一様 に300K—定とし，表面の触媒性は完全触媒性とする。

3．数理モデルの概要
基礎方程式は11化学種の質量保存，3つの運動量保存， 2 温度モデルによる 2 つのエネルギー保存の計 16 の保存式からなる。熱力学的関係は，並進と回転モードは完全に励起しているものとし，熱平衡におけるエンタルピーは JANAFデータを利用する等により決定する。化学反応モデ ルにはPark（1987）モデル22を用いる。緩和過程には，振動一並進緩和と，電子—並進緩和を考慮する。振動一並進緩和 はLandau－Teller型の緩和を仮定し，緩和時間をMilikan－White の式とParkのCollision Limit補正により決める。電子——並進緩和は，Appleton－Brayのモデルを仮定し，イオン一電子の クーロン衝突と中性粒子一電子の弾性衝突の衝突頻度を考㢜する。輸送係数は 2 温度モデルに拡張された Yosの式に よって評価し，実効拡散係数はCurtiss－Hirschfelderの式よっ て評価する。

4．数値計算の概要

計算は航空宇宙技術研究所のNumerical Wind Tunnel （NWT）上で並列処理を用いて行う。並列化手法は領域分割法で，機体軸まわりに回る方向に16分割し，各々に1P Eを割り当てる。セル中心型の有限体積法を用いて離散化 し，セル界面での対流項数値流束はAUSM－DV－EF法3）を用 いる。時間積分には風上化残差平均法4）とPoint－Implicit法を

組み合わせて用いる。時間積分ステップ は正値保存制約値に安全率 $0.5 \sim 0.8$ 程度を用いて定める。

5．淀み点加熱率の相関

次元解析

計算対象とした4ケースの主流条件には表3のような特徴が ある。ここでバイナリ・スケーリング・パラメーター B は主流密度と代表長さ（ノーズ半径：0．024m）の積で与え られる。

表3計算対象の主流条件の特徴

CASE	B	H	p_{∞}	M_{∞}	Re
284	低	高	低	高	低
288	低	低	低	高	低
294	高	低	高	低	高
296	高	高	高	低	高

これらの多様な条件下での淀み点加熱率を比較するために は相似パラメータのような有意な無次元量で考えるのが良 い。ここでは次のような整理を考える。まず，淀み点加熱率を支配する代表的なパラメーターとして，主流総エンタ ルピー $H\left(=H_{\infty}^{\tau}\right)$ ，バイナリー・スケーリング・パラメータ一，垂直衝撃波背後の淀み点圧 P_{S} ，主流粘性係数 μ ，物体 ノーズ半径 R_{N} を考える。即ち

$$
\begin{equation*}
q=f\left(H, B, P_{S}, \mu, R_{N}\right) \tag{2}
\end{equation*}
$$

これに対して次元解析を実施して無次元式を作ると次の関係を得る。

$$
\begin{equation*}
\frac{q}{\mu^{3} B^{-2} R_{N}^{-1}}=\phi\left[\frac{H}{\mu^{2} B^{-2}}, \frac{P_{S}}{\mu^{2} B^{-1} R_{N}^{-1}}\right] \tag{3}
\end{equation*}
$$

当面，気体が完全気体の状態方程式に従い，かつ熱量的に完全である場合を考えると，離脱衝撃波背後の淀み点圧力 は垂直衝撃波の関係を用いて次式で表される。

$$
\begin{gathered}
P_{S}=p_{\infty} F\left(M_{\infty}\right) \\
F\left(M_{\infty}\right) \equiv\left[\frac{(\gamma+1) M_{\infty}^{2}}{2}\right]^{\frac{\gamma}{\gamma-1}}\left[\frac{\gamma+1}{2 \gamma M_{\infty}^{2}-(\gamma-1)}\right]^{\frac{1}{\gamma-1}}
\end{gathered}
$$

また，エンタルピーと主流静生には次の関係がある。

$$
p_{\infty}=\frac{1}{\gamma} \frac{B}{R_{N}}\left(\frac{1}{\gamma-1}+\frac{1}{2} M_{\infty}^{2}\right)^{-1} H
$$

これらの関係を用いると

$$
\begin{aligned}
& \frac{P_{S}}{\mu^{2} B^{-1} R_{N}^{-1}}=\frac{H}{B^{-2} \mu^{2}} G\left(M_{\infty}\right) \\
& G\left(M_{\infty}\right) \equiv \frac{1}{\gamma} \frac{F\left(M_{\infty}\right)}{\left(\frac{1}{\gamma-1}+\frac{1}{2} M_{\infty}^{2}\right)}
\end{aligned}
$$

と表されるから，式（3）は次の式で置き換えることがで きる。

$$
\begin{equation*}
\frac{q}{\mu^{3} B^{-2} R_{N}^{-1}}=\varphi\left[\frac{H}{\mu^{2} B^{-2}}, \quad M_{\infty}\right] \tag{4}
\end{equation*}
$$

さらに，

$$
\begin{aligned}
\mu^{3} B^{-2} R_{N}^{-1} & \equiv \operatorname{Re}^{-3} \rho_{\infty} U_{\infty}^{3} \\
\frac{H}{B^{-2} \mu^{2}} & \equiv \operatorname{Re}^{2} \frac{H}{U_{\infty}^{2}}
\end{aligned}
$$

であるから，式（4）は次のように書きかえられる。

表 4 実験条件

CASE	$\rho(\mathrm{kg} / \mathrm{m} 3)$	$\mathrm{U}(\mathrm{m} / \mathrm{s})$	Mach	$\mathrm{T}(\mathrm{K})$	$\mathrm{H}(\mathrm{J} / \mathrm{kg})$	$\mu(\mathrm{Pa}-\mathrm{s})$	Re
282	$3.19 \mathrm{E}-03$	$3.35 \mathrm{E}+03$	$9.83 \mathrm{E}+00$	$2.88 \mathrm{E}+02$	$5.89 \mathrm{E}+06$	$1.79 \mathrm{E}-05$	$1.43 \mathrm{E}+04$
283	$1.79 \mathrm{E}-03$	$4.28 \mathrm{E}+03$	$9.86 \mathrm{E}+00$	$4.69 \mathrm{E}+02$	$9.63 \mathrm{E}+06$	$2.55 \mathrm{E}-05$	$7.20 \mathrm{E}+03$
284	$1.97 \mathrm{E}-03$	$4.27 \mathrm{E}+03$	$8.82 \mathrm{E}+00$	$5.84 \mathrm{E}+02$	$9.71 \mathrm{E}+06$	$2.96 \mathrm{E}-05$	$6.82 \mathrm{E}+03$
285	$3.42 \mathrm{E}-03$	$3.35 \mathrm{E}+03$	$9.82 \mathrm{E}+00$	$2.89 \mathrm{E}+02$	$5.90 \mathrm{E}+06$	$1.79 \mathrm{E}-05$	$1.53 \mathrm{E}+04$
286	$3.00 \mathrm{E}-03$	$3.35 \mathrm{E}+03$	$9.81 \mathrm{E}+00$	$2.91 \mathrm{E}+02$	$5.91 \mathrm{E}+06$	$1.80 \mathrm{E}-05$	$1.34 \mathrm{E}+04$
287	$2.18 \mathrm{E}-03$	$3.94 \mathrm{E}+03$	$9.09 \mathrm{E}+00$	$4.68 \mathrm{E}+02$	$8.24 \mathrm{E}+06$	$2.55 \mathrm{E}-05$	$8.08 \mathrm{E}+03$
288	$2.62 \mathrm{E}-03$	$3.72 \mathrm{E}+03$	$9.32 \mathrm{E}+00$	$3.97 \mathrm{E}+02$	$7.33 \mathrm{E}+06$	$2.27 \mathrm{E}-05$	$1.03 \mathrm{E}+04$
293	$2.53 \mathrm{E}-03$	$3.70 \mathrm{E}+03$	$9.37 \mathrm{E}+00$	$3.88 \mathrm{E}+02$	$7.23 \mathrm{E}+06$	$2.23 \mathrm{E}-05$	$1.01 \mathrm{E}+04$
294	$1.13 \mathrm{E}-02$	$3.86 \mathrm{E}+03$	$7.13 \mathrm{E}+00$	$7.29 \mathrm{E}+02$	$8.18 \mathrm{E}+06$	$3.42 \mathrm{E}-05$	$3.06 \mathrm{E}+04$
295	$1.82 \mathrm{E}-02$	$3.12 \mathrm{E}+03$	$7.89 \mathrm{E}+00$	$3.90 \mathrm{E}+02$	$5.27 \mathrm{E}+06$	$2.24 \mathrm{E}-05$	$6.08 \mathrm{E}+04$
296	$9.29 \mathrm{E}-03$	$4.42 \mathrm{E}+03$	$6.76 \mathrm{E}+00$	$1.06 \mathrm{E}+03$	$1.08 \mathrm{E}+07$	$4.31 \mathrm{E}-05$	$2.29 \mathrm{E}+04$
297	$1.36 \mathrm{E}-02$	$3.83 \mathrm{E}+03$	$7.14 \mathrm{E}+00$	$7.17 \mathrm{E}+02$	$8.07 \mathrm{E}+06$	$3.38 \mathrm{E}-05$	$3.70 \mathrm{E}+04$
300	$6.69 \mathrm{E}-03$	$3.91 \mathrm{E}+03$	$7.12 \mathrm{E}+00$	$7.50 \mathrm{E}+02$	$8.39 \mathrm{E}+06$	$3.48 \mathrm{E}-05$	$1.80 \mathrm{E}+04$
301	$7.71 \mathrm{E}-03$	$3.74 \mathrm{E}+03$	$7.25 \mathrm{E}+00$	$6.62 \mathrm{E}+02$	$7.66 \mathrm{E}+06$	$3.22 \mathrm{E}-05$	$2.15 \mathrm{E}+04$

$$
\begin{equation*}
\eta=\frac{q}{\operatorname{Re}^{-3} p_{\infty} U_{\infty}^{3}}=\varphi\left(\xi, \quad M_{\infty}\right) \tag{5}
\end{equation*}
$$

ここで

$$
\begin{equation*}
\xi \equiv \operatorname{Re}^{2} \frac{H}{U_{x}^{2}} \tag{6}
\end{equation*}
$$

である。

相関 $\varphi\left(\xi, M_{\infty}\right)$ の検討

次に $\varphi\left(\xi, M_{\infty}\right)$ の関数形を求める目的で，表 4 に示す実験 の各ケースの ρ_{∞} と U_{∞} の組に対して，マッハ数一定を仮定 し，$\varphi\left(\xi, M_{\infty}=\right.$ 一定）について調べる。この際，空力加熱率 は次のDetra－Kemp－Riddellによる相関式を用いて評価する。

$$
\begin{equation*}
q_{D K R}=\frac{C}{\sqrt{R_{N}}} \sqrt{\frac{\rho_{\infty}}{\rho_{S L}}}\left(\frac{U_{\infty}}{U_{r e f}}\right)^{3.15} \frac{H-H_{\text {wall }}}{H-H_{300 K}} \tag{7}
\end{equation*}
$$

これより考えたマッハ数領域の範囲で，$M_{\infty}=$ 一定の面内で，ほぼ

$$
\begin{equation*}
\eta=\varphi(\xi) \propto \xi^{1.25} \tag{8}
\end{equation*}
$$

のような関係が成立することが確認される。従って， $\varphi\left(\xi, M_{\infty}\right)$ の関数形として変数分離形が妥当であると考えら れる。ここでは，M_{∞} の関数としては最も単純に一次式を採用し，また，低マッハ数への極限の考慮はせず，適用マ ッハ数として，図 2 に調べた程度のマッハ数の範囲を想定 する。こうして，低温壁の場合のD－K－Rの相関式と近似的等価の相関式を次のように得る。

$$
\begin{align*}
& \eta=\varphi\left(\xi, \quad M_{\infty}\right)=\chi\left(M_{\infty}\right) \xi^{125} \tag{9}\\
& \chi\left(M_{\infty}\right) \equiv 0.431 M_{\infty}+0.9873
\end{align*}
$$

あるいは

$$
\begin{equation*}
\eta / \chi=\xi^{1.25} \tag{10}
\end{equation*}
$$

式（9）について，少し調べてみる。式（9）を定義に従って書 き換えると，スタントン数 C_{H} を表す式

$$
\begin{equation*}
\frac{1}{2} C_{H} \equiv \frac{q}{\rho_{x} U_{\infty}^{3}}=\frac{\chi\left(M_{\infty}\right)}{\sqrt{\operatorname{Re}}}\left(\frac{1}{2}+\frac{h}{U_{\infty}^{2}}\right)^{1.25} \tag{11}
\end{equation*}
$$

を得る。ここで，h は主流（静）エンタルピーである。適当 な音速に対して

$$
\frac{h}{U_{\infty}^{2}} \propto M_{\infty}^{-2}
$$

であることは明らかであるから，高マッハ数，低レイノル ズ数のような場合には，式（11）は，

$$
\begin{equation*}
C_{H} \equiv \frac{2 q}{\rho_{\infty} U_{\infty}^{3}} \propto \frac{M_{\infty}}{\sqrt{\operatorname{Re}}} \tag{12}
\end{equation*}
$$

となることが分かる。式（12）の右辺は粘性干渉パラメータ であり，経験的事実と矛盾しない。

6．C F D解析結果
得られた流れ場（静圧及び表面空力加熱率）の一例を図3 に示す。また，淀み点加熱率の結果を表5に示す。

図 $\mathbf{2 M} \mathbf{M}$ 一定のときの各 $\varphi(\xi)$ の振舞い

図 3 CFD解析結果（左）圧力分布 $p / \rho_{\infty} U_{\infty}^{2}$ ，（右）表面対流加熱率［W／m²］CASE－294

表5				淀み点加熱率	（CFD解析結果）	
Case	284	288	294	296		
$\mathrm{q}(\mathrm{MW} / \mathrm{m} 2)$	4.04	2.52	7.21	12.8		

に示す。これより，加熱率の分布には4ケースの間で大き な相違は見られないことが分かる。また実験とも概ね一致 を示す。

対称面内の加熱率分布を淀み点加熱率で規格化して図4

図 4 表面空力加熱率分布（CFD結果）

図 5 淀み点加熱率の相関の比較

7．淀み点加熱率の相関の比較
実測値，既存の相関式，今回のCFD解析値を用いて ξ, η を求め，式（10）と比較を試みる。
既存相関式としては，Verant－Sagnier（V－S）の相関式5）

$$
q_{r e f}=23.787\left(\frac{H_{T}-H_{w a l l}}{R T_{0}}\right)^{2.0688} \sqrt{\frac{P_{S}}{R_{N}}}
$$

を用いる。図5に結果をプロットする。
また，式（11）を用いてスタントン数の相関に関して，図 6に示す。
これらより，以下のことが分かる。
1）D－K－RとV－Sの類似性は強い。
2）実測値は他の評価値に比べたとき総じて η 値及び スタントン数が高い。
3）CFDによる計算値はD－K－Rに比較的近い相関を示す。
4）式（10）によって淀み点空力加熱率の相関を表すこと が可能と考えられる。

8．まとめ
本報告では，HYFLEXに関するHEK風試を対象に，3次

元熱化学非平衡流れのCFD解析を実施し，解析結果を風試結果等と比較した。淀み点加熱率に関しては，試験結果に比べると若干低めの値を示したものの，Detra－Kemp－Riddell等の相関式と概ね一致する結果を得た。空力加熱率分布に関しては，調べた範囲内では主流による差はなかった。こ の結果は試験結果を裹付けるものである。

セルレイノルズ数は1 のオーダーではあったが，低温壁 であるため壁での温度差分は大きい。そのため，今後更に，格子幅に関する解の収斂性を調べる必要があると考えられ る。

図6スタンントン数の相関

参考文献

1）植田，佐藤，小室，高橋，伊藤，＂HYFLEXの空力加熱こ関する実験的研究＂，航空宇宙技術研究所特別資料37号，第 15 回航空機計算空気力学シンポジウ么論文集，153－158，Feb． 1998.
2）Park，C．，＂Assessment of Two－Temperature Kinetic Model for Ionizing Air，＂AIAA Paper 87－1574，June 1987
3）嶋田，関野，＂再突入機周りの流えと空力加熱率の数値計算＂，航空宇宙技術研究所特別資料34号，第14回航空機計算空気力学シンポジウム論文集，83－88，Jan． 1997
4）嶋田，山本，廣瀬，＂再突入機まわりの極超音速実在気体解析＂，航空宇宙技術研究所特別資料37号，第15回航空機計算空気力学シンポジウム論文集，133－ 138，Feb． 1998.
5）Sagnier P．，Masson A．，Mohamed A．K．，Verant J．L．，and Devezeaux D．，＂Synthesis of MSTP calibration campaigns in ONERA F4 hot shot wind tunnel，＂ $16^{\text {dh }}$ ICIASF，Dayton， OH．LSA．， 1995.

HOPEの極超音速流空力設計CFD解析

山本 行光＊

CFD Analysis of Hypersonic Aerodynamic Design of HOPE

by

Yukimitsu YAMAMOTO＊

Abstract

CFD activity for hypersonic aerodynamic design has increased enormously due to the developments of Japanese re－entry spacecraft， OREX，HYFLEX，and HOPE－X．HOPE－X will be launched in 2004 by H－IIA rocket．

At present，validations of CFD codes have been made mainly by comparing numerical results with AEDC hypersonic wind tunnels and Calspan＇s shock tunnels．It is known that aerodynamic characteristics and aerothermodynamic heating are correctly predicted by the present CFD code within the severe design tolerance．For high enthalpy flow analysis，HYFLEX flight deta，HEK shock tunnel experiment and Space shutle flight data are utilized for the validation of real gas CFD code．

In this paper，using these validation codes，parametric computational design study are being made to investigate viscous interaction and real gas effects along the HOPE－X planed trajectory．Especially，trim capability and efficiency of control surfaces such as elevons and body flaps are evaluated．Also，study about turblent heating around HOPE－X at launching phase are carried out and comparisons of aerodynamic turbulent heating at low angles of attack are made with AEDC Mach 6 heat transfer measurements．Through the present computations，a series of CFD works for HOPE－X basic design phase are completed．

1．はじめに

HOPE－Xの極超音速流の大迎角再突入飛行における完全気体の空力特性評価に関しては，これまで米国のAE DC，及びカルスバンの衝撃風洞を使用した実験結果との比較を通して検証を進め ${ }^{11}$ ，十分な成果を得ることができ た。一方，実在気体効果については，HYFLEXの飛行実験評侕解析，及びHEK高温衝撃風洞空力加熱解析，さらに はスペース・シヤトルまわりの流れ解析 ${ }^{21}$ を通じて空力特性の把握を行い，空力設計への応用が実用上可能な段階に達している。

今回は，これまでの検証成果にもとづいて，HOPE予定飛行軌道に沿った極超音速流領域の実在気体効果と粘性干渉効果を調心゙るための一連のパラメトリック解析を実施し
た。設計解析はHOPE－X飛行軌道に沿い，マッハ数，迎角，粘性干渉係数をパラメータとして，オフデザインボイン トを含めた完全／実在気体計算から成る。解析対象はHO PE－X基本形態，及びボディフラップ，エレボン舵角20度下げの形態とし，これらの空力舵面効果について詳細に調ごた。

一方，HOPE打ち上げ時の低迎角における乱流加熱に ついても，胴体上面，及び主翼上面でのT P S の耐熱度が弱 いことから，一連の設計計算を実施し，AEDC風洞試験に よるマッハ数 6 での空力加熱結果との比較を行った。今回 の一連の解析を持って，HOPE基本設計における極超音速CFD評価解析を終了する。

[^15]
2．解析法

C F D 解析の基礎方程式は薄層近似ナビエ・ストークス方程式である：計算コードは航技研のFVS及びFDSタ イブの二つのコードを使用した。実在気体解析については 7 化学種 24 反応の非平衡化学反応を取り入れ，末た，設計 においては相違がほとんどあらすれないことから，モデル依存性のより少ない振動平衡を仮定した一温度モデルを採用した。計算格子は単一構造格子とし，流れ方向 130 点，機体周りに95点，機体表面垂直方向に60点である。

3．HOPEーX 飛行軌道に沿った粘性干渉及び実在気体効果解析

図1にHOPE－X飛行軌道におけるマッハ数と粘性干渉パラメータ（ $\mathrm{H}_{\infty} / \sqrt{ } \mathrm{Re}$ ）の関係を示す。実線がHOPE ノミナル飛行軌道を示し，マッハ数10，20，及び25の ノミナル軌道上に矩形印で示される基本計算点を設定した。 さらに粘性干渉効果の空力特性に与える影響を調べるため，図の三角印で示されるオフデザインポイント上にも計算点 を追加し，計 9 箇所で粘性干渉効果，及びマッハ数効果の影響を系統的に調べるための解析を実施した。それぞれの マッハ数に対して粘性干渉パラメータは0．006，0．02，0．04で ある。

一方，図2にはHOPEのノミナル軌道におけるマッハ数と迎角の関係を示す。この飛行軌道から，図1の各計算設定点につき，迎角 $\alpha=30^{\circ}$ ， 40° ，及び5 0° での完全 ／実在気体計算を実施した。横方向特性に対しては横すご り角を 3° ， 4° にとり，それぞれカルスバン衝撃風洞試

験，及び実飛行条件対応解析を行った。さらにボディフラッ ブ及びエルロン舵角 20° 下げの効果をみるため，マッハ数10及び25，迎角 30° ，4 0° において粘性干渉係数 をバラメータとして，舵面効き解析を実施した。計算ケース を表1に示す。
マッハ数 25.5 ，迎角 $\alpha=30^{\circ}, ~ 40^{\circ}$ ，50 にお けるノ一ズからの圧力中心位置，ピッチングモーメント，及 び軸力係数の粘性干渉パラメータによる変化を図3に示す。図には完全，及び実在気体計算結果をプロットしている。当然ながら軸力係数C A は粘性干渉パラメータの増加に伴い，高くなるが，完全気体が実在気体結果に比較して，増加の率 が高い。しかしながら，迎角が増すにつれ軸力成分も減少す ることから，迎角 50° では完全／実在気体計算間での差 は減少する。

ピッチングモーメント係数 Cm mついてはシャトルの飛行特性と同様に実在気体効果により頭上げのモーメントが発生するため，すべての迎角を通じて実在気体計算結果が完全気体のそれを上まわつているのが特徴である。一方，粘性干渉パラメータの増加に伴い，胴体風上側軸力が増加す ることから，頭下げのモーメントが発生し，全体として粘性干渉パラメータの増加は，モーメント係数を减少させる傾向にある。
圧力中心位置 Xcp は，実在気体効果による頭上げモー メントの発生で前方に移動し，この効果は迎角が小さいほ ど大きいことがわかる。迎角 50° では Xc p の実在気体効果の影響はきわめて少ない。また，粘性干渉効果による頭下げモーメントの若干の増加により，圧力中心位置はやや後方に移動する。
図4のマッハ数 10 のケースでは粘性干渉パラメータの定義からも推察されるように，同一の干渉バラメータの値 ではレイノルズ数の絶対値がマッハ数 25 に比較してそれ

だけ小さくなるため，粘性干渉効果の影響はより大きくあ らわれている。マッハ数10の計算結果の全体的な傾向は マッハ数 25 の結果と相似である。
図5には粘性千渉パラメータの增加による軸力係数CA の増大，及び圧力中心位置 X c p の移動量をプロットした。迎角は 40° で，マッハ数 10 ， 20 ，及び 25.5 の完全気体結果を示す。図には比較のためにAEDC風試及びカ ルスパン衝撃風試での実験結果をブロットする。軸力係数 に関してはマッハ数 10 の計算結果が実験値と良好な—致 を示す。マッハ数 2 0 及 び25．5では軸力の増加の傾向 は，マッハ数 10 の結果と同一であるが，軸力係数の値その ものはやや小さくなる。
圧力中心位置についても同様な傾向が示される。圧力中心位置は一般的に粘性干渉効果による軸力の増加で後方に移動する。大迎角時におけるトリム可能な圧力中心位置範囲は設定値の $\pm 1 \%$ パーセント程度であることからこれま でに示された圧力中心の詳細な評価はきわめて重要である。
図6にはマッハ数 10 ，及び 25.5 ，迎角 $\alpha=30^{\circ}$ ， 40° におけるボディフラップ 20° 下げ時の機体下面，及びボディフラップ後縁を含む断面での完全ノ実在気体効果解析による圧力線図を示す。
図に示されるように，実在気体効果により衝撃波は機体表面に近づき，マッハ数 25.5 では高い圧力がボディフ ラッブ面に生ずる。これはボディフラッブ根元での剥離•再付着領域が実在気体効果により狭められることとも関連し ている。
図7には図6のボディフラッブ舵角 20° の結果に対応 した，粘性干渉パラメータの増加による圧力中心，軸力係数及びビッチングモーメント係数の変化を示す。マッハ数1 0 では，軸力を除いて粘性干渉による影響は少ない。マッハ数 25 の結果では，実在気体効果によるボディフラップ面 の圧力上昇から，強い頭下げのピッチングモーメントが生 じ，ボディフラップ舵角 O^{*} の場合の実在気体効果による頭上げのモーメントは抑制され，完全気体よりも大きな頭下げモーメントが発生する。また，完全気体側では，粘性干渉パラメータの増加に伴い，軸力による頭下げモーメント の増大により，ビッチングモー－メント及び圧力中心位置は実在気体計算結果と重なる傾向にある。一般的に䊀性干渉 による軸力の増加は実在気体のケースでは完全気体に比較 して小さいという特徴を示す。
図8にエレボン舵角 20° 下げ時のマッハ数 10 ，及び 25，迎角 40° における完全／実在気体解析による圧力線図を示す。対応する圧力中心位置，ピッチングモーメント係数，及び軸力係数の粘性干渉効果による変化を図9に示 す。完全気体での粘性干渉パラメータの増加に伴ら軸力の増加とマッハ数 25 での実在気体効果による頭下げモーメ ントの増加がみられるが，その他では大きな相違はみられ ない。

4．HOPE打ち上げフェーズ低迎角乱流加熱解析

HOPE－Xの打ち上げフェーズにおいてはマッハ数3 から6にかけて動圧が高く，低迎角における飛行となるこ とから乱流遷移加熱が重要となる。すなわち，HOPE－X の上面，䏱体側面では，耐熱材としてキルティング断熱材が使用され，その耐熱限界値が低いため，大迎角再突入飛行と は異なる観点から，その熱設計においては十分な配慮がな

HOPEO7 Mach＝25．52 ALPHA $=30^{\circ}$

（a）$\alpha=30^{\circ}$

（b）$\alpha=40^{\circ}$

HOPE07 Mach－25．52 ALPHA＝50 ${ }^{*}$

（c）$\alpha=50^{\circ}$

图3 HOPEO7形状粘性干涉効果によるマッハ数 25 での圧力中心，ヒッチングモーメント，及び伐力の変化

HOPE07 Mach＝10．02 ALPHA＝30＊

（a）$\alpha=30^{\circ}$

（b）$\alpha=40^{\circ}$

HOPE07 Mach＝10．02 ALPHA $=50^{\circ}$

（c）$\alpha=50^{\circ}$

图4 HOPEO7形状粘性干涉効果によるマッハ数10での圧力中心，ピッチングモーメント，及び較力の変化

図5 迎角 40° ，マッハ数 $10,20,25.5$ における軸力及び圧力中心位置に与える粘性干渉効果特性

Pressure Contours m10a30
（a）$M \infty=10.0, \alpha=30^{\circ}$

Pressure Contours m10a40
（c） $\mathrm{M}_{\infty}=10.0, \alpha=40^{\circ}$

Pressure Contours m25a30
（b）$M \infty=25.5, \alpha=30^{\circ}$

Pressure Contours m25a40
（d） $\mathrm{M} \infty=25.5, \alpha=40^{\circ}$

図6 ポディフラップ蛇角 20° 下げ時の 完全／実在気体解析による圧力線図比較

図7 迎角 40° ポディフラッブ 20° 下げ時の粘性干澁によるビッチングモーメント，軸力及び圧力中心位置への影響効果

図8 迎角 40° エレポン舵角 20° 下げ時の完全／実在気体解析による圧力線図比較

図9 迎角 40° エレボン舵角 20° 下げ時の粘性干渉によるピッチングモーメント，軸力及び圧力中心位惪への影響効果

されなければならない。表2に今回の計算ケースを示す。 マッハ数 3 のケースは飛行軌道上での条件，マッハ数 6 は AEDC極超音速風洞試験条件での比較ケースである。こ のため，AEDC HWT試験では，模型上側面にトリッピ ングを取り付け，乱流加熱風試が実施された。図10はその取り付け位置を示している。マッハ数3，及び6での低迎角 における空力加熱分布図を図11に示す。

風洞試験との比較結果は図 12 に示される。主翼上面， ティッブフィン側面及び胴体側面において乱流加熱分布は実験，計算とも良好な—致を示しているが，加熱レベルが低 く，実用的にはより高い精度での計算が必要となる。

図10 ラフネスリング取り付け位置

図11 HOPE 打ち上げフェーズ低迎角時の空力加熱分布

5．まとめ

HOPE—X基本設計における最終的なCFD評価解析 として，これまでの極超音速風洞試験検証及びHYFLE Xスペース・シャトル等の飛行実験検証，高温衝撃風洞試験検証の成果をもとに，HOPE－Xノミナル軌道に沿った デザイン及びオフデザインポイントにおける粘性干渉及び実在気体効果解析を実施した。特に，極超音速大迎角飛行時 のトリムをとる上で重要な圧力中心，ピッチングモーメン ト及で粘性干渉効果が顕著にあらわれる軸力を中心に空力特性の評価を行った。

一方，HOPE－X打ち上げフェーズにおける低迎角時乱流遷移加熱も熱防護材の耐熱性の観点からは非常に重要 な評定となり，一連の乱流加熱解析を実施した。

参考文献

1）山本行光「CFDによるHOPE空力設計解析とその検証」第15回 航空機計算空気力学シンポジウム論文集 NAL SP－ 37，1998年，2月 pp181－190
2）山本行光 「スペース・シャトル及びHYFLEXまわりの高温実在気体解析」航空宇宙数値シミュレーションシンポジ ウム 98 論文集 NAL SP 1999年

（a）胴体上面対称面

（b）主翼上面

（c）テイツプフィン外側面

（d）晍体側面
図12．HOPE胴体，主翼上面及び側面におけるAEDC低迎角打ち上げフェーズ乱流遷移加熱分布の比較 （ $\mathrm{M}_{\infty}=6, \alpha=0 \sim-0.5^{\circ}$ ）

HOPE 粘性干渉／実在気体効果計算ケース

迎角 50° 完全／実在気体（ $\mathrm{M}_{\infty}=10,20,25$ ）

No．	気体モテル	納高コード	形状	$\begin{gathered} \text { マッハ数 } \\ (-) \end{gathered}$	解温 （K）	$\begin{aligned} & \hline \text { 静圧 } \\ & \text { (} \mathrm{Pa} \text {) } \\ & \hline \end{aligned}$	壁温 （K）	α（deg）	$\begin{array}{c\|} \hline \beta \\ (\mathrm{deg}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \delta \mathbf{e} \\ (\mathrm{deg}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \delta \mathrm{bf} \\ \text { (deg) } \\ \hline \end{array}$	輱考	缶具目的
201	完全只体	FVS	07HOPE	10.02	257.6	36.59	1366	30，40， 50	0	0	0		力段勍紏算
202				19.81	216.3	4.366	1356	30，40， 50	0	0.	0		$\alpha=30,40,50$（deg）での
203				25.52	499.1	1.090	1366	30，40， 50	0	0	0		ノミナル飛行彖性
204				0.94	50.30	99.00	300	30，40，50	0	0	0	（AEDC 禿性）	
205		FDS		10.02	257.6	36.59	1366	30，40，50	0	0	0	N．C．W	
206				19.81	216.3	4.336	1366	30，40， 50	0	0	0		
207				25.52	199.1	1.090	1366	30，40， 50	0	0	0		
208				9.94	50.30	99.00	300	30，40， 50	0	0	0	（AEDC 委件）	

（a）
迎角 $30^{\circ} / 40^{\circ} / 50^{\circ}$ における完全気体粘性干渉効果

209	完全㐎体	FVS	07HOPE	10.02	257.6	0.8932	1366	50	0	0	0	$V \mathrm{inf}=0.04$$\text { (} M=25.5 \text { 相当) }$	柜敖空カモデル検し 基本形態 （Mach 数Ninf 安更）
210				10.02	257.6	0.8932	1366	40	0	0	0		
211				10.02	257.6	0.8932	1366	30	0	0	0		
212				19.81	216.3	1.084	1368	50	0	0	0		
213				19.81	216.3	1.084	1366	40	0	0	0		
214				19.81	216.3	1.084	1366	30	0	0	0		
215				19.81	218.3	44.43	1366	50	0	0	0	Vinf＝0．006	
216				19.81	216.3	44.43	1366	40	0	0	0		
217				19.81	216.3	44.43	1366	30	0	0	0	（ $M=10$ 相当）	
218				25.52	199.1	44.67	1366	50	0	0	0		
219				25.52	199.1	44.67	1366	40	0	0	0		
220				25.52	199.1	44.67	1366	30	0	0	0		

242	它全気体	FVS	07HOPE	10.02	257.6	3.571	1366	50	0	0	0	Vint $=0.02$ （ $M=20$ 相出）	拝数空力モデル模䃌 基本形藪 （Mach 数Ninf $\boldsymbol{y}^{\boldsymbol{\prime}}$ 更）
243				10.02	257.6	3.571	1368	40	0	0	0		
244				10.02	257.6	3.571	1366	30	0	0	0		
245				25.52	199.1	4.360	1366	50	0	0	0		
246				25.52	199.1	4.360	1366	40	0	0	0		
247				25.52	199.1	4.360	1366	30	0	0	0		

（b）
迎角 $30^{\circ} / 40^{\circ} / 50^{\circ}$ における実在気体粘性干渉効果

（c）

マッハ数 1 0，25における横方向特性（ $\beta=3^{\circ}$ ），及び ボディフラップ舵角 20° 下げ時における完全／実在気体 粘性干渉効果

248	完全気体	FVS	O7HOPE	14.2	61.81	24.27	300	40	3	0	0	CALSPAN 対龙	横方向基本特性 Vinf／実在気体㕮罙
249				16.4	46.20	4.710	300	40	3	0	0		
250				15.2	55.94	2.914	300	40	3	0	0		
251	韭平街流	FDS		16.4	46.20	4.710	300	40	3	0	0		
252	完全気体	FVS		10.02	257.6	36.59	1366	40	3	0	0		
253				25.52	199.1	1.0903	1366	40	3	0	0		
254	非平衡流	FDS		10.02	257.6	36.59	1366	40	3	0	0	N．C．W	
255				25.52	199.1	1.090	1366	40	3	0	0		

289	完全気体	FVS	07HOPE	10.02	257.6	0.8932	1366	40	3	0	0	N．C．W	我行後データの莣買 要因の確認 （横方向待性）
290				25.52	199.1	44.67	1366	40	3	0	0		
291	非平衡流	FDS		10.02	257.6	0.8932	1366	40	3	0	0		
292				25.52	199.1	44.67	1366	40	3	0	0		
293				10.02	257.6	0.8932	1366	40	0	0	20		飛行後データの変更 要因の確記 （辚 bf 効き特性）
294	完全気体	FVS		25.52	199.1	44.67	1366	40	0	0	20		
295				10.02	257：6	0.8932	1366	30	0	0	20		
296				25.52	199.1	44.67	1366	30	0	0	20		
297	非平衡流	FDS		10.02	257.6	0.8932	1366	40	0	0	20	N．C．W	
298				25.52	199.1	44.67	1366	40	0	0	20		
299				10.02	257.6	0.8932	1366	30	0	0	20		
300				25.52	199.1	44.67	1366	30	0	0	20		

（d）

マッハ数 1 0，25におけるエレボン舵角下げ時における完全／実在気体 粘性干渉効果

No．	気体モテル	㹁算コード	恶状	$\begin{gathered} \text { マ ッハ数 } \\ (-) \end{gathered}$	解温 （K）	解圧 （Pa）	壁温 （K）	α （deg）	$\begin{gathered} B \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \delta \mathrm{e} \\ (\mathrm{deg}) \end{gathered}$	$\begin{array}{\|c\|} \hline \delta \mathrm{bf} \\ \text { (deg) } \end{array}$	Fiow Assumption	部算目的
301	完全気体	FVS	O7HOPE	10.02	257.6	36.59	1366	40	0	20	0	N．C．W．	飛行後データの差異 要因の砗記 （エルロン効き特性の夜更） （諸躳中立と組み合わせて $\delta e=10(\mathrm{deg}) . \delta a=10(\mathrm{deg}))$
302				25.52	199.1	1.090	1366	40	0	20	0		
303	非平愘流	FDS		10.02	257.6	36.59	1366	40	0	20	0		
304				25.52	199.1	1.090	1366	40	0	20	0		
305	完全気体	FVS		10.02	257.6	0.8932	1366	40	0	20	0		
306				25.52	199.1	44.67	1366	40	0	20	0		
307	非平㣫流	FDS		10.02	257.6	0.8932	1366	40	0	20	0	N．C．W．	
308				25.52	199.1	44.67	1366	40	0	20	0		

（e）

表1 HOPE－X 飛行軌道に沿った粘性干渉／実在気体効果 設計解析ケース

マッハ数 3.27 乱流解析

$\alpha=0^{\circ}$ ，$-5^{\circ} \quad \beta=-5^{\circ}$ のケース

No．	気体モデル	紏算コード	形状	$\begin{gathered} \text { マッハハ数 } \\ (-) \end{gathered}$	$\begin{aligned} & \text { 静温 } \\ & \text { (K) } \end{aligned}$	$\begin{aligned} & \hline \text { 静圧 } \\ & (\mathrm{Pa}) \end{aligned}$	$\begin{aligned} & \hline \text { 壁温 } \\ & \text { (K) } \end{aligned}$	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \beta \\ (\operatorname{deg}) \end{gathered}$	$\begin{gathered} \delta \mathrm{e} \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \delta \mathrm{bf} \\ (\mathrm{deg}) \end{gathered}$	備考	計算目的
257	完全気体	FVS	09HOPE	3.27	221.7	2476.1	300	0	0	0	0	乱流	上面加熟案分布設定用打ち上げ対応
260				3.27	221.7	2476.1	300	－5	0	0	0	乱流	
262				3.27	221.7	2476.1	300	0	－5	0	0	乱流	
264				3.27	221.7	2476.1	300	－5	－5	0	0	乱流	

マッハ数 3.27 乱流壁面温度変更ケース

$$
\alpha=0^{\circ}
$$

No．	気体モデル	勍算コード	形状	$\begin{gathered} \text { マッハ八数 } \\ (-) \end{gathered}$	$\begin{aligned} & \hline \text { 静温 } \\ & \text { (K) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{l}_{\text {然圧 }} \\ & (\mathrm{Pa}) \end{aligned}$	$\begin{aligned} & \hline \text { 塾温 } \\ & \text { (K) } \end{aligned}$	$\begin{gathered} \alpha \\ (\operatorname{deg}) \end{gathered}$	$\begin{gathered} \beta \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \delta \mathrm{e} \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \delta \mathrm{bf} \\ (\mathrm{deg}) \end{gathered}$	備考	計算目的
284	完全気体	FVS	09HOPE	3.27	221.7	2476.1	500	0	0	0	0	乱流	表面温度等管評価
286				3.27	221.7	2476.1	628	0	0	0	0	乱流	

AEDC 風試乱流遷移加熱比較対応計算ケース

223	完全気体	FVS	09HOPE	5.98	58	1158.4	300	0	0	0	0	乱流	AEDC 䬄試比較
225				5.98	58	1158.4	300	－5	0	0	0	乱流	
227				5.98	58	1158.4	300	0	－5	0	0	乱流	

表2 HOPE 打ち上げ形態乱流加熱計算ケース

再使用型宇宙往還輸送機まわりの空力解析システムの構築

山本 行光＊

Construction of Multi－Disciplinary Aerodynamic Analysis System for the Design of Re－usable Space Transportation Vehicles．

by

Yukimitsu YAMAMOTO＊

Abstract

Construction of multi－disciplinary aerodynamic analysis system is emphasized for the optimum aerodynamic design of future re－usable space transportation vehicles．First，roles of CFD simulations are considred through the development process of HOPE－X，where parametric computations for the configuration design，validations by comparisons with many hypersonic wind tunnels and high enthalpy shock tunnels，and flight experiments analysis including HYFLEX，have been made．

In order to evaluate aerodynamic characteristics，more accurately and totally，multi－disciplinary simulation must be introduced by coupling several fields of numerical methods．As the first step，CATIA software is introduced to generate configurations of Reusable Launch Vehicle To solve more complicated flow fields，multi－block grid generation software GRIDGEN is used and CFD analysis is enlarged to transonic flow region to estimate aerodynamic load，totally from launching to re－entry phase．Systematic aerodynamic design procces which consists of multi－disciplinary simulations is needed in total optimum design of future re－usable launch vehicle．Finaly，information exchange through high speed networks，utilizing data base Systems，will be important and preliminary cocepts are introduced

1．はじめに

我が国における宇宙輸送システムの確立と低コスト化を目指して再使用型ロケットの構想が提案されているっこれ はS S T O 方式による垂直打ち上げ，水平着陸による帰還飛行を行うもので，その実現にはロケットエンジン技術の進歩とともに構造の軽量化が最も重要な課題の一つである。

しかしながら，空力熱荷重低滅化技術も，より無駄のない設計を行う上で重要であり，このような再使用型ロケット のシステム設計に関しては，設計段階で多分野融合（Multi－ Disciplinary）の大規模シミュレーションを同時並行 （Concurrent）的に活用することで，その設計コストを大幅に削減し，高効率な最適設計を行えることが期待できる。

このようなシステムは空力，熱構造，推進，制御等の解析方法を組み合すせ，最終的な設計モデルは多分野融合最適化（Multi－Disciplinary Optimization）の手法で決定されるもの と考えられる。

上記のようなシステムを構築し，離陸から着陸にいたる までの任意の飛行形態における飛行性能を評価し，再使用型ロケットの飛行総合評価をリアルタイムで実施し，双方向通信による可視化応用技術を用いて設計評価を行うCF D 統合解析システムの構築が緊急の課題である。
本報告では，最初にHOPE－X等の有翼宇宙往還機開発に果たしてきた熱空気力学数値シミュレーション技術1～ ${ }^{29)}$ の役割について概観し，その発展としてのCFD統合解析システムへの展望及びデータ・ベース等を含めた周辺技術の整備について述べる。

[^16]
2．有翼宇宙往還機開発に果たす数値シミュレーション技術の役割

有翼宇宙往還機開発に数値シミュレーション技術が果た す役割として次の3つがトげられよう。また関連するKey Wordを各項目に付記すると

1）空力形状設計一生産性—
2）風洞試験実証一信頼性—
3）実飛行実験評価一実在気体効果 Multi－Disciplinary Simulation－
となり，以下に各項目別に解説字る。

2－1 空力形状設計

本項目では有翼宇宙往還機の概念検討，基礎設計から詳細設計に至る各時期におろいて，的確にパラメトリックCF D解析を実施し，最適形状を絞り込んでゆく作業が必要と なる。そのため飛行軌道条件に沿つた計算は多論のこと off－designボイントでの特性を各形状について把握する必要が生じる。HOPE—Xの極超音速領域解析では，これま でに1000例以上のナ゙ビエ・ストークス計算を実施し10）～20）飛行条件，飛行姿勢，舵面，ガスジェット，気体モデル間の違い等による空力特性および空力加熱特性の変化を調心て きた。解析形状例を図1に示す。C F D が真の解析ツールと して成立するためには並列計算機の発展もさることながら，設計期間のよりいつそうの短縮化を目指して，新たなネッ トワーク作りが必要となる。

2－2 風洞試験実証

HOPE－Xの極超咅速領域の空力設計では数値シミュ レーションの信頼性の検証も含め，国内外の種々の極超音

速風洞による試験が数次にわたつて行われた。一般の極超音速風洞実験としては，
日本 NAL HWT（マッハ数10）
フランス ONERA S 4MA（マッハ数10）
米国 AEDC Tunne1 B（マッハ数5～10） カルスパン 衝撃風洞（マッハ数 $10 \sim 18$ ）
等の風洞が使用された。また高温衝撃風洞試験として，

ドイツ	DLR	HEG
米国	CALTEC	T5
フランス	ONERA	F4

がHOPE－X及びHYFLEXの飛行試験のために実施 されている。今年度からは，NALのHIESTを使用した高温衝撃風洞試験も開始されようとしている。風洞試験と の検証については，過去に数多くの検証を積み重ね，最近で は特に，完全気体レベルでA E D C との比較結果 ${ }^{16)}$ ， 17 に見 られるように，圧力中心位置等では設計上の許容誤差0．2 \％以内の範囲で一致し，また空力加熱分布についてもカル スパン衝撃風洞試験との比較では，図2の一連の比較結果 に示されるように，機体全表面にわたりほぼ完壁な定量的一致が得られている。乱流遷移加熱のAEDC風洞試験結果との比較は文献：に報告され，この試験においても定量的に良好な一致が得られた。
実在気体，及び粘性干渉効果解析については，検証として HYFLEXのHEK衝撃風洞試験対応解析，及びスベー ス・シャトル実飛行条件解析を実施し19），off－designボイン トを含めたHOPE－Xの詳細なバラメトリック計算が行 われた」実在気体モデル検証として，今後HYFLEXでは ONERAF4，HOPE－XではHIESTを用いた風洞実験対応解析を予定している。

2－3 実飛行実験評価

OREX（軌道再突入飛行実験）及びHYFLEX（極超音速飛行実験）はそれぞれ1994年，及び1996年の2月に実施され，成功裏に種々の飛行計測データが取得され た。これらの飛行実験において特に重要な研究項目の一つ として，再突入飛行における空力加熱と耐熱材の温度上昇 の評価が上げられるここのような熱空力統合解析において は，外部流CFD計算のみでは完全な評価を行えず，耐熱材内部の温度上昇をFEM解析によって算出し，外部流から の空力加熱とカッブリングしてはじめて正確な再突入飛行環境の評価が可能である。

OREXの解析 ${ }^{21!}$～25）では実在気体C FDコードとFE M内部熱解析コードを使用して，飛行軌道に沿うC／C材，及び耐熱タイルの表面温度の同定を行うことができた。こ の表面温度履歴データをもとに，C／C 材コーティングの表面触媒性の同定が行われ $\left.{ }^{233} \sim 25\right)$ ，触媒効率として $\gamma=0.004$ $~ 0.005$ といら最終的な推定が可能になった。

同様なカッブリング手法を三次元的に拡張し，軌道に沿 う表面温度の同定をHYFLEX飛行実験についても実施 した ${ }^{[6]}$ ，29！：図 3 にHYF L E X 温度計測位置及び胴体後方部計測点TA30，33，35，38における空力加熱率の比較結果を示す。解析はCFD／FEMカップリング計算 により，機体表面温度の飛行時刻変化を考慮に入れ，層流及 ご乱流モデルを用いて，乱流遷移加熱の定量的な評価を行った 各計測点での飛行時刻に対する空力加熱の変化は

飛行データとほぼ一致し，特に飛行時刻 120 秒から始ま る乱流遷移による急激な加熱率の上昇とその後の乱流加熱 の低下する現象は，乱流モデルによる計算で，定量的に非常 によく模擬される結果となった。

図1 HOPEーXパラメトリック解析形状

図 2 カルスパン衝撃風洞 空力加熱分布比較
$(\operatorname{Minf}=14.06 \mathrm{a}=40, \mathrm{Tinf}=160.8 \mathrm{~K}$ Pinf＝34．7 Pa）

Elevon and Body Flap（Lower Surface）

図2続

Wing Leading Edge

CALSPAN Model

WING LEADING EDGE（RUNNo．184）

WMO WM LEADING EDGE（RUN No．184）

（c）主翼前縁
図2続

Tip Fin and Rudder Outboard

QiCred TIP FIN OUTBOARD（RUN N0．104）

RUDDER OUTBOARD［RUN No．184］

（d）ティップフィン外側面
図2 続

Tip Fin and Rudder Inboard

RUDDER INBOARD（RUN No．104）

TIP FIN INBOAAD（RUN No．184）

TIP FIN INBOARD（RUN No．184）

RUDDER IN BOARD（RUN No．184）

TIP FIN INEOARD（RUN N o．184）

OR TIP FININBOARD（RUN Na．184）

（e）ティップフィン内側面
図2 続

Side Fuselage

CALSPAN Model
Difinition of $\geqslant \geqslant=y / 4.4547$

（f）胴体上側面
図2 続

3．再使用型宇宙往邆輸送機まわりの空力解析システム の構築

領城のCFD解析は，実在気体勃果含含めて，多くの有益な役帮を果たすことができた。

一方，HOPE－Xによる有翼再突入飛行実倹後の次の目㯲として，宇宙耣送システムの低コスト化を目指した再使用型ロケットの構想が提案されている。構想図を図4に示す。この開発においてはエンジン再使用化技術と機体構造の軽量化が最も重要な課題てある。しかしながら，微底し た轾量化と高性能化をはかるるためには空力形状設計におい ても，より高棈度な最適設計を行うシステムの構築が必要 である。

このような設計システムの構築には概念検討の段障から，多分野融合（Multi－Disciplinary）シミュレーションを導入した CFD統合解析システムの整備をはかることが重を要と考え られる。これにより，設啚錆度の大幅な向上と，設計コスト の削減，開発期問の短縮化を促進することが期待される。

本節では，上記システムの横冓に向けた，曜陸から再突入㷌還飛行にいたるまでの飛行マッハ数での飛行性能総合評価を視野に入れ，形状作成から，データ処理にいたるまでの

各研究要柰についてこれまたの開発経過を紹介する。

3－1 形状作成

再使用型S S TOロケット形状設計と構造解析に使用す るためキャティアを䜂入した。キャティアの構成は以下の ようなものである。

1）サーフェースモデル
表面機体形状の決定
2）ンリッドモデリング
内部裱造モデルの作成
燃料タンク，配宣，主櫣造のモデリング，
TPSの構成，重量•重心計算
3）IGESブロセッサー
他のソフトウエアとの連苓
ANSYS，PATRAN，GRIDGEN
4）三次元パラメトリック設計
形状修正のためのツール
最適形状バラメトリック解析に使用する
図5にキャティアで作成した 2 種類の代表的なRLVの形状例を示す。図5（a）は特に主翼と胴体が滑らかった接合さ れた翼胴一体型の形態となっている。

1．打ち上げ

3．再突入飛行

2．䩔道上ミッション運用

4．着陸

図4 再使用型ロケット遒用形效想像図

図5 キャティアで作成した代表的なRLV形態

図6 再使用型ロケットシステムスタディ用形状まわりの格子

（a）HOPE－Xエレボン 20°
下げ解析用格子

（b）ベースを含む
再使用型ロケットまわりの格子

図7 GRIDGENによる全機空力特性解析用格子

図8 再使用型ロケットまわりの票音速C FD解析 圧力分布

図9 エレボン拕面20＊下げ時のHOPE－X愿音速CFD 解析 表面圧力分布

3－2 格子作成と䀊音速空力特性解析

三次元格子例を図6に示す。今回新たに飛行安定性及び空 カ推進カッブリンク解析を進めるために，より複維な形態 に対応することの可能なマルチブロック格子作成ソフトG RIDGENを導入した。HOPEのエレボン能面 20°下げまわりの翼間キャップを含を格子，及ひ再使用ロケッ トベース部まわりの格子を図7に示す。
一方，再使用ロケットの熱空力荷重縂合評価では動圧の高い遷音速空力特性解析も極超音速䫀域と並んで重要とな り，その計算例を図 8 に示す。また隹行安定性や空力觗面の ヒンジモーメントを正磪に算定する必要も生じる。エレボ ンすき間を伴うHOPE—Xの僄音速空力特性計算例を図 9に示す。

3－3 多分野融合數値シミュレーションによるCFD統合飛行評

価解析前記項目では形状定義から格子作成，打ち上げから再突入帰還感行にいたる間の邆音速空力特性解析について，現状を紹介したが，再使用型ロケットの最適設計を行うには図1 ○に示されるように熱構造，推進，飛行制御について緒合的に考察することが，椚念設浢の段階から重要と考えら れる。熱構造解析との連成についてはHYFLEXのFE M熱連成解析や現在進めているHOPE－X の飛行軌道に沿った空力／熱構造解析での進展があり，さらにHYFL EXでは図11（a）に示されるように内部構造部材の温度計測がなされており，図11（b）にみられる詳細なフレーム／ ストリンガーを含めたCFD／FEMカッブリング解析が進行中である。また飛行制御との連成については，6自由度運動方程式を組み込んたHIローケットSR－B分醀解析 ${ }^{302}$ ，及び実在気体CFDと解析とカッブリングした火星大気再突入飛行解析 ${ }^{3}$ 等があり，その実用化はほぼ達成されてい る。推進蔡とのカップリングによる干涉特性解析について は，これは再使用型ロケットはもとより，図12に示される スクラムジェットエンジン一体型のスペース・ブレーンの推進性能評佰においてもきわめて重要である。このような䚀点から多分野融合数值シミュレーション技術を空力解析 システムに早急に組み込み，MDO（Multi－Disciplinary Optimization）へと発展させることが重要と考えられる。

3－4 データ・ヘースシステムの構築
高速ネットワークを介したデータ・ベースの獘備は ヴァーチャルモックアッブの作成，シミュレーション結果 の攧析，さらには解析結果の設計への反咉を通して，各担当分野におけるデータの共有や設計変更等が効率的に行わえ る環境を作り出す。図13（a）はHOPE－X空力加熱試験結果とCFDの比較をイントラネット上に擎儒した例を示与。図13（b）はAEDCやNAL HWT等の空力加熱涀定における各風洞試験結果を同時にプロットできるシステ ムを整備した例で，これにより解析は，任意のケースの任意 の分布比較が可能になる。これは双方向通信を利用したJ AVAスクリブト言語によって作成された。

图14はVRML（Virtual Reality Modeling Language）によ る再使用ロケット軌道飛行の表示例である。持来，6自由度運動方程式を組み込むことにより，飛行特性の把㳮が容易 になると考えられる。

4．まとめ

これまでに行ってきた有翼往還機等のCFD熱空力解析 を行ってきた経験から，現状の再突入飛行問題にねける熱空力数値シミュレーション技術の現状と多分䫘融合シミュ レーションを含むCFD続合空力解析システムの展望につ いて報告した。紗来型宇宙往還機の聞発にあたつては，凓造

の軽量化と推進の高性能化がキーテクノロジーとなる加， このための空力特性解析を含あたシステムの最適化も重要 な課題である。宇宙往還機開発におおる数值シミュレー ション技術の今後の役割としては，風洞試験では困難な䫀域をカパーし，本格的な設計支援システムとしてその䖻合評価能力を役立てていくことにあると考える。

図10 再使用型ロケット全槾設計のための多分野融合解析

図12 スペース・プレーン極超音速流解析

Real Gas
（a）スペース・プレーン実在気体効果解析 （ $\mathrm{M} \infty=10, ~ \alpha=0^{\circ}$ ）
（b）AEDC HWT 風試シュリーレン写真による衝撃波形状比较（ $M \infty=10, ~ \alpha=20^{\circ}$ ）

図11 HYFLEX内部構造熱応答解析

（a）HOPE－X 空力加熱比較結果のイントラネット・データベース整備

（b）JAVA双方向通信を利用した 空力加熱風洞試験間比較図の作成

図14 VRMLによる再使用ロケット軌道飛行表示

参考文献
1）Y．Yamamoto，S．Kubo，＂Numerical Simulation of Hypersonic Flow around a Space Plane I Basic Development＂，Technical Report of National Aerospace Laboratory TR－976T，May，1988，Chofu，Tokyo
2）Y．Yamamoto，＂Numerical Simulation of Hypersonic Flow Around a Space Plane II Application to High Angles of Attack Flow＂，Technical Report of National Aerospace Laboratory TR－1011T，February，1989，Chofu，Tokyo
3）Y．Yamamoto，H．Arakawa，R．Yoshida，＂Numerical Simulation of Hypersonic Flow Around a Space Plane III Analysis of Aerothermodynamic Heating＂，Technical Report of National Aerospace Laboratory TR－1027T，August，1989， Chofu，Tokyo
4）Y．Yamamoto，＂Numerical Simulation of Hypersonic Flow Around a Space Plane＂，AIAA paper 88－2615，June 27－29， 1988，San Antonio，Texas
5）Y．Yamamoto，S．Kubo，＂Numerical Simulation of Hypersonic Flow around a Space Plane at High Angles of Attack Using Implicit TVD Navier－Stokes Code＂，AIAA paper 89－273，January， 1989
6）Y．Yamamoto，H．Arakawa，R．Yoshida；＂Numerical Simulation of Hypersonic Viscous Perfect Gas Flow for the Aerothermodynamic Design of Space Planes at Low Angles of Attack＂，AIAA paper 89－1699，June 12－14，1989，Buffalo， New York
7）K．Hozumi，A．Yoshizawa，Y．Yamamoto，＂Measurements of Surface Pressure Distributions on a Space Configuration at a Mach Number of 7．1＂，Proceedings of the 27th Aircraft Symposium， 1989
8）山本，井上，葛原，中尾，「極超音速風洞におけるスペ一ス・プレーンまわりの力，圧力及び空力加熱計測とC FD」航空宇宙学会第23期年会講演会，1992年4月
9）Y．Yamamoto，＂Numerical Simulation of Real Gas Effects and Aerodynamic Heating of Hypersonic Space Transporta－ tion Vehicles＂，Computational Methods in Applied Sciences， 1992，Elsevier Science Publishes．B．V．pp 137－149
10）山本行光，秋元敏男，「HOPEの極超音速空力数値シ ミュレーション」航技研報告 TR－1028，1989年4月
11）山本行光，秋元敏男，「HOPEの極超音速空力数値シ ミュレーション II」航技研報告TR－1093，1991年1月
12）Y．Yamamoto，T．Akimoto，N．Suzuki，＂Numerical Simulation of Hypersonic Viscous Flow for the Design of H－II Orbiting Plane（HOPE）Investigation of Lateral and Directional Aerodynamic Characteristics＂，AIAA paper 90－0416，January 8－11，1990，Reno，Nevada
13）Y．Yamamoto，T．Akimoto，N．Suzuki，＂Numerical Simulation of Hypersonic Viscous Flow for the Design of H－II Orbiting Plane（HOPE）＂，AIAA paper 90－0601，January 8－11，1990，Reno，Nevada
14）Y．Yamamoto，＂Numerical Simulation of Hypersonic Viscous Flow for the Design of H－II Orbiting Plane（HOPE）Part II＂， AIAA paper 91－1390，June 24－26，1991，Honolulu，Hawaii
15）Y．Yamamoto，Y．Wada，M．Yoshioka，＂Hypersonic CFD Analysis for the Aerothermodynamic Design of HOPE＂，AIA A paper 95－1770，June 19－22，1995，San Diego，California
16）Y．Yamamoto，＂Numerical Analysis of Hypersonic

Aerodynamics for Atmospheric Re－Entry Problems of HOPE and HYFLEX＂，AIAA paper 98－0277，January 12－15，1998， Reno，Nevada
17）山本行光「CFDによるHOPE空力設計解析とその検証」第15回航空機計算空気力学シンポジウム論文集 NAL SP－371998年2月 pp181－190
18）山本行光「HOPEの極超音速流空力設計C F D 解析」航空宇宙数値シミュレーションシンポジウム98 NAL SP 1999年 本論文集掲載
19）山本行光「スペースシャトル及びHYFLEXまわりの高温実在気体解析」
航空宇宙数値シミュレーションシンポジウム98 NAL SP 1999年 本論文集掲載」
20）伊藤良三，山本行光「HOPEの遷•超音速空力設計 C F D 解析」
航空宇宙数値シミュレーションシンポジウム98
NAL SP 1999年 本論文集掲載
21）Y．Yamamoto，M．Yoshioka，＂CFD and FEM Coupling Analysis of OREX Aerothermodynamic Flight Data＂，AIAA paper 95－2087，June 19－22，1995，San Diego，California
22）Y．Yamamoto，＂Recent Comparisons of Aerothermodynamic Results by CFD and FEM Coupling Analysis with OREX Flight Experiments＂，Special Publication of National Aerospace Laboratory SP－29（1996）pp．27－39
23）R．N．Gupta，J．N．Moss，J．M．Price，＂Assessment of Thermochemical Nonequilibrium and Slip Effects for Orbital Reentry Experiment（OREX）＂，AIAA paper 96－1859，June 17－20，1996，New Orleans，LA
24）G．Palmer and D．Prabhu，＂A CFD Analysis of Orbital Re－entry Experiment Vehicle＂，Proc．of First Europe－US High Speed Flow Field Database Workshop Part II，Italy November 12－14， 1997
25）黒滝卓司「再突入物体まわりの極超音速非平衡流れに及 ぼす壁面触媒性の影響について」第14回航空機計算空気力学シンポジウム論文集NAL SP－34，1997年1月 pp77 ～82
26）Y．Yamamoto，M．Yoshioka，＂HYFLEX Computational Fluid Dynamic Analysis ；Part II＂，AIAA paper 95－2274，June 19－22，1995，San Diego，California
27）S．Watanabe，S．Ishimoto，Y．Yamamoto，＂Aerodynamic Characteristics Evaluation of Hypersonic Flight Experiment （HYFLEX）Vehicle Based on Flight Data＂，AIAA paper 96－4527，November， 1996
28）S．Watanabe，R．Takaki，Y．Yamamoto，＂RCS Gas－Jet Interaction in the Hypersonic Flight Experiment，HYFLEX＂， AIAA paper 97－0524，January 6－10，1997，Reno，NV
29）山本行光，黒滝卓司「再突人飛行実験OREX，HYF LEXにおけるCFD／FEM連成解析による熱空力特性評価」航空宇宙数値シミュレーションシンポジウム98 NAL SP 1999年，本論文集掲載
30）大山健一，海田武司，清水隆三「H－IIロケットにおける SRB分離の数値解析」航空宇宙数値シミュレーション シンポジウム98 NAL SP 1999年，本論文集掲載
31）Braun，R．D．，Powell，R．W．，Cruz，C．I．，Gnoffo，P．A．，and Weilmuenster，K．J．，＂Six Degree－of－Freedom Atmospheric Entry Analysis for the Mars Pathfinder Mission＂，AIAA Paper 95－0456，Jan． 1995

衝撃波を伴う遷音速振動翼列の非定常空力予測

白鳥敏正 ${ }^{\dagger}$ ，野口康雄 ${ }^{\dagger}$

Euler and N－S Calculations of Oscillating Transonic Cascades

by
Toshimasa Shiratori ${ }^{\dagger}$ ，Yasuo Noguchi ${ }^{\ddagger}$

Abstract

A numerical calculation based on the Euler／thin layer Navier－Stokes equations has been carried out on a pitch oscillating 2－D transonic cascade with shocks near the leading edge．The work is to investigate the effects of shock wave on the aerodynamic instability of the cascade through the comparisons between the computational results and the NASA＇s experimental results \＆the linearized theory prediction．The second order accurate time marching flux difference splitting TVD scheme implemented on a deforming computational grid is used．The results show that the unsteady aerodynamic works of the present calculations agree well with values of the experiments and the linearized theory in the cases of interblade phase angle of 0 and 90 degrees，whereas the computations give the larger values than those in the cases of -90 and 180 degrees．The variation in the prediction of the latter case is mainly due to the larger shock movements which have not be estimated in the experiments and the theory sufficiently．The unsteady flow field obtained by the N－S calculation showed the strong shock／boundary layer interaction and boundary layer separation， however the differences of the unsteady aerodynamic works between the two solutions were relatively small．

1．はじめに
航空機ガスタービンエンジン用軸流圧縮機，ファンは，エンジ ンの高性能化の要求にともない，高速作動の方向へと発展し，現在では，一部の動翼，ファンについては，遷•超音速域で作動させるまでになってきている。これにともない，軸流圧縮機，フ アンの基本的構成要素である翼列に関して，遷•超音速域での定常，非定常空力特性に研究の方向が向けられている。非定常空力特性の面では，遷音速域で作動する翼列においては翼前縁から，あるいは設計点外では翼間流路で衝撃波が発生す るが，このような衝撃波を伴う遷音速翼列のフラッタ予測計算が盛んに行われるようになってきた $1,2,3,4,5,6$

ここで着目すべき点は衝撃波変動の空力安定性に及ぼす影響である ${ }^{\text {ºn }}$ 衝撃波は，（1）翼振動に伴い変動し，かつ，（2）翼面境界層と干渉し，その形状を変えつつ，境界層のはく離を引き起こす事もある。言らまでもなく（1）の点はオイラー方程式による非粘性計算で検討できるが，（2）の点の検討はナビエストークス方程式によらねばならない。しかしながらフラッタ予測計算として は，計算コストの低い計算法を採用したい所であり，これまで各段階の流れモデルでの非定常空力予測計算法が開発さえてき た。最近では（1）の点と低い計算コストの有利さの面から，線形化オイラー方程式に基づく計算法が注目されてきている8．9．10。こ こでも衝撃波変動の非定常空力への寄与をどこまで適切に取り

[^17]込む事ができるかが問題となる。さらに現実の流れ場での衝撃波の挙動は（2）の点を含むな事から，先の点に加えて，粘性効果 の影響を見積もっておく事も必要で あろう。そのためには実験結果との比較を通した評価が欠かせない。遷音速域における実験としては，NASA の Shaw，Boldman 他によって，流入マッハ数 0.8 における二次元振動翼列の実験が行われ，非定常空力特性が調べられている ${ }^{11,12}$ 。

そこで本研究では，この実験結果の公表されている衝撃波 を伴ら二次元振動翼列問題に対して，オイラー方程式おうび薄層近似ナビエストークス方程式を用いて非定常空力仕事を求 め，実験値および線形理論計算値との比較を通して，非定常空力特性予測の差異を中心に調べた。

2．計 算

基礎方程式としては，一般座標系（ $\xi, ~ \eta$ ）において薄層近似 をほどこした二次元時間平均ナビエーストークズ方程式を用い た。数値解法としては，空間微分に対して二次精度TVDスキー ム（MUSCL内挿，Van Albada limiter，Flux Difference Splitting で構成）で行い，時間微分に対して二次精度の二段階陽解法 を用いている。粘性計算では，乱流モデルとして単純な代数モ デルである Baldwin－Lomax Model を使用し，翼前縁から1 \％以降を強制的に乱流とした。非粘性計算では同一のスキームを粘性項を 0 として使用した。

計算は翼間位相差に応じて翼間1，2，4流路について行らと

し，翼は振動軸回りに正弦波状ビッチング振動するものとし，こ れは翼面と共に動く移動格子によって表現している。このように格子移動，変形を伴うため，差分式中のヤコビアンの評価には Geometric Conservation Law を用いている。

流入境界条件は指定流入角，一定全温，全圧そして内点か らのリーマン不変量の外挿と無反射条件の適用，また流出境界条件は指定静圧，残り3量（密度，運動量）の内点からの外挿を用いた。翼面境界では断熱条件およびすべり条件（Euler 計算）あるいは非すべり条件（N－S 計算）を，また上下境界は周期条件としているため，計算流路数（1，2，4）により翼間位相差（ $\sigma=0^{\circ}, ~ 180^{\circ}, \pm 90^{\circ}$ ）が選択される。計算格子数は一流路当たり211x50である。なお翼面上最小格子幅は翼弦長の 3／10000 程度となっている。

取扱った翼列問題は NASA で実験の行われた対称円弧翼 で構成された遷音速翼列が 50% 弦長点回りにピッチング振動 する場合であり，行われた実験範囲下で翼上面前縁近くで衝撃波の形成が観察されている。以下にその翼列の諸元 ${ }^{11}$ ，計算条件をましめた。

対称円弧翼型（翼弦長： 0.0762 m ，最大翼厚比：7．6\％） ピッチコード比 0.769 ，食い違い角： 53°流入角： 60°（入射角 7° ），平均流入マッハ数： 0.8
50% 点中心のピッチング振動，角振幅 $\theta_{0}=1.2^{\circ}$
振動数 500 Hz （代表速度 $V=260 \mathrm{~m} / \mathrm{s}$ とした時，
無次元振動数 $K=2 \pi f c / V=0.92$ に相当）
翼間位相差：$\sigma=0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\left(-90^{\circ}\right)$
また粘性計算にお㚧るレイノルズ数は $R e=1.67 \times 10^{6}$ とした。流れ場を決めるパラメータとして，流出静圧 P_{b} を用い，これを変化 させて計算を行った。なお以降の圧力値はすべて流入全圧で無次元化さえたものである。

以下の計算では $P_{b}=0.760,0,770$（Euler），$P_{b}=0.735,0.745$ （N－S）についで行った。この時得られた平均流入マッハ数Mは Euler計算，$P_{b}=0.760$ に対し $M=0.823 \sim 0.831, ~ P_{b}=0.770$ に対し $M=0.789 \sim 0.791$ ，お よ び N－S 計 算 ，$P_{b}=0.735$ に対し $M=0.814 ~ 0.821, ~ P_{b}=0.745$ に対し $M=0.784 ~ 0.792$ であった。

3．結 果

3.1 静止翼列特性

ほじめに，Euler計算およびN－S 計算による静止翼列まわりの流れ場の様子を図1の等マッハ数線図と，図2の翼面圧力係数分布の比較（今回の Euler 計算とN－S 計算値および実験値と線形理論計算値）に示す。図 1 より Euler 計算結果では前縁に衝撃波が発生していることが明瞭にみて取れる。また N－S 計算で は衝撃波形成は不明瞭なものとなり，前縁近傍で境界層の剥離が観察される。図2の翼面圧力係数分布については，Euler計算の結果は前縁近傍の衝撃波域については実験値の傾向 と良く合っており，前縁近傍での衝撃波形成を良く表現している。一方この翼前縁付近を除いたそれ以外の所では，線形理論計算値と良く一致している。。N－S 計算結果における前縁近傍の

衝撃波による圧力上昇は前縁での境界層はく離発生のため緩 やかものとなっている。なお前縁はく離の発生は実験において も観察されたと報告されている。それ以外の部分での値は線形計算および Euler 計算の値よりもやや低く，実験値にほぼ一致 した値を与えるが，これは成長する境界層による翼間流路のブ ロッケージ効果の影響によるものである。

3.2 振動翼列特性

非定常空カモーメント 次に非定常計算の結果を示す。図3 は振動翼列における非定常空力モーメント係数の虚数部を翼間位相差 σ に対して示したものである。本計算結果の全体的傾向は線形理論の結果および実験結果と矛盾しない。すなわ ちこれらの計算値は翼間位相差 $\sigma=0^{\circ}$ では実験値および線形計算値と良く一致し，$\sigma=90^{\circ}$ でもやや不安定側に寄ってはいる が，近接した値である。ところが $\sigma=180^{\circ} . \sigma=270^{\circ}\left(-90^{\circ}\right)$ では，安定側ではあるが，これらと比べより大きな値となっている。これら の差違については以下に検討する。また Euler 計算および $\mathrm{N}-\mathrm{S}$ 計算結果間の違いはN－S 計算の $\sigma=-90^{\circ} . P_{b}=0.745$ の場合を除けばわずかであると言える。

翼面非定常空力仕事 先ほどの差違を明確に示すには，翼面各部での空気力仕事の寄与を検討するのが適切である。図 4 に各翼間位相差における翼面非定常空力仕事 $\triangle E$ の分布を示す。なお ΔE は

$$
\Delta E=\frac{1}{\theta_{0}^{2}}\left(\oint \mp P_{s} d y_{s}\right)
$$

から求めている。定性的な傾向はEuler 計算およびN－S 計算間 で一部を除いてほぼ同様であるので，Euler 計算の場合で見る ことにする。図において $\sigma=0^{\circ}$ と 90° の結果，また $\sigma=180^{\circ}$ と $270^{\circ}\left(-90^{\circ}\right)$ の結果は定性的に同一の傾向を示しているが，これ は先ほどの図 3 に示された非定常空力モーメント係数（虚数部） が線形計算で $\sigma=-20^{\circ} \sim 130^{\circ}$ と $\sigma=140^{\circ} \sim 330^{\circ}$ に大きく二分さ れることに対応していよう。 $\sigma=0^{\circ}, 90^{\circ}$ におすいては，前縁近傍に衝撃波変動による幅の狭い明瞭な落ち込みが現れている。また ΔE はSuction 側では衝撃波後方かつピッチング軸より前方部分で正の値，$\sigma=90^{\circ}$ ではそれに加えて，Pressure 側のピッチン グ軸より前方部分で正の値となっている。 $X=0.5$ より後方では， ΔE は両翼面でほぼキャンセルされる同程度の値である。また $\sigma=90^{\circ}$ の場合には実験値より算出した値を示してあるが数値自身には違いがあるものの傾向としては本計算値と合致している。次に $\sigma=180^{\circ} . \sigma=270^{\circ}\left(-90^{\circ}\right)$ の場合を見ると，先ほどと比べて，衝撃波変動による非常に大きい負値の領域が見られる。この場合の実験値との比較では，衝撃波領域を除けば計算値と実験値は傾向的に一致している。以上から，図 3 における $\sigma=180^{\circ}$ と $\sigma=270^{\circ}\left(-90^{\circ}\right)$ の場合の本計算値と実験値，線形計算値との差違を生じさせる大きな要因は衝撃波変動による部分の見積もけ の違いにあると言うことができる。

N－S 計算の場合を Euler 計算の結果と対比してみると，$\sigma=0^{\circ}$

の場合，衝撃波変動による負の鋭い落ち込みは，浅く拡大した ものと変化し，$\sigma=90^{\circ}$ では衝撃波部分が正に，その後方部分が負の値と Euler 計算の結果と逆転している。その他の部分およ び $\sigma=180^{\circ} . \sigma=270^{\circ}\left(-90^{\circ}\right)$ の場合は傾向的に大きな違いは見ら れない。

前縁近傍の衝撃波の様子 図5に各場合の翼前縁近傍の等王線図を，そして図 6 に翼振動一周期における翼面上の衝撃波位置（Euler 計算の場合）を示す。ここで衝撃波位置は翼弦方向圧力勾配 $d P / d X$ が最大となる点として求めている。衝軗波の明瞭なEuler計算の結果を中心に見る。 $\sigma=0^{\circ}$ と 90° の場合，翼振動に対して衝撃波は常に存在し，かつその変位は小さい。一方 $\sigma=180^{\circ}, 270^{\circ}\left(-90^{\circ}\right)$ の場合，衝撃波の変位は大きく，前縁 より前方に移動しつつ，一時翼面上より消え去る状況を含んで いる。これが図 4 における ΔE の負の大きな落ち込みに対応し ている事は容易に理解される。N－S 計算の結果はEuler 計算の結果のように明瞭ではないが，定性的に同様の傾向を示してい る。さらに図6をみると $\sigma=0^{\circ}$ と 90° の場合，衝撃波の変位は各々平均位置 $X=0.089,0.079$ ，振幅 $\triangle X=0.026,0.022$ ）でほぼ正弦波状であるのに対して，$\sigma=180^{\circ},-90^{\circ}$ の場合には平均位置 $X=0.105,0.101$ ，振幅 $\triangle X=0.104,0.089$ と大きく，その動き屯翼前縁前方へ消え去る状況を含む鋸刃状と大きく異なつている。 ちなみに静止翼列の場合の衝撃波位置は $P_{b}=0.760, ~ M=0.822$ に対し $X=0.078$ であった。

これらの点より先に図3の本計算値と線形計算値との間に見 られた差異は，以下の理由に因るものと考えられる。線形計算 においては，衝撃波の発生およびその変位は考慮されていな い。そのために衝撃波の変動による寄与が比較的小さい $\sigma=0^{\circ}$ と 90° の場合には良い——致を示す。次に実験値に関しては，実験では翼の振動軸に作用する空力モーメントを直接測定してい るのではなく，翼面上 6 点（最前部測定点 $X=0.12$ ，図 4 の実験点参照）での非定常圧を測定し，これを前縁方向，後縁方向へ直近の値と同一と外挿し，翼全体での値を算出している。したが つて十分な測定点が衝撃波変動部分にない場合には，衝撃波変動による寄与を過少評亚する事になる。今回の計算では σ $=180^{\circ}, 270^{\circ}\left(-90^{\circ}\right)$ の場合がこえに相当し，結果として本計算値と実験値，線形計算値との差違を生じさせたと考えてよい。

非定常空カモーメント（補正後）最後に以上の点を確認す るために，今回の計算値から衝撃波変動の寄与を一部除外し，改めて比較を行つてみた。ここでは実験での方法に準じ，最も簡単な方法としてEuler，N－S 計算値の局所の非定常空力仕事
 して積分し，翼全体での非定常空力モーメント係数（虚数部）を求めてみた。その結果を図7に示す。図に示されるように，この ようにして求めた値は，$\sigma=0^{\circ}$ と 90° の場合に対してはほとんど変化しないが，$\sigma=180^{\circ},-90^{\circ}$ の場合には小さなものとなり，全体とし て実験値，線形計算値と十分な一致を示している。以上より，衝

撃波変動による局所的な非定常空力仕事の見積りの差が，翼全体での非定常空力仕事の見積りに大きな差異を生じさせて いる事が示された。この事は衝撃波の変動状況を十分に予測 する必要のある事，特に大きな衝撃波変動を伴ら翼列の非定常空力予測を行う際には，最近の線形化オイラー方程式に基づく計算予測においても，十分注意する必要のある事を示唆してい る。

4．結 言

衝撃波を伴う遷音速振動翼列の非定常空力予測計算を行う際には衝撃波変動の非定常空力への寄与をどこまで適切に取 り込む事ができるかが問題となるため，本研究では，実験結果 の公表されている翼上面前縁近傍に衝撃波を伴う二次元ピッ チング振動翼列に対して，オイラー方程式および薄層近似ナビ エストークス方程式を用いた計算を行い，衝撃波変動に注目し つつ実験値および線形理論計算値との比較を通して，非定常空力特性予測の差異を中心に調べた。

その結果，前縁近傍衝撃波の変動は翼間位相差 $\sigma=0^{\circ}, 90^{\circ}$ の場合は比較的小さくほぼ正弦波状であるのに対して，σ $=180^{\circ}, 270^{\circ}\left(-90^{\circ}\right)$ の場合はその振幅は $\Delta X=0.10$ 程度と大きく，翼前縁前方へ消え去る状況を含む鋸刃状と大きく異なっている。 これにより翼全体での非定常空力仕事において，前者では本計算値は実験値，線形理論計算値と良い一致を与えるが，後者では大きな差異を生じさせる事が明らかとなった。さらに N－S計算では，前縁剥離発生のため衝撃波自体は不明瞭なものと なり，翼面上の局所的な非定常空力仕事については Euler 計算値との明らかな違いが見られたが，翼全体での非定常空力仕事については同様の結果を与え，今回の問題では，前縁で の境界層剥離を含む強い粘性効果があるにもかかわらず，空力予測に与える影響は小さい事がわかつった。

最後に，本研究の一部は文部省科学研究費補助金（課題番号 08650218 ）の援助を受けた。

5．参考文献

1．Bendiksen，O．O．，＂Role of Shocks in Transonic／Supersonic Compressor Rotor Flutter，＂AIAA Journal，Vol．24，July， 1986, pp．1179－1186．
2．Verdon，J．M．，＂Unsteady Aerodynamics for Turbo－machinery Aeroelastic Applications，＂Unsteady Transonic Aerodynamics， edited by Nixon，D．，AIAA．，1989，pp．287－347
3．鹿野，名村，「二次元振動翼列の非粘性流れ解析」，機論， B編，Vol．57，No．541 pp．3044－3049 1991.
4．Walff，J．M．and Fleeter，S．，＂Unsteady Inviscid－Viscous Analysis of Oscillating Cascade Aerodynamics，＂AIAA Paper 94－ 2797， $30^{\text {th }}$ AIAA／ASME／SAE／ASEE Joint Propulsion Conference，June， 1994.
5．Shiratori，T．and Noguchi，Y．，＂Unsteady Aerodynamic Characteristics of a Pitch Oscillating transonic Cascade and the

Role of Shock Wave Behavior，＂Unsteady Aerodynamics and Aeroelasticity of Turbomachines，edited by Tanida，Y．and Namba．M．．Elsvier．1995，pp．197－206．
6．Watanabe，T．，Doi，H．and Kaji，S．，＂Numerical Analysis of the Unstarted Flutter in a Compressor Cascade，＂Unsteady Aerodynamics and Aeroelasticity of Turbomachines，edited by Tanida，Y．and Namba，M．，Elsvier，1995，pp．207－222．
7．Shiratori，T．and Tanida，Y．，＂Aerodynamic Characteristics of an Airfoil Oscillating in Transonic Flow between Parallel Walis＂．Proc．of the 1983 TOKYO International Gas Turbine Congress． 1984
8．Hall．K．C．．and Crawley，E．F．，＂Calculation of unsteady flows in turbomachinery using the linearized Euler equations，＂AIAA Journal．Vol．27，No．6，1989，pp．777－787．
9．Lindquist．D．R．，and Giies，M．B．，＂Validity of Linearized Unsteady Euler Equations with Shock Capturing，＂AIAA Journal， Vol．32．No．1．1994．pp．46－53．

10．柴田，梶，「遷音速振動翼列の非定常解析」，日本ガスタ ービン学会誌，Vo．25，No．100，1998，pp．44－49．
11．Shaw．L．H．，Boldman，D．R．，Buggele，A．E．and Buffum，D H．．＂Unsteady Pressure Measurements on a Biconvex Airfoil in a Transonic Oscillating Cascade，＂Transaction of ASME，Journal of Engineering for Gas Turbine and Power，Vol．108，No．1，1986， pp．53－59．

12．Buffum．D．H．，Boldman，D．R．，and Fleeter，S．，＂The Unsteady Aerodynamics of an Oscillating cascade in a Compressible Flow Field＂，Proceedings of the fourth International Symposium of Unsteady Aerodynamics and Aeroelasticity of Turbomachines and Propellers，1988，pp．293－ 312.

図1静止翼列における等マッハ線図

図 2 静止翼列における翼面圧力係数分布の比較

図3振動翼列の非定常空力モーメント係数（虚数部）の比較

Chordwise Distance X

図 4a 翼面非定常空力仕事分布（Euler 計算）

Chordwise Distance X

図 4b 翼面非定常空力仕事分布（ $\mathrm{N}-\mathrm{S}$ 計算）

図 5a 前縁近傍の衝撃波の様子（Euler）

図 6 翼振動一周期における衝撃波位置の変化

図 $5 b$ 前縁近傍の衝撃波の様子（N－S）

図7補正後の非定常空力モーメント係数（虚数部）の比較

振動する超音速通過流ファン翼列翼の線形非定常空気力解析

山崎 伸彦 ${ }^{* 1}$ ，難波 昌伸＊1

Linear Analysis on Unsteady Aerodynamic Forces on Vibrating Supersonic Through－Flow Fan Cascade Blades

by
Nobuhiko YAMASAKI ${ }^{* 1}$ and Masanobu NAMBA＊1

Abstract

Linear unsteady aerodynamic calculation of vibrating cascade blades has a great importance due to the small usage of the computer resources and its utility in practical flutter analysis compared with the non－linear and time accurate calculations．In the present paper，The TVD scheme combined with the finite difference method，which has been developed to solve the linear unsteady flowfield of vibrating cascade blades without the spatial numerical oscillation，has been applied successfully to the vibrating supersonic through－flow fan cascade blades．Numerical example calculations indicate that the present calculation well predicts the general trend of dependences of the unsteady aerody－ namic forces on various parameters，with little numerical oscillation in solutions．The steep changes in the flowfield accompanied by the spatial numerical oscillation predicted by the Lax－Wendroff and the finite volume method are captured as less steep change in the present calculation．

1．まえがき

翼列のフラッタ解析においては，振動する翼列に働く非定常空気力の正確な評価が重要である。非粘性気流中の振動翼列に働く非定常空気力の数値流体力学的計算モデ ルとしては，翼列の振動振幅が小さく，翼列に働く非定常空気力が定常空気力に対して小さく，したがって非定常擾乱が時間平均部分に比べて小さいとする線形非定常理論 に基づく線形非定常計算モデルと，そのような仮定を一切設けない非線形非定常理論に基づく線形非定常計算モ デルがある。後者は，リミットサイクル型のフラッタを解析できるという代表的特徴があるが，要求する計算機資源が前者に比べて圧倒的に大きく，通常，一切のフラッタ現象が許されない実用的な翼列のフラッタ解析では，前者の線形非定常計算で十分である。

翼列流れ場の線形非定常計算においては，次元が大き くなるため，離散化によって得られた代数方程式を直接法により解くことができず，従来，研究の初期の段階か

[^18]ら Lax－Wendroff 法による時間進行法が多く用いられてき た ${ }^{(1)}{ }^{(2)}$ ．Lax－Wendroff法では 2 次およ よび $/ ま た は 4$ 次の数値粘性項を導入して，衝撃波等の流れ場の不連続での空間的数値振動を減らす手法を用いるが，導入する数値粘性が大きければ流れが数値的に拡散してしまい，逆に数値粘性が小さければ流れに数値振動が現れるため，数値振動を生じせしめない最低の数値粘性項の大きさを経験的にそして数値実験的に決定しなければならない。ま た，最恶の場合，数値振動を生じせしめない最小の数値粘性ですら流れ場を変えてしまう可能性がある。ところ で，翼列内の定常流れ場については，Lax－Wendroff 法に よる計算とともに，TVDスキームによる計算が数多く行 われてきている。流束を制限することにより流れ場を求 めるTVDスキームでは，一般に，経験的に導入すべきパ ラメータがほとんどなく，衝撃波を含む圧縮性流れをき わめて弱く少ない空間的数値振動で安定に高精度で計算 できることが知られている。一方，TVDスキームは多く の利点を持つにもかかわらず，従来，著者らの知る限り，翼列の線形非定常計算には使われていない。

さて，非常に薄い翼が高負荷条件で作動する超音速通過流ファン（STFF）においては翼列翼の自励振動は致命的問題である。Kielb and Ramseyによる線形理論解析 ${ }^{(3)}$ に

始まる振動するSTFF 翼列の非定常空気力解析が種々の レベルのモデル化で行われてきているが，当然ながら高精度のモデル化はより多くの計算機資源を要求し，パラ メータの依存性を明らかにするのにコストがかかる。
著者のひとりは定常とそれに重なりあう非定常の擾乱がいずれもポテンシャル流れで，さらに前者が線形化 されるために非曖乱量に比べ十分小さく，後者が前者に比べて十分小さい，という仮定の下で成立する，2 重線形理論（DLT）という，振動する翼列に働く空気力を表す特異点に関する挙動の洞察に基づく理論を展開してきた （DLT の概念と詳細については文献 ${ }^{(4)}$ を参照のこと），こ の DLT をSTFF 翼列に適用し（Toshimitsu et al．（直線翼列）${ }^{(5)}$ ，Hanada and Namba（回転環状翼列）${ }^{(6)}$ ），種々のパ ラメータに対する計算を行ってパラメータ依存性を明ら かにし，さらに定常擾乱が振動するSTFF 翼列に働く非定常空気力に大きな影響をおよぼすことを示した。

一方で，この DLT の比較的強い仮定によるDLT の利用 と制限について，振動するSTFF 翼列に動く非定常空気力の結果を検証すべく，種々のパラメータに対して，数値流体力学的（CFD）手法に基づく数値予測と比較すること によって定量的に検証を行った ${ }^{(7)}$ 。その CFD 手法は，Ni よる Lax－Wendroff スキーム ${ }^{(8)}$ の Giles による変形 ${ }^{(9)}$ と，固定座標系で翼面境界における定常変数の大きな勾配に よる数値的非正確性を克服するための Hall and Clarkによ る変形計算格子 ${ }^{(2)}$ を用い，線形非定常攝乱に対するオイ ラー方程式を有限体積法によって解く手法であった。その結果，DLTが，定常擾乱の小さい範囲内で，この有限体積法とLax－Wendroff 法の組み合わせに基づく数値流体力学的手法による計算とよく一致することを示し，DLT の振動するSTFF 翼列への適用の有用性が確認された。と ころが，この有限体積法と Lax－Wendroff 法の組み合わせ に基づく手法では，不連続やデルタ関数型の特異性をも つ翼面上の非定常圧力に空間的数値振動が残るという間題点があった。

ところで以前に，山崎ら（10）（11）は，缐形理論のSTFF翼列内の定常流れ場に対しての適用が，擾乱が小さいと き妥当であることを検証するのに関連して，STFF 翼列内の定常流れ場に関して，非線形完全オイラー方程式と ナビエ・ストークス方程式をTVDスキームと有限差分法 を用いて解いた。本論文では，その延長として，振動す る超音速通過流ファン（STFF）翼列モデルに対して，TVD スキームによる翼列内の定常計算と整合性に優れ，線形非定常流れ場が空間的な数値的振動少なく計算されると という長所を有するTVDスキームと有限差分法との組み合わせに基づく線形非定常空気力計算をいろいろな条件下の超音速通過流ファン（STFF）翼列翼に適用して，その有用性を示すとともにパラメータ依存性を明らかにする。

2．物理座標系でのオイラー方程式と線形計算 の定式化
$2 \cdot 1$ 基礎方程式 物理座標系 (x, y, t) で，共通の周波数 ω と一定の翼間位相差 $\hat{\sigma}=2 \pi \sigma$ で振動する 2 次元の翼列巽を考える。流体は空気で，非粘性•非熱伝導性で，熱量的に完全ガスと仮定する。オイラー方程式は物理座標系での保存形で次のように与えられる。
$\frac{\partial \boldsymbol{U}}{\partial t}+\frac{\partial \boldsymbol{F}}{\partial x}+\frac{\partial \boldsymbol{G}}{\partial y}=0$
ここで， $\boldsymbol{U}, \boldsymbol{F}$ およよび \boldsymbol{G} の表現は紙面の都合上省略する （文献 ${ }^{(7)}$ を見られたい）
$2 \cdot 2$ 座標変換と線形化 線形計算の定式化において は，翼列翼は共通の微小振幅で振動していると仮定する。翼が相対的に固定されている中間座標系（ $\bar{x}, \bar{y}, \tau)$ と式（ 1 ） の方程式が与えられる物理座標系の間の座標変換は，次 のように定義される。

$$
\begin{equation*}
x=\bar{x}+f(\bar{x}, \bar{y}) e^{i \omega \tau}, \quad y=\bar{y}+g(\bar{x}, \bar{y}) e^{i \omega \tau}, \quad t=\tau \tag{2}
\end{equation*}
$$

なお，関数 $f(\bar{x}, \bar{y})$ および $g(\bar{x}, \bar{y})$ は翼面の振動変位が現象 に一致するかぎり，任意に定義することができる。
非定常流れ場が時間平均の定常部分 $\bar{U} お よ ひ ゙ 1$ 次の調和時間依存部分 $\tilde{U} e^{i \omega t}$ の重ね合わせで表されるとする。従属変数を1次のオーダまで展開して，

$$
\begin{equation*}
\boldsymbol{U}(x, y, t)=\overrightarrow{\boldsymbol{U}}(\bar{x}, \bar{y})+\tilde{\boldsymbol{U}}(\bar{x}, \bar{y}, \tau) e^{i \omega \tau} \tag{3}
\end{equation*}
$$

と表す。ここで，上線を付した物理量は定常部分を表し，上波楾を付した物理量は調和時間依存部分の複素振幅を表す。定常部分 $\bar{U}(\bar{x}, \bar{y})$ おらよび時間変動複素振幅 $\tilde{U}(\bar{x}, \bar{y}, \tau)$ は，時間進行法を利用して解くので，時間依存形で書か かれているが，実際には，定常部分は非定常部分を計算 する段階では収束しているべきで，非定常部分も最終的 には時間依存はない。
$2 \cdot 3$ 有限差分法定式化と境界条件 本論文では，定常成分の基礎方程式については通常の時間進行法による TVD スキームを用いた有限差分法で（10）（11），時間ととも に変動する複素振幅を支配する線形非定常成分の基礎方程式については疑似時間進行法によるTVDスキームを用いた複素係数の線形有限差分法で解く，いずれも，時間項は，陰的に取り扱い，疑似時間項であるため，大き な時間ステップ Δt を使って，他のスキームに比べ大きな収束速度を得ることができる。衝撃波を含む流れを安定 に計算するTVDスキームが導入されているため，付加的 な数値粘性は必要としない。実際，後節で示されるよう に高周波数の不要な空間的数値振動はほとんど現れない。
翼面上の境界条件は，V を絶対座標での速度とし，n を翼面境界での単位法線ベクトルとして，翼の瞬間的位置において $\left(\boldsymbol{V}-i \omega a e^{i \omega t}\right) \cdot n=0$ を満足することである。 ただし， \boldsymbol{a} は振動振幅ベクトルを表す。 $V=\bar{V}+\tilde{V} e^{i \omega t}$ お よび $n=\bar{n}+\tilde{n} e^{i \omega t}$ であることに注意して翼面に沿って流 れる条件を時間平均位置での定常部分：$\overline{\boldsymbol{V}} \cdot \overline{\boldsymbol{n}}=0$ と時間

平均位置での非定常部分：$\tilde{\boldsymbol{V}} \cdot \tilde{\boldsymbol{n}}=i \omega a \cdot \overline{\boldsymbol{n}}-\overline{\boldsymbol{V}} \cdot \tilde{\boldsymbol{n}}$ に分ける ことができる。翼面に沿って流れる条件を振動する翼に適用することの難しさは，翼列と相対的に静止した中間座標系 $\left(x^{\prime}, y^{\prime}, t\right)$ を導入することにより軽減された。なお，翼間位相差に対応する周期境界条件は，単独翼間の計算面の上側と下側の境界で満足させる。

さらに，圧力の壁面法線方向勾配なし $\partial p / \partial \eta=0$ および断熱条件 $\partial T / \partial \eta=0$ を用いる。ただし，p は圧力，T は温度，$\eta=$ 一定は翼面を表す。

計算格子は楕円型方程式を解くことにより得る ${ }^{(12)}$ ，幾何保存条件（GCL）はヤコビアンの定式化で完全に導入し た ${ }^{(13)}$ 。無反射境界条件 ${ }^{(9)}$ は軸流超音速流れであるので，上流•下流ともに導入していない。なお，本コードはかな クロバストであり，定常オイラー計算でCFL 数で 15 ぐ らいまで利用することができる。

3．TVD スキームと有限差分法に基づく線形非定常計算結果
$3 \cdot 1$ 計算の概要 本論文では，次の 2 つの計算結果 を議論する。
－FVM＋Lax－Wendroff 計算：参考論文 ${ }^{(7)}$ で議論した， Lax－Wendroff 法と有限体積法の組み合わせに基づい た定常計算と同手法による非粘性線形非定常計算
－FDM＋TVD 計算：本論文で開発した，TVD スキー ムと有限差分法の組み合わせに基づいた定常計算と同手法による非粘性線形非定常計算

なお，それぞれの定常部分は非定常部分と同じ手法で解くことを注意しておく，FVM＋Lax－Wendroff 計算では， 2 次や 4 次の人工拡散を用いているため，FDM＋TVD 計算より大きな人工拡散が導入されているが，定常流れ場 に関しては，FVM＋Lax－Wendroff 計算と FDM＋TVD 計算とで大きな差異がない。

以下の数値計算例では，軸流マッハ数 $M_{a}=M \cos \gamma=$ 2．3，食い違い角 $\gamma=28^{\circ}$ ，ピッチ／コード比 $s / c=0.311$ ，お よび無次元角振動数 $\omega c / U_{0}=0.1$ を固定とする。ただし， c および U_{0} は翼弦長および非摄乱の上流速度をそれぞれ表す。また， 2 重放物線から成り立つ翼列翼形状

$$
\eta=\phi_{ \pm}(\xi)=c\left(\mu_{0} \pm \tau_{0} / 2\right)\left\{1-4\left[\left(\xi-\xi_{0}\right) / c\right]^{2}\right\}
$$

を仮定する。ここで，μ_{0} および τ_{0} は最大そり比および厚み比をそれぞれ表す。時間平均迎え角は α によって表さ れる。

超音速通過流ファンの非定常空気力に大きな影響をおよ ぼす効果として衝撃波反射点位置の移動効果がある。こ れは，準定常的に生じる衝撃波が翼の振動に伴って動く ことによる生ずる集中交番力が発生するもので，定常揚力を有する翼列でのみ，重要となってくる，本論文では，

定常揚力のない翼列の代表として，文献 ${ }^{(7)}$ の Case No．3， すなわち，時間平均迎え角なしの平板で振動モードが，翼弦に法線方向並進振動で与えられる場合と，定常揚力を有する翼列の代表として，文献 ${ }^{(7)}$ の Case No．5，すなわ ち，平板が時間平均迎え角 $\alpha_{o}=2.0^{\circ}$ で，もしくは，Case No．8，すなわち，$\mu_{0}=0.06, \tau_{0}=0.03, \alpha_{o}=2.0^{\circ}$ で幾何形状が与えられ，振動モードが翼弦に法線方向並進振動で与えられる場合について議論する。

一般に，翼の運動は弾性軸 $\mathrm{E}\left(\xi_{e}, 0\right)$ まわりの角変位をと もなうねじり振動 $\tilde{\alpha} e^{i \omega t}$ および／または弾性軸 E の並進振動 $\tilde{h}\left(\tilde{h}_{x}, \tilde{h}_{y}\right) e^{i \omega t}$ によって表される。揚力係数と抵抗係数は翼弦に垂直方向と平行方向の力の成分を表し，弾性軸回 りのモーメント係数と合わせ，それぞれ，$\rho_{0} U_{0}^{2} c, \rho_{0} U_{0}^{2} c$ ， および $\rho_{0} U_{0}^{2} c^{2}$ で無次元化され，それぞれ，$\tilde{C}_{L}, \tilde{C}_{D}$ および \tilde{C}_{M} で表される。ここで，ρ_{0} は擾乱のない上流の流体密度を表す。
FVM 計算の計算領域は軸方向に翼弦長の 2 倍の広がり をもつ単一翼間の領域で， 152 （流れ方向）$\times 65$（翼間方向） の格子点をもつ。FVM計算での定常解および非定常解の収束は保存変数の第2変数の残差の最大が閾値（本論文 では 1.0×10^{-6} ）より小さくなったとき，収束と判断した。 FDM 計算の計算領域は，ほほ FVM 計算と対応する格子密度をもつ 193 （流れ方向）$\times 65$（翼間方向）の格子点で有 する。FDM計算での，定常解の収束はFVMとほぼ同じ基準で，非定常解に関しては，実質的に流れ場の空間的数値振動が小さくなる 400 回の繰り返しを一律に行った。
$3 \cdot 2$ 定常負荷のない翼列翼 文献 ${ }^{(7)}$ での Lax－Wen－ droff 法と有限体積法（FVM）の組み合わせによる非粘性線形非定常計算（以下，FVM＋Lax－Wendroff 計算という） と，今回行ったTVDスキームと有限差分法（FDM）の組み合わせによる非粘性線形非定常計算（以下，FDM＋TVD計算という）との比較を中心に以下に議論する。
時間平均迎え角なしの平板翼（すなわち定常負荷なし） からなる振動翼列の場合，定常摄乱は流れ場全面で存在 せず，楾形非定常計算は一様定常流からの非定常擾乱計算 となり，非定常擾乱を支配する定常擾乱に依存する変数係数をもつ偏微分方程式が，定常摄乱に依存しない定数係数の線形微分方程式に帰着する（狭い意味での線形理論と呼ばれることがある），したがって，FVM＋Lax－Wendroff計算と FVM＋TVD 計算とで定常流れ場はまったく同一 である，定常成分による衝撃波と膨張ファンはもちろん存在せず，重ねあわせられる翼振動による非定常性によっ て，はじめて衝撃波と膨張ファンが生ずることになる。
図1に翼間位相差 $\sigma=90^{\circ}$ で翼弦法線方向に並進振動 $\left(\tilde{h}_{x}=0, \tilde{h}_{y}=1, \tilde{\alpha}=0\right)$ する翼列の非定常圧力差分布を示 す。なお，以下も含め，非定常圧力差分布の図上で計算点をすべて表示すると密になりすぎるため，図のシンボ ルはすべての計算点をあらわさないことを注意しておく。

Fig．1：Unsteady pressure difference distribution at $\hat{\sigma}=90^{\circ}$ for normal translational oscillation．Cascade of flat plate blades at no mean angle of attack．

本計算例のような定常揚力のない SSTF 翼列内の流れの非定常計算で衝撃波位置で非定常空気力が不連続（ステッ プ状）となり，FVM＋Lax－Wendroff 計算においては，2次 の人工粘性項を導入しているにもかかわらず，オーバー シュートや空間的数値振動が衝撃波近辺に現れる。FVM ＋Lax－Wendroff 計算が衝撃波を比較的シャープに捕らえ ているにもかかわらず衝撃波の前後で数値的振動をして いるのに対して，FDM＋TVD 計算では衝撃波を横切る圧力跳躍が数値的拡散をともなうが空間的数値振動がほ とんどみられない結果が得られる。
図 2 に種々の翼間位相差に対する，非定常揚力係数と翼弦中心回りの非定常モーメント係数を極座標表示で示す。 すべての翼間位相差でFVM＋Lax－Wendroff 計算と FDM ＋TVD 計算の良好な一致が見られる。衝撃波近傍圧力の FVM＋Lax－Wendroff 計算での空間的数値振動する分布， あるいは FDM＋TVD 計算の若干の拡散をともなう分布 は，翼全体の揚力やモーメント係数に対して，ほとんど影響を与えていない。なお，これらの計算結果は，その仮定の充足度からして予測できるとおり， 2 重線形理論 （DLT）での定常負荷なじとした線形理論と大変良い一致 が見られることが示されている ${ }^{(7)}$ 。
$3 \cdot 3$ 定常負荷のある翼列翼 定常負荷をもって振動 する翼列の場合を次に議論する。定常擾乱が流れ場で存在して，線形非定常計算は非一様定常流からの非定常挃乱計算となり，非定常擾乱を支配する方程式は定常摄乱 に依存する係数をもつ偏微分方程式となる。定常負荷の ない場合での重ねあわせられる翼振動による非定常性に よって，はじめて衝撃波と膨張ファンが生ずることになる のと異なり，定常的な衝撃波と膨張ファンが存在し，とく に翼の振動にともなって衝撃波が移動する効果が大きい。

図3は時間平均迎え角 2° の平板翼列が翼間位相差 $\sigma=$ 90° で翼弦法線方向に並進振動 $\left(\tilde{h}_{x}=0, \tilde{h}_{y}=1, \tilde{\alpha}=0\right)$ する ときの非定常圧力差分布を示す。この条件では，主流が翼

Fig．2：Unsteady lift coefficient \tilde{C}_{L}（UPPER）and moment coefficient \tilde{C}_{M}（LOWER）for normal translational oscillation of cascade of flat plate blades at no mean angle of attack．

列翼の腹側から流入するので，腹側隣接翼の前縁から当該翼の腹面への第 1 反射点では膨張波が入射し，背側隣接翼の前縁から当該翼の背面への第 2 反射点では衝撃波が入射する。本計算例のような定常揚力があるSSTF 翼列内 の流れの非定常計算では衝撃波位置で定常揚力のないと きの不連続（ステップ状）とは異なり，非定常空気力が衝撃波反射点の移動効果によりデルタ関数型のピークを有す る分布となる。特筆すべきは，この衝撃波反射点移動効果 が翼面の非定常空気力を大きくに支配するということで ある。定常負荷なしの場合と同様に FVM＋Lax－Wendroff計算が衝撃波移動効果のピークを比較的シャープに捕ら えているにもかかわらず衝撃波の前後で空間的数値振動 をともなう分布を与えているのに対して，FDM＋TVD計算ではピークが数値拡散をともなうが数値振動がほと んどみられず衝撃波反射点で非定常空気力のピークが孤立的に現れるいう結果が得られる。なお，定性的には，両者の間の一致は良い。
次に，そり，厚みあり，時間平均迎え角ありの複雑な例 として，そり比 $\mu_{0}=0.06$ ，厚み比 $\tau_{0}=0.03$ ，時間平均迎 え角 $\alpha=2^{\circ}$ で翼弦法線方向に振動するSTFF 翼列を取り上げる。

図 4 はそり比，$\mu_{0}=0.06$ ，厚み比 $\tau_{0}=0.03$ ，時間平均迎え角 2° の翼列が翼間位相差 $\sigma=90^{\circ}$ で翼弦法線方向に

Fig．3：Unsteady pressure difference distribution at $\hat{\sigma}=90^{\circ}$ for normal translational oscillation．Cascade of flat plate blades at a finite mean angle of attack $\left(\alpha=2^{\circ}\right)$ ．

Fig．4：Unsteady pressure difference distribution at $\hat{\sigma}=90^{\circ}$ for normal translational oscillation．Cascade of blades with a finite camber and thickness at a finite mean angle of attack $\left(\alpha=2^{\circ}, \mu_{0}=0.06, \tau_{0}=0.03\right)$ ．

並進振動（ $\tilde{h}_{x}=0, \tilde{h}_{y}=1, \tilde{\alpha}=0$ ）するときの非定常圧力差分布を示す。この条件では，そりの存在のために主流が翼列翼の背側から流入するので，腹側隣接翼の前縁から当該翼の腹面への第1反射点では衝撃波が入射し，背側隣接翼の前縁から当該翼の背面への第 2 反射点では膨張波が入射する。この場合も，定常負荷なしや時間平均迎 え角をもった平板翼の場合と同様にFVM＋Lax－Wendroff計算が衝撃波を比較的シャープに捕らえているにもかか わらず衝撃波の前後で空間的数値振動的分布となってい るのに対して，FDM＋TVD 計算では衝撃波付近で数値的拡散を若干ともなうが数値振動がほとんどみられず衝撃波反射点で非定常空気力のピークが明瞭に現れるいう結果が得られ，定性的には，FVM＋Lax－Wendroff 計算と FDM＋TVD 計算の間の一致は良い。
図5は，図4と同じ翼列でのに種々の翼間位相差に対 する，非定常揚力係数と翼弦中心回りの非定常モーメン ト係数を極座標表示で示す。モーメント係数については， すべての翼間位相差でFVM＋Lax－Wendroff 計算と FDM

+ TVD 計算の良好な一致が見られる。一方，揚力係数に ついては，FVM＋Lax－Wendroff 計算と FDM＋TVD 計算とで，定量的な違いがみられるものの，定性的には翼間位相差への依存性において良い一致が見られる。これ らの，定量的な差異がFVM＋Lax－Wendroff 計算での衝撃波の空間的数値振動，あるいはFDM＋TVD 計算の衝撃波での数値的拡散によるものか，各計算に固有の理由に よるかは明らかではない。翼全体の非定常揚力や非定常 モーメント係数の評価にあたっては，局所の非定常圧力 を翼全体にわたって積分して評価するのであるが，本計算例のSSTF 翼列翼では，衝撃波反射点移動にともなう集中交番力と翼全体にわたってなめらかに分布する圧力 の翼全体の揚力への寄与が相殺され，評価の難しい衝撃波移動効果による集中交番力でのわずかな誤差が翼全体 の非定常揚力係数に大きく影響する一方，腹側隣接翼前縁からの第1衝撃波反射点は翼弦中心付近にあるため，非定常モーメント係数は集中交番力の影響を受けにくく， FDM＋TVD 計算と FVM＋Lax－Wendroff 計算とで良好 な一致を示すと考えられる。翼弦法線方向並進振動が空力的に安定か不安定かは，非定常揚力係数を \tilde{C}_{L} と表す とき，それぞれ，\tilde{C}_{L} の虚数部が正か負かで決定されるの であるが，一部の翼間位相差（ $\hat{\sigma} \approx 30^{\circ}-90^{\circ}$ ）で FVM + Lax－Wendroff 計算が不安定と予測するのに対して，FDM + TVD 計算では全翼間位相差で並進振動が空力的に安定 と予測するという差異があることを注意しておく。

最後に，図は省略するが，FDM＋TVD 計算と FVM＋ Lax－Wendroff 計算による計算結果の差は，時間平均迎え角，そりおよび／または厚みが大きくなるにしだがって顕著になるが，パラメータへの依存性は定性的に両者で一致することを付記しておく。

4．結言

微小振動する超音速通過流ファン翼列内の非定常流れ を支配する 2 次元線形オイラー方程式を，有限差分法と TVDスキームを組み合わせた解法を用いて解き，有限体積法と Lax－Wendroff 法を組み合わせて解いた解と比較し た。数値計算から得られた主な結果は次の通りである。
－局所非定常圧力に関して，TVDスキームを用いた有限差分計算が，Lax－Wendroff 法による有限体積計算と定性的に良い一致を示す。TVDスキームの利用 によって，Lax－Wendroff 法で見られたような衝撃波反射点付近での空間的数値振動はほとんど見られな いが，定常負荷のある場合の衝撃波移動効果による デルタ関数型特異点や定常負荷のない場合の不連続 が，数値的拡散をともなった形となる。衝撃波移動効果の翼間位相差への依存性は，単純な衝撃波の幾何学的移動からの推算とよく一致する。

Fig．5：Unsteady lift coefficient \tilde{C}_{L}（UPPER）and moment coefficient \tilde{C}_{M}（LOWER）for normal translational oscillation of cascade of blades with a finite camber and thickness at a finite mean angle of attack（ $\alpha=2^{\circ}, \mu_{0}=0.06, \tau_{0}=0.03$ ）．
－TVDスキームを用いた有限差分計算と Lax－Wendroff法による有限体積計算とで，翼全体の非定常揚力係数の翼間位相差に対する依存性が定性的によく一致 する。一方，翼全体の翼弦中心回りの非定常モーメ ント係数に関しては，兩者の結果がよく一致する。

謝辞

本論文は，科学技術庁航空宇宙技術研究所との共同研究「高速航空機用エンジンの非定常内部流れに関する基礎研究」（主担当者小林 紘，難波昌伸）および，九州大学大型計算機センターの国際学術共同研究「翼列の非定常空気力学に関する共同研究」（代表者 難波昌伸）により，大型計算機利用についての支援を受けました。また，本計算のコード作成において，その一部を中国科学院工程熱物理研究所 陳乃與•黄 偉光両教授と共同で開発しまし た。ここに記して，謝意を表します。

文 献

（1）例えば，Tanida，Y．，and Namba，M．（eds．），The Proceed－ ings of the Seventh International Symposium on the Un－ steady Aerodynamics and Aeroelascity of Turbomachines
（1994），Elsevier Publishers．
（2）Hall，K．C．，and Clark，W．S．，Linearized Euler Prediction of Unsteady Aerodynamic Loads in Cascade，AIAA J．，31－ 3 （1993），540－550．
（3）Kielb，R．E．and Ramsey，J．K．，Flutter of a Fan Blade in Supersonic Axial Flow，Tran．ASME，J．Turbomachinery， 111 （1989），462－467．
（4）Namba，M．and Toshimitsu，K．，Double Linearization Theory for Prediction of Mean Loading Effect on Cas－ cade Flutter，I：Two－Dimensional Subsonic Cascade，II： Two－Dimensional Supersonic Cascade，J．Sound Vib．， 147 （1991），203－231，and 147 （1991），233－254．
（5）Toshimitsu，K．，Iwai，S．，and Namba，M．，Double Lin－ earization Theory Applied to Three－Dimensional Cascades Oscillating under Supersonic Through－Flow Fan，JSME In－ ternational J．，Ser．B，38－4（1995），582－592．
（6）Hanada，T．and Namba，M．，Mean Loading Effect on the Flutter of Supersonic Through－Flow Fan Blade，Unsteady Aerodynamics and Aeroelasticity of Turbomachines，Pro－ ceedings of the Seventh Symposium，Tanida，Y．and Namba， M．，eds．，Elsevier Science B．V．（1994），547－564．
（7）Namba，M，Yamasaki，N．，and Otsuka，T．，Comparison of DLT and CFD Predictions of Unsteady Aerodynamic Force on Vibrating Supersonic Through－Flow Fan Cascade，Un－ steady Aerodynamics and Aeroelasticity of Turbomachines， Proceedings of the Eighth Symposium，Fransson，T．H．，ed．， （1998），Kluwer Academic Publishers，（Under printing）．
（8）Ni，Ron－Ho，A Multiple－Grid Scheme for Solving the Eu－ ler Equations，AIAA J．，20－10（1982），1565－1571．
（9）Giles，M．，UNSFLO：A Numerical Method for Unsteady Inviscid Flow in Turbomachinery，Gas Turbine Laboratory Report，195，MIT（1988）．
（10）山崎伸彦，難波昌伸，田代健太郎，超音速通過流ファ ン内の流れ場（線形ポテンシャル理論解とオイラー方程式の数値解の比較），九州大学工学部集報，69－2（1996）．
（11）山崎伸彦，難波昌伸，薛国権，超音速軸流速度ファ ン内の流れ解析，機論，62－595，B（1996）．
（12）Thompson，J．F．，Warsi，Z．U．A．，and Mastin，C．W．，Nu－ merical Grid Generation，North－Holland（1985）．
（13）藤井孝蔵，流体力学の数値計算法，東京大学出版会 （1994）．

遷音速タービン振動翼列の空力特性
 青塚 瑞穂，渡辺 紀徳
 Aerodynamic Characteristics of Oscillating Turbine Cascade in Transonic Flow

by
Mizuho AOTSUKA，Toshinori WATANABE

Abstract

The unsteady flow field around an oscillating blade of a transonic turbine cascade was numerically analyzed with a developed Euler code．The aim was to clarify the mechanism of vibration instability of the turbine blades found in the previous experiment．In the experiment，two flow patterns were adopted，one of which had a near－design condition， and the other had an off－design condition with lower pressure ratio．From the measurement of unsteady aerody－ namic force，a range of interblade phase angle was found where the blade vibration was unstable．The instability was remarkable in the near－design point，while it was much suppressed in the off－design condition．It was realized that the negative influence coefficients of damping from neighboring blades of the oscillating one were added each other in the near－design condition．In the off－design case，on the other hand，the coefficients were cancelled out to abbre－ viate the instability．The numerical results were verified to well reproduce the unsteady flow fields obtained in the experiment in a qualitative sense．The vibration instability was found to come from the strong unsteady aerodynamic force in the midchord area of a blade，in the near－designpoint，which was generated by the change of flow channel area due to the blade oscillation．When the shock wave from the adjacent blade impinged around the midchord posi－ tion in an off－design flow condition，the phase angle of the unsteady force significantly changed between the up－ stream and the downstream region of the shock．The vibration instability was thereby suppressed．

1．緒言

近年のジェットエンジンやガスタービン，蒸気タービンな どでは性能向上のためにタービン翼列を通る流れは遷音速領域に達する。それに伴う翼間衝撃波の存在や曲げ剛性の低い薄翼の使用により翼には振動問題が発生しやすくなってい る。また，蒸気タービン等では運転負荷の調整のために部分負荷状態で運転されることもあり，その際のランダムな流れ による強制振動等が問題となってくる。このような流れ場で のタービン翼列の非定常空力特性を詳しく解明するために遷音速直線翼列風洞による実験及び数値解析を行った。
遷音速タービン翼列の振動特性に関する実験（1）により，低 い無次元振動数で振動が不安定になる領域の存在が確認され た。また，設計点に近い流れ場と，部分負荷の流れ場を比べ た場合，設計点に近い流れ場の方が不安定性が強いこと，お よび不安定性には㣫撃波入射位置の違いによる非定常空気力 の位相の変化が重要な要因であることが分かった。
本研究では，翼面上の衝撃波の挙動や翼面上の各点におけ る圧力振幅の変化を詳細に調べ，不安定の生じる物理的メカ ニズムを解明することを目的に流れ場の数値解析を行った。

2．数値解析法

2．1 基礎方程式および計算法
基礎方程式には 2 次元Euler方程式を用い，Harten－Yee のupwind－type TVDスキームを採用した。時間積分は陰的 に行い，行列反転の近似にLU－ADI法を用いている。計算格子は，図1に示すようにH型格子である。本計算で

は翼列の食い違い角が大きいため，通常の方法でH型格子を作ると翼の前•後縁付近で格子が大きく斜めに歪み，その付近での格子の直交性が低くなるので，翼後縁から生じる衝撃波が鮮明に捉えられない。そこで，翼型を形成するグリッド数を正圧面と負圧面とで変えることにより，翼列後流部の上側と下側の格子点の対応をずらして，翼後縁付近での直交性 を高くしてある ${ }^{(2)}$ 。

非定常計算の際には実験 ${ }^{(1)}$ と同様に一翼振動法 ${ }^{(3)}$ を採用し，7枚の翼に挟まれた6つの翼間流路を計算領域にとっ て，中央の翼を振動させた。翼の振動に伴う格子変形の様子 を図2に示す。翼の振動は正弦的なので，各格子点も正弦振動を行うことになる。そこで各タイムステップで格子の時間的および空間的な変化量を計算し，格子データは静止状態の ものだけを用意すれば良いようにした。この方法により，各 ステップごとにポアソン方程式を解いて格子を生成し直すよ りも，計算時間を大幅に短縮することができる。各格子点の振動振幅は他の格子点座標に影響されず，その点から翼面ま での距離によって決定される。振幅は翼面近傍では翼とほぼ同じで，翼から離れるに従って小さくなるようにした。

2． 2 境界条件

境界条件としては，流入境界で全圧，全温，および流入角 を固定し，リーマン不変量を計算領域の内側から上流方向へ外挿した。流出境界では静圧を固定し，密度， x 方向速度， および y 方向速度を内側から外挿している。ただし，出口境界において境界線に直交する速度成分が超音速の場合，静圧 も一つ内側の点から外挿するようにした。翼面では固体壁境

図 1 計算格子

表1 翼列諸元

迎争	α	0	（deg）
流入角	$\beta 1$	156	（deg）
流出角	$\beta 2$	5	（deg）
食い 違し，角	γ	156	（deg）
瞀ピッチ	s	36.12	（mm）
类弦長	c	42.49	（mm）
素幅	b	50	（ mm ）
縦樭比	c / b	0.85	
䈌弦比	s／c	0.85	

界条件を用い，非粘性流れであるために，壁面の法線方向速度を0とした。また，翼のキャンバライン延長上にある境界 には，ピッチごとの周期性を利用した周期境界条件を与え た。非定常計算の際には，計算領域の一番外側の境界は，一番下側の境界と一番上側の境界で周期境界となっている。

3．結果および考察

翼型および翼列は実験と同じものを用いた。翼型はVKI Tip Section 3 で，翼列諸元は表1に示す通りである。
3． 1 定常計算の結果
実験においては設計点に近い流れ場と，これよりも圧力比の低い部分負荷の流れ場の 2 種類で計湘を行った。数値解析においてもこれら二つの流れ場について計算を行うことと し，実験に合わせて定常流れ場計算の流入•流出条件を設定

図2 格子変形の様子
表2 流入•流出条件

	ケース1	ケース2
全压 $\left(\mathrm{kgi} / \mathrm{cm}^{2}\right)$	1.92	1.64
全温（K）	300	300
流入マッハ数	0.88	0.77
入射角（deg）	0	0
出口静圧（ $\mathrm{kg} \mathrm{f/} \mathrm{~cm}^{2}$ ）	0.44	0.7

した。設計点に近い流れ場をケース1，部分負荷の流れ場を ケース2と呼ぶことにする。それぞれの流入•流出条件は表 2のようになる。

図3は定常流れのマッハ数等高線の計算結果で，図3 （a）はケース1，（b）はケース2の結果を示している。実験時の流れ場のシュリーレン写真と，図3のマッハ数等高線とを比較してみると，膨張扇，衝撃波，ウェークの位惪や形などが良く一致している。

図4には買面上マッハ数のコード方向分布の計算結果と実験結果とを合すせて示す。図4（a）はケース1，（b）は ケース2の結果である。横軸は翼コード方向位置 x をコード長Cで無次元化した距離を，縦軸はマッハ数 M を表してい る。計算から得られた衝撃波入射点の位置や加速プロファイ ルは実験と良い一致を見せている。ただし，ケース2の背側 で衝撃波入射点（約 42% コード位置）以降のマッハ数分布 が，実験と計算で異なっている。これは非粘性流れの計算で あるために，衝撃波が入射した後の剥離泡の存在や境界層厚 の増加が捉えられていないためと思れれる。

図4 翼面上マッハ数分布

これらの図から流れ場の様子を見ると，亜音速で流入し て来た流れは翼間流路で加速され，スロート部で音速を超え る。翼背側では翼面に沿って加速され，その後，翼型の直線部に入ると若干減速されるが，背面側隣接翼の後縁部から生 じる膨張波が入射すると再び加速される。翼の後縁から生じ る衝撃波は，ケース1では腹側隣接翼の負正面約 80% コー ド位置に入射し，ケース2では約 42% コード位置に入射す る。ケース 2 の方がタービン背王が高いため，衝撃波入射点 か上流に位置している。一方，腹側の流れ場の様子を見る と，ケース1，ケース2共に翼間でチョークしているため，両者はほぼ同じである。

3．2非定常計算の結果

数値解析においても実験と同様に一翼振動法 ${ }^{(3)}$ を用い た。加振翼を 0 番翼とし，加振翼に近い翼から順に腹側の翼番号を $+1,+2$ ，••，背側を $-1,-2$ ，•・と付 ける。図5（a）に翼振動の一周期間に翼に流入する励振工 ネルギーEの計算結果を，図5（b）には対応する実験結果 を示す。翼振動数は10 Hz で，半弦長を基準とした無次元振動数 k は5． 23×10^{-3} である。エネルギー入力は，各翼で計算した影響係数を各翼間位相差で重ね合わせることにより

算出した。図は横軸か翼間位相差 σ で，縦軸か翼に流入する エネルギー Eを表している。Eが正の場合に翼の振動は不安定になる。図には各翼からのエネルギー流入を個別に計算し たものと，それらを合計したものとを同時にプロットしてあ る。図5（b）では前報で述べたように，$\sigma>0$ の範囲で翼振動が不安定となり，励振エネルギーの大きなピークが現れ る。一方，図5（a）の計算結果を見ると，ピークの高さは実験結果より低いものの，同じ σ の範囲に振動不安定が示さ れている。また，このピークが＋1番翼からと -1 番翼から のエネルギー流入が重ね合わされることにより形成されてい ることも，計算結果でよく再現されている。

図6は計算した励振エネルギーをケース1とケース2と で翼振動数が 82 Hz の条件で比較したもので，図6（a） はケース1，（b）はケース2の結果である。ケース1では $\mathrm{k}=4.29 \times 10^{-2}$ ，ケース 2 では $\mathrm{k}=5.85 \times 10^{-2}$ となってい る。実験ではケース1の方がケース2よりも振動の不安定性 が強いという結果が得られているが，図6でも（a）と （b）とを比較すると，全翼の合計による励振エネルギーが （a）では $\sigma>0$ の範囲で正になるのに対し，（b）では常 に負となっている。また，各翼からのエネルギー流入を見る

図6 各翼ごとの励振エネルギー（82 Hz）

と，（a）では土1番翼からのエネルギー流入のピークがほ ぼ同じ翼間位相差に存在している。一方（b）では，－ 1 番翼からのエネルギー流入はケース 1 と同様の分布をしている が，＋1 番翼からのエネルギー流入はピークの位置が σ の負 の方向にずれている。そのため，ケース1では土1番翼から のエネルギー流入が重ね合わされる結果，$\sigma>0$ で E が正と なるのに対し，ケース2では土 1 番翼からのエネルギー流入 が相殺されるため，振動が安定になっている。このケース 1，2で土1番翼からのエネルギー流入か重ね合わされるか否かによって，振動の安定•不安定が決まるという現象も，実験で得られたものと同じである。

以上の検討から，本計算法による振動翼列の解析は，実験で捉えられた非定常空力特性を定性的によく再現し得ると判断できる。

図6で示されたように，± 1 番翼のエネルギー流入が重 ね合わされるか相殺されるかは，＋1 番翼の空気力の位相に より決定されている。そこで，この位相が変化する原因を調

べるために，翼面上の非定常圧力の分布を見て行くことにす る。 +1 番翼背面の非定常圧力分布を図 7 に示す。腹側につ いては，ケース1， 2 ともにほとんど振幅か現れなかったの で省略する。グラフは翼面上のコード方向の各点での変動圧力を，翼振動速度と同位相の成分（実部， C_{pr} ）と，翼振動変位と同位相の成分（虚部， C_{p} ）に分解し，（a）に C_{pr} を（b）に $\mathrm{C}_{\mathrm{p} i}$ をプロットしたものである。図を見るとケー ス1，2ともにC C_{p} に大きな振幅が生じているのがわかる。図7（b）でケース10C ${ }^{2}$ ・の分布を見ると，流れが強く加速 され始めている20\％コード位置付近から，衝撃波入射点で ある 80% コード位置より前の領域において，大きな压力振幅が生じている。また，衝撃波入射点である80\％コード位置付近では，目立った圧力振幅は生じていない。一方，ケー ス2では衝撃波入射点付近で大きな圧力振幅が生じている。 42% コード位置付近の衝撃波入射点より前の領域において は， $\mathrm{C}_{\mathrm{p} 1}$ はケース1とほぼ同様の圧力分布をしているが， ちょうど衝撃波入射点で符号が反転し，その直後に大きな負

図7＋1番翼背側非定常圧力

の値の振幅を生じている。このケース1，2での非定常圧力分布の違いが，翼全体にかかる空気力の特性を支配している と考えられる。

ケース1で翼弦中央部に見られるC C_{i} の大きな値は，翼振動に伴って翼間流路面積が変化するために生じるものと考 えられる。ケース1での翼振動の不安定は，この非定常圧力 に起因している。一方ケース2では，翼背面の42\％コード位置に入射した衝撃波が，その下流でC る，即ち非定常圧力の位相を逆転させる効果を持つため，図 6に見られた流入エネルギーの位相変化が生じ，翼振動が安定化されると考えられる。ケース1でも背面に衝撃波が入射 するが，図7（b）に示されるように，人射点が後縁に近い ため，その影響は小さい。

衝撃波入射点の前後で非定常圧力の位相が逆転すること は，少なくとも準定常の簐囲では，図4の翼面上マッハ数分布から定性的に理解される。即ち，図4（b）で，ケース2 の背側のマッハ数分布を見ると，衝撃波入射点である 42% コード位置の前後でマッハ数分布の勾配が正から負に入れ代 わっている。この時翼面圧力分布は，その勾配が負から正に入れ代わっていることになる。この圧力勾配が㮔撃波前後で維持されつつ，衝撃波が翼振動に伴って背面上を前後に振動 したとすると，背面上の 42% コード位置の前後の点では，位相が反対の圧力変動を受けることになる。

4．結論

実験で見いだされた遷音速タービン翼列における振動不安定の機構を明らかにする事を目的に， 2 次元オイラー方程式を用いた流れの数値解析を行い，以下の結論を得た。
（1） 2 次元オイラー方程式による数値計算の結果，実験結果 と定性的に良く一致する解が得られた。
（2）設計点近傍のケース 1 と，高背圧の部分負荷条件である

ケース 2 とで，翼振動の不安定性は大きく異なるが，それは振動翼の腹側の隣接翼から振動翼にもたらされる励振エネル ギーのピークの位相が，流れ条件により変化することに起因 している。
（3）ケース1では，翼振動に伴う翼間流路断面積の変化に起因する非定常空気力が，振動に不安定を生じさせる位相を有 する。これに対しケース2では，翼弦中央部に入射する衝撃波により非定常圧力の位相が逆転し，それに伴って非定常空気力の位相も大きく変化する。その結果，ケース2ではケー ス1に比べて翼列の振動は安定となる。
（4）衝撃波の入射による非定常圧力の位相の逆転は，準定常的には衝撃波の前後で翼面圧力分布の勾配が負から正に変わ ることで説明される。

参考文献

（1）青塚，町田，渡辺：遷音速タービン翼列の振動特性，第25回ガスタービン学会定期講演会講演論文集 （1997．5），p．19．
（2）Tanuma，T．，Yamamoto，S．，Yuan，X．，and Daiguji，H．，Unsteady Aerodynamics and Aeroelasticity of Turbomachines，（1995），p．691，Elsevier Science B．V． （3）花村，田中，山口：振動翼列における非定常流体力測定に関する一実験法，機械学会論文集，45－398，B （1979．10），p． 1399 ．

NASA Rotor37遷音速圧縮機翼のチップクリアランス流れの数値計算について

山本一臣 ${ }^{* 1}$ ，Frank Eulitz ${ }^{* 2}$ ，Dirk Nürnberger ${ }^{* 2}$ ，Stefan Schmitt ${ }^{* 2}$

On Tip Clearance Flow Calculations of the NASA Rotor 37 Transonic Compressor Rotor

by
Kazuomi Yamamoto ${ }^{* 1}$ ，Frank Eulitz ${ }^{* 2}$ ，Dirk Nürnberger ${ }^{* 2}$ ，Stefan Schmitt ${ }^{* 2}$

Abstract

A numerical study has been made on the NASA Rotor 37 high－speed and high－loading transonic compressor rotor with focusing on its tip－clearance flow by a CFD code developed for parallel computational environments．By using a high quality multi－block structured grid generated by an Elliptic PDE method and the Spalart－Allmaras one－equation turbulence model．very good agreement with the experiment is obtained．The numerical result clearly shows the physics of the shock－wave and tip－clearance flow interaction in the high－speed and high－ loading compressor rotor．It is found that the tip－clearance jet ejected just upstream of the shock root interacting with the normal shock－wave generates the blockage region downstream of it which has been believed as a result of an interaction between the tip－vortex and the shock－ wave．

1．はじめに

DLR（ドイツ航空宇宙研究センター）推進技術研究所は，航技研他との共同研究で，並列計算環境において非定常動静翼干渉をはじめとするターボ機械非定常流を計算するコ ード TRACE－U（Turbomachinery Research Aerodynamics Com－ putational Environment－Unsteady）［1］の開発を行っている。高速のターボ機機非定常流は，実験による詳細なデータの取得が困難であるため，数値流体力学（CFD）による複雑な内部流の解析に期待がかけられるが，反面，計算結果の検証が難しいため，計算の信頼性が定常流以上に問われると考えられる。これまで，TRACE－Uでは 2 次元および準3次元定常，非定常流に関していくつかの検証を実施してきて いるが（［1］［2］など），完全な3次元流問題については現在実施中である。今回，詳細な実験データとターボ機械 CFD コードの比較が国際的に行われている，NASA Rotor37遷音速圧縮機動翼［3］の定常流について特にチッブクリアランス流れに注目して計算した。

一般に NASA Rotor37 のような高速高負荷圧縮機動翼の場合は食い違い角が非常に大きく，一般に利用されている Through－Flow 型の計算想子ではチップに近づくほど買のね じそのために格子の歪みはびどくなるばかりでありチッブ付近の計算の信頼性が怪しくなり，特にチッブ付近におけ る衝撃波は不鮮明になってしまいがちである。そこで桪川型微分方程式を用いたマルチブロック構造格子生成法によ り直交性の高い格子を作成した。
さらに，高速高負荷圧縮機動翼では買面全体に衝撃波を生じる遷音速流になるため，衝撃波と境界層の干渉が全体 の流れを支配していると考えられる。これに対処するため に，乱流モデルには衝撃波－境界層干渉で良い結果を出して いるSpalart－Allmarasの1方程式モデルを用いた。

ここでは，以上の方法により，実験結果と良い一致を得 るとともに，チップクリアランス流れと衝撃波の干渉の様子を調べた結果について報告する。

2．NASA Rotor37

NASA Rotor37は1970年代後半に NASA Lewis研究所におう いて設計された圧縮機動翼であり，翼枚数 36 枚，ハブ－チ ップ比 0．7，前縁でのチッブ半径 25.2 cm ，アスペクト比 1.19 ， チッブでのソリディティが 1.288 ，チッブクリアランスは 0.45% スバンとなっている。また，設計点においてチッブ速度は $454 \mathrm{~m} / \mathrm{s}$ ，圧力比 2.106 ，流量は $20.19 \mathrm{~kg} / \mathrm{s}$ である。この動翼は1994年のASME／IGTI第39回国際ガスタービン会議 におけるCFDコード検証のワークショップに使われ，実験計測では動翼単体での試験が実施された［3］。今回の計算は このワークショッブの課題に合せて実施したものであり，計算条件は高流量作動条件（設計回転数，流量はチョーク流量の 98% ）である。このNASA Rotor37については，こ れまで多くの計算結果が報告さえているが，ぼらつきが大 きく，ターボ機械CFDコードの検証としては非常に難しい対象である［4］。

NASA Rotor37のように強い衝撃波を伴う高速高負荷圧縮機のチッブ付近の流れに関しては，詳細な計測や多くの計算により，次第に明らかさ礼てきている（［5］［6］［7］［8］［9］ など）。特徴的な現象として，チッブ渦が㣫撃波を通過す るあたりに低速あるいは逆流領域を生じ，これがブロッケ ージとなるために衝撃波が上流に押し出されること，この ブロッケージ領域によりクリアランスがスバンの 0.45% に もかかわらず，ケーシングからスバンの10\％もの範囲に わたって全圧ロスを生じることなどが指摘きれている（［5］ など）。しかし，チッブ渦と衝撃波との干渉が衝撃波の下

[^19]流にブロッケージ領域を作るメカニズムに関しては，現象自体が 95 \％スパン以上の薄い領域において，チップクリア ランス流れにより生じるジェット，渦，ケーシング境界層，衝撃波の4つが関わる複雑な物理現象であるために，実験的にも数値的にも精度良く捉えることが難しい。したがっ て，Suder と Celestina［5］のように雨者の結果を比較して曖昧 なところを補間しながら現象を解釈しているのが現状であ る。
今回の計算はこのチッブにおうる衝撃波とチッブクリア ランス流扎の干渉を，従来行われてきた計算より一段階精度を高めることにより，できるだけ鮮明に捕獲して解明し ようとしたものである。現象の議論については別に譲り ［10］，本論文では用いた計算方法を中心に説明する。

3．計算方法

3． 1 流体計算ソルバー

用いた流体計算ソルバーTRACE－Uはターボ機械非定常流 れを高精度に効率良く解くために，有限体積法を基本にし， マルチ・ブロック構造格子を用いたコードである。王縮性 Reynolds－averaged Navier－Stokes 方程式を数値的に解くため に，対流項はRoeスキームにMUSCL 法を用いた離散化を行い，粘性項には中心差分を用いている。乱流モデルには，衝撃波と境界層の干渉で良い結果を出しており，乱流の対流，拡散，生成，散逸効果が取り入れられている Spalart－ Allmaras の1方程式モデルを用いている。後で述べるように今回の計算では格子粗さへの依存性などを検証するために壁関数を用いている。令回は定常計算を行ったので，時間方向の積分は対称ガウスザイデル法を用い，局所時間刻み を使って5から10のCFL数で計算した。

境界条件は，流入側で春験条件の全温と全圧を与え，流出側では半径平衡により静圧を与えて調整することで計算条件である流量を合わせた。数値的には特性の方法に基づ いた境䦏条件を用いている。

TRACE－Uの大きな特徴として，汎用的に領域分割法に基 づく並列計算を行うことが可能になるようにコードが設計 き糺ている点がある。繰り返し計算のコントロール部とマ ルチブロック格子のブロック間データ通信部とをソルバー から分離しているため，核になるソルバーは単一領域のも のと変わらず単純なものとなっている。また，計算を並列化するためにMPIやPVMといった汎用的なメッセー ジ・バッシング・ライブラリをデータ通信部に使用して扮 り，機種に依存しない並列計算が可能となっている。この コントロール部やデータ通信部は・般化され，繰り返し計算による解法で有ればソルバーの種類にも関方らず利用问能になっている。このような汎用化と計算の高速化を迪氐 するために，容語にはCを用いている。

今田の計算はDLRのIBMSP2においで14プロセッサを用いて行った。

3． 2 計算格子

訃算格子は楕円型方程式を用いたマルキ・ブロック格子

生成法［11］により生成した（図1（a）（b）（c））。Rotor37はチ ップで 60 度以上の食違い角をもち，スバン全体にわたって衝撃波が発生しているために，的確に現象を捉えるために は格子の直交性が重要な鍵となる。本格子生成法では Gridgen［12］など従東の方法のようにブロック境界を定義し てから格子を作る方法とは逆に，内部格子の昼交性が高く

（a）Rotor37表面格子

（b）翼端における格子と前縁部の拡大

（c）ハブ面における格子
関1．Rotor37の計算格子

図 2．後縁より約 180% 翼弦下流における実験値との比較

なるように，翼面などの表面格子とブロック間境界が Floating 境界条件により自動的に定められる。したがって適切なブロックトポロジーを選択すれば，図1（b）のチップ断面の格子に見られるように非常に質の高い格子を生成する ことができる。差分化された方程式を繰り返し計算で解く ために計算時間はかかるが，GUIによって格子を作成して いく方法にくらべて人間の作業時間は最小化できる。図1 の格子は，一定の翼スパン高さに格子点を置くために，ハ ブからケーシングまで12個の一定スバン高さの曲面上で 2次元的に格子生成を行い，それを元にスバン方向に内插 することで，要求している計算格子のストレッチングや格子点数を与えた。

これにより，少なくとも翼間の計算では解像度以外には格子依存性はほとんど無くなっていると考えられる。チッ プ付近に格子を集めるために，翼後縁より下流の格子密度 を㩘牲にして減らしてある。格子点数は全体で約 64 万点あ り，スパン方向の格子点数は 61 点，そのうちチッブクリア ランス流れと衝撃波の干渉が現れる 95% スパン高きからケ ーシング間には 31 点，さらにチップケリアランスには 17点取っている。

きらに，格子の解像度の影響を見るために，各方向に1点おきに間引いた約 8 万点の粗い格子を用いて結果の比較 を行った。

4．計算結果

4． 1 スパン方向分布の実験との比較

図2（a）（b）（c）に，後縁より約 180% 翼弦下流における，全干，全温，流出角の実験との比較を示す。他の計算結果（［4］ など）と比較し，特に全圧分布の一致は非常に良く，格子点数を約 8 万点に減らした粗い格子による結果でも，チッ ブ付近を除いてほとんど差が出ていないことが分かる。こ れは，スバン全体にわたつて翼の負圧面上に現れる衝撃波一境界層干渉による衝撃波位置を的確に捉えているためと

考えられる。全温についてはチッブ付近での温度上昇が高 めに出ているが，他の計算でも同様の傾向が見られる。

ハブ付近で全圧分布に差が出ているが，これは実験の方 で，動翼前縁のすぐ上流のハブ面から漏れ流れがあったた めに全圧口スを生じている可能性が高いことが指摘されて いる［13］。

4． 2 相対マッハ数分布

図3（a）～（d）はそれぞ机 $12 \%, ~ 70 \%$ ， 99% ， 99.8%（クリ アランス内）スパンにおける相対マッハ数分布である。流 れは図の左下から右上に流れている。すべてのスバンにわ たって衝撃波を生じていることがわかる。 70% スバン（図 4（b））でわかるように後縁より下流の格子の粗さにより，翼 の後流は拡散が大きくなっているが冀間流れへの影響はわ ずかであると考えられる。
95% スパン以上になると，図3（c）のようにクリアランス流礼の影響として，衝撃波上流の三角形の低マッハ数領域，衝撃波のなまり，そして衝撃波の下流には最初に述べた，速度が非常に遅くなったブロッケージ領域が現れる。図3 （d）の 99.8% スバンでは，ブロッケージ領域の中心はさらに隣接翼の正圧面側に移動してる。同じ相対マッハ数を回転軸方向に一定の断面で見てみると，前縁より 25% 翼弦下流 （図 4 （a））では，クリアランスからの超音速ジェットの存在と，正圧面側にケーシングから 6% スバンの幅で大きくブロッ ケージ領域が存在していることがわかる。このブロッケー ジ領域は 110% 翼弦下流（図 4 （b））でも，拡散はしているも のの 25% 翼弦とほぼ同じ厚さを維持して存在している。ス パンが小さくなる分，この断面ではブロッケージ領域は相対的には 8% スパン程度になのている。

4． 3 チップクリアランス流れの構造

チップクリアランス流れの様子を見るために，図5にク リアランスからの流線と 99% スパンに括けるマッハ数の等

（a） 12% スパン

（b） 70% スバン
図3．各スバンにおける相対マッハ数分布

（a） 25% 翼弦断面
図4．回転軸に血直な断面におぶけ相対マッハ数分布

高楾を重ねて表示する。流線の明るさはマッハ数を表して いる。クリアランス流れは，前縁付近の強いジェットと超杳速の主流との衝突によつてできる強い渮（龱中の1）， 10% 翼弦から衝撃波までの大きな王力差によって生じるジ
 て生じる业謂速ジェット3，さらに衝撃波のすぐ上流（翼

（c） 99% スパン

（d） 99.8% スパン（クリアランス内）

Mach Number 110\％Chord

（b） 110% 翼弦断面

弦中心付近）から吹出して衝撃波を通過し，亜音速の主流 と干渉するジェット4に分類できる。前禒で形成きれた渦 はジェット2とともにチッブ渦様のものを形成しているよ うに見えるが，巻き込みは非常に弱い。
Suder とCelestina［5］のように，ブロッケージ領域は渦 I と衝撃波との干渉によって生じると一般に考えられているが，

図 5．チップクリアランス流れの流線と 99% スパンにおけ る相対マッハ数の等高線

図6．クリアランス流れの流線とチップ翼弦に垂直な断面 における相対マッハ数分布

図5でわかるように，むしろ，ジェット4がブロッケージ領域の核を形成して打り，渦1はブロッケージ領域よりや や翼間中心線よりにずれて流きえていることがわかる。

より 3 次元的なクリアランス流れの構造を理解するため に，図6にチップ翼弦とほぼ垂直な断面におうけるマッハ数分布と流線を表示する。上で述べたようにジェット4がグ ロッケージ領域の核に流札达んでいるのに対し，渦1はチ ッブクリアランスからのジェットのせん断屏の下部に形成 きれ，衝撃波を通過した㣪にブロッケージ領域の下部を通過して行くことがわかる。わずか 5% スバンの幅の薄い領域ではあるが，このように実際の衝撃波とクリアランス流 その下渉は3次元的である。Suderと Celestina［3］計測は 95% スバンまでしか行われて扮らず，しかも半径方问速度成分が訣測きれていないため，いかにもチッブ渦が ブロッケージ領域を形成しているような結果が得られたと考えられる。

5．結論

NASA Rotor37遷音速圧縮機動翼について，質の良い計算格子と Spalart－Allmaras の 1 方程式乱流モデルを用いて計算 する事により，実験と良い一致を得ることができた。さら に，干渉の特徴として，チッブ付近の衝撃波の下流に現れ る低速（逆流）領域のブロッケージのために衝撃波が上流 に押し出されることが知られているが，この領域は衝撃波 の足元よりやや上流のクリアランスから吹出すジェット状 の流れが直接的な原因であることが明らかになった。

謝辞

本研究は，航空宇宙技術研究所航空推進研究領域と DLR （ドイツ航空宇宙センター）推進技術研究所との共同研究 として行われ，その約半分の仕事は筆頭者が 1997 年に半年間，DLR 推進技術研究所の客員研究員として滞在した際に行ったものです。ここに，滞在をサポートして頂いた推進技術研究所長バイヤー教授をはしめ関係各位に感謝の意を表します。

参考文献

1．Engel，K．，et．al．，＂Numerical Investigation of the Rotor－ Stator Interaction in a Transonic Compressor Stage，＂AIAA Paper 94－2834，June 1994

2．Eulitz，F．and Engel．K．，＂Numerical Investigation of Wake interaction in a Low Pressure Turbine，＂AIAA Paper 97－3027，July 1977

3．Wisler，D．C．and Denton，J．D．，＂Rotor 37 Blind Test Case，＂ ASME／IGTI Int．Gas Turbine Conf．， 1994.

4．Dunham，J．and Meauzé，G．，＂An AGARD Working Group Study of 3D Navier－Stokes Codes Applied to Single Turbom－ achinery Blade Rows，＂ASME／IGTI Int．Gas Turbine Conf．， 1998.

5．Suder，K．L．and Celestina，M．L．，＂Experimental and Com－ putational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor，＂ASME Journal of Turbomachinery，Vol． 118，pp218－229， 1996.

6．Hah．C．and Loellbach，J．，＂Development of Hub Corner Stall and Its Infulence on the Performance of Axial Compressor Blade Rows，＂ASME Paper 97－GT－42，ASME／IGTI Int．Gas Turbine Conf．， 1997.

7．Arima，T．，et．al．，＂A Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low Reynolds Number k－ ε Turbulence Model．＂ASME／IGTI Int．Gas Turbine Conf．， 1997.

8．Chima，R．V．，＂Calculation of Tip Clearance Effects in a Transonic Compressor Rotor，＂ASME Paper 96－GT－114， 1996.

9．Adamczyk，J．J．，Celestina，M．L．，and Greitzer，E．M．，＂The Role of Tip Clearance in High－Speed Fan Stall，＂ASME Journal of Turbomachinery，Vol．115，pp．28－38． 1993
10．以本，Eultiz 他，＂NASA Rotor37遷普速圧縮機動翼の于 ッブクリアランス流れと衝撃波の干渉，＂第13回ガスター ビン秋期講演会講演論文集，pp235－240
11．Yamamoto，K．and Engel，K．，＂Multi－block Grid Generation Using an Elliptic Differential Equation，＂AIAA Paper 97－0201，Jan． 1997.

12．Gridgen User Manual version12，Pointwise，Inc．， 1997
13．Shabbir，A．，et．al．，＂The Effect of hub Leakage Flow on Two High Speed Axial Flow Compressor Rotors，＂ASME Paper 97－ GT－346，ASME／IGTI Int．Gas Turbine Conf．， 1997.

圧縮機における旋回失速初生の数値シミュレーションに向けて （翼先端漏れ渦の崩壊による失速現象）

古川雅人 ${ }^{1}$ ，才木一寿 ${ }^{2}$ ，山田和豊 ${ }^{* 3}$ ，井上雅弘 ${ }^{*}{ }^{1}$

Toward Numerical Simulation of Rotating Stall Inception in Compressor Rotor （Stall Phenomenon Induced by Breakdown of Blade Tip Leakage Vortex）

by
Masato FURUKAWA，Kazuhisa SAIKI，Kazutoyo YAMADA，Masahiro INOUE

Abstract

The breakdown of tip leakage vortex has been investigated on a low－speed axial compressor rotor with moderate blade loading．Effects of the breakdown on the rotor aerodynamics are elucidated by Navier－Stokes flow simulations and visual－ ization techniques for identifying the breakdown．The simulations show that the leakage vortex breakdown occurs inside the rotor at a lower flow rate than the peak pressure rise operating condition．The breakdown is characterized by the exist－ ence of the stagnation point followed by a bubble－like recirculation region．The onset of breakdown causes significant changes in the nature of the tip leakage vortex：large expansion of the vortex and disappearance of the streamwise vorticity concentrated in the vortex．The expansion has an extremely large blockage effect extending to the upstream of the leading edge．The disappearance of the concentrated vorticity results in no rolling－up of the vortex downstream of the rotor and the disappearance of the pressure trough on the casing．The leakage flow field downstream of the rotor is dominated by the outward radial flow resulting from the contraction of the bubble－like structure of the breakdown region．It is found that the leakage vortex breakdown plays a major role in characteristic of rotor performance at near－stall conditions．As the flow rate is decreased from the peak pressure rise operating condition，the breakdown region grows rapidly in the streamwise， spanwise and pitchwise directions．The growth of the breakdown causes the blockage and the loss to increase drastically． Then，the interaction of the breakdown region with the blade suction surface gives rise to the three－dimensional separation of the suction surface boundary layer，thus leading to a stall．This three－dimensional stall is substantially different from a two－dimensional blade stall．

1．緒 言

圧縮機における旋回失速の初生メカニズムを解明するこ とは，旋回失速の予知と制御を実現して圧縮機の作動範囲 を広げるために重要である。従来から提案されている旋回失速初生モデルに普遍的なものはなく，現象のよりよい理解が必要である。この観点から，本研究では旋回失速の初生過程を数値シミュレーションにより解明することを目的 とする。その第一段階として，軸流圧縮機動翼列において翼先端漏れ渦が崩壊して翼の失速が誘起されることを新た に見出した。この現象は前縁剥離に起因した二次元的な失速とは異なっており，旋回失速の発生にも深く関係してい るものと推察される。本報では，この翼先端漏れ渦の崩壊 による失速現象について述べる。
翼先端漏れ流れは動翼列の性能特性に最も大きな影響を及ぼすため，その挙動が多くの実験および数値解析により調べられ，その流れモデルが種々提案されてきた。その特徵は，潩先端からの剥離せん断層が巻き上がって漏れ渦が形成されることである。高負荷形の斜流羽根車内で「翼先端漏れ渦の崩壊」が発生することが新たに見出され［1］，さ らに中程度の翼負荷を持つ軸流羽根車でさえも低流量域に おいて漏れ渦が崩壊することが数値解析により確認された ［2］．この現象はデル夕翼の高迎角流れで発生する翼前縁は く離渦の崩壊に似た現象として捉えることができるが，翼列流れにおいてその発生が今まで確認されたことがなく，漏れ渦崩壊が翼先端漏れ流れ場に及ぼす影響は全く不明で ある。そこで，数値シミュレーションにより漏れ渦の崩壊 が軸流圧縮機動翼列の低流量作動域における内部流動に及 ぼす効果を調べた。

[^20]
2．供試軸流羽根車および数値解析方法

過去の研究［3］［4］において，動翼下流および内部の翼先端漏れ流れ場が実験的に調べられた低速の単段軸流圧縮機の動翼を供試羽根車とした。本軸流圧縮機の流量係数 ϕ（主流の軸方向速度を動翼先端速度で無次元化）および圧力係数 ψ（全圧上昇を動翼先端速度に相当する動圧で無次元化）
 は 0.6 ，翼先端直径は 449 mm である。動翼は予旋回なしの自由渦形式で設計された NACA65 采統翼で，翼枚数は 12枚である。翼先端部は弦節比 1.0 ，コード長 117.5 mm であ る。本研究では，翼先端すき間が 2.0 mm （ 1.7% tip chord）の場合について三次元 Navier－Stokes 流れ解析を行った。

流れ解析手法として有限体積法を用いた緩和形陰的高解像度風上スキーム［5］を用いた。三次元圧縮性ナビエ・ス トークス方程式が，時間方向には陰的に，空間的には六面体の計算セルを用いたセル中心形有限体積法に基づいて離散化される。人工粘性を小さく抑えて渦構造を鮮明に捕ら えるために，非粘性流束は Roe の近似リーマン解法を用い た MUSCL 形の高次精度TVD 法により求められる。粘性流束は中心差分的に評価され，渦粘性係数は Baldwin\＆Lomax の代数乱流モデル［6］に従って求められる。時間方向に線形化されて得られた連立一次方程式は近似因子化法によら ず，Gauss－Seidel 形の点緩和法により解く。

翼先端漏れ流れを正確に捕らえるために，図1に示した複合形の計算格子を用いた。すなわち，主流部および翼先端すき間部にそれぞれ H 形の構造格子を形成した。主流部 の格子では流れ方向に80セル（翼上に 52 セル），スパン方向に96セル，ピッチ方向に64セル設定した。先端ずき間部にはめ込まれた格子はコード方向に52，ピッチ方向に32， スパン方向に 16 セルから構成された。セル総数は518，144 セルである，滑りなしの断熱条件を適用して壁での粘性流東を評価するために，翼先端コード長に対する固体壁面で の最小格子幅は 5×10^{-5} 以下に設定している。

Fig． 1 Computational Grid

流入境界条件は動翼上流で測定された実験結果に基づい て与えられた。その際，ケーシング面上の流入境界層は厚 さ 6 mm であった。本研究では，設計流量点（ $\phi=0.5$ ）から 70% 流量点 $(\phi=0.35)$ までの作動範囲について解析を行った。翼先端漏れ流れ場にCritical point 理論に準拠した渦構造 の同定法を適用し，漏れ渦崩壊を含む動翼列内の複雑な流動現象の解析が行われた。Critical point 理論に準挺した方法 ［7］｜8］は，流れパターンの位相幾何学的解析に基づいている．本研究で用いた澤田の方法［7］では，局所的な速度場を四面体計算セル内で線形近似し，Critical point 理論と同様にして流線の準解析的パターンを位相幾何学的に調べることによ り渦中心線を同定する。この渦中心線が計算セルを横切る場合に，その計算セル内の線分が局所的な渦中心線として同定される。計算セル毎に抽出された渦中心線としての線分を全て表示すれば，全体的な渦構造が渦中心線の集合体 として可視化される。

Fig． 2 Vortex cores colored with normalized helicity distribution， casing wall pressure distribution and leakage streamlines for flow rate $\phi=0.50$

Fig． 3 Streamwise absolute vorticity distributions on crossflow planes perpendicular to tip leakage vortex and leakage streamlines for flow rate $\phi=0.50$

Fig． 4 Total pressure loss distributions on crossflow planes perpendicular to tip leakage vortex and leakage streamlines for flow rate $\phi=0.50$

3．解析結果

本供試軸流羽根車においては，設計流量（ $\phi=0.5$ ）から最高圧力上昇点（ $\phi=0.38$ ）までの運転状態では，翼先端漏れ渦 の崩壊は発生していない。まず，この漏れ渦崩壊の発生し ない条件下での翼先端漏れ渦の振る舞いについて述べる。図2にはケーシング側から眺めた設計流量での翼先端流れ場を示す。同図では，澤田の方法により同定された漏れ渦 のコアに沿ってNormalized Helicity の分布（黒が +1 ，白が -1 に対応）が示され，さらに左側流路には漏れ流線が白線 で，右側流路にはケーシング面上の圧力分布が黒線で示さ れている．Normalized Helicityは絶対渦度ベクトルと相対速

Fig． 5 Vortex cores colored with normalized helicity distribution， casing wall pressure distribution and leakage streamlines for flow rate $\phi=0.37$

Fig． 6 Breakdown of tip leakage vortex for $\phi=0.37$

Fig． 7 Flow topology of vortex breakdown

度ベクトルの成す角度の余弦値として定義され，その値が 1 となる領域は流れ方向の縦渦として巻き上がった漏れ渦の コア部に相当する。翼前縁付近の翼負圧面から翼列出口に向かって翼端漏れ渦コアが同定され，漏れ渦コアまわりに漏れ流線が巻き付き螺旋の軌跡を描いている。また，渦コ ア上の Normalized Helicity の値はほぼ＋ 1 の値を示してお り，漏れ渦は強い縦渦構造として巻き上がっていることが わかる。右側流路の圧力分布によると同定された漏れ渦コ アに沿って圧力の谷が生じている。特に，動翼列出口まで圧力の谷は存在し，渦コア上の Normalized Helicity の値は，流路後半部においてもほぼ＋の 値を維持している。これに より，巻き上がった漏れ渦の縦渦構造は動翼列出口まで存在していることがわかる。

Fig． 8 Streamwise absolute vorticity distributions on crossflow planes perpendicular to tip leakage vortex and leakage streamlines for flow rate $\phi=0.37$

Fig． 9 Total pressure loss distributions on crossflow planes perpendicular to tip leakage vortex and leakage streamlines for flow rate $\phi=0.37$

図3および図 4 には漏れ渦に対して垂直な横断面上での流れ方向絶対渦度および全圧損失の分布が示されている。図中の黒線は図2に示された漏れ流線と同一のものであ る。図3には，漏れ渦コアまわりに流れ方向渦度の集中領域が観察される。この漏れ渦コア付近の流れ方向渦度は，流 れ方向に徐々に減少している。しかしながら，横断面IVに おいても渦コアに相当する渦度の集中領域が存在している ことが確認できる。この漏れ渦コアの周囲に低エネルギー流体の集積領域が認められ，それは下流に徐々に大きく なっている。以上より，漏れ渦崩壊の生じない作動条件に おいては流れ方向に漏れ渦の性質は極端に変化しないこと が確認できる。
一方，本供試羽根車の場合，最高庄力上昇点（ $\phi=0.38$ ）よ りも低流量側の作動域において翼先端漏れ渦の崩壊が発生
路前半部では漏れ渦コアに沿つて急峻なケーシング面圧力 の谷が生じ，そこでの Normalized Helicity はほぼ＋1 の値を示している。すなわち，流路前半部で強い漏れ渦の巻き上 がりが生じていることは明らかである。しかし，流路中央付近において漏れ渦が崩壊し，渦構造に劇的な変化が現わ れる。まず，漏れ渦コアに沿った Normalized Helicity の値 は＋ 1 から 0 へと急激に変化し，それに併せてケーシング面 の圧力の谷は弱まり流路後半部で圧力の谷は消滅してい る。さらに，左の流路中の黒い領域で示されるように，

Fig． 10 Vortex cores colored with normalized helicity distribution， casing wall pressure distribution and leakage streamlines for flow rate $\phi=0.36$

Fig． 11 Streamwise absolute vorticity distributions on crossflow planes perpendicular to tip leakage vortex and leakage streamlines for flow rate $\phi=0.36$

Normalized Helicityが負となる領域では漏れ渦コア内に逆流域が形成されている。

この翼先端漏れ渦内で発生した崩壊領域を図6に示す。漏れ渦の崩壊に伴って現れた逆流域内を循環する流れが黒 い流線で表示されており，バブル形の逆流域が形成されて いるのがわかる。この逆流域の周囲を流れる漏れ流れを白 い流線で示す。逆流域がその排除効果により漏れ渦の膨張 を引き起こしていることが認められる。同図中には，漏れ渦中心に近接した1本の流線が示されており，その流線に沿って相対速度がグレースケール表示されている。漏れ渦中心の流れは，逆流域に近づくにつれて著しく減速され，逆流域の直ぐ上流においてほとんどよどみ状態となり，そこ で急激にねじれて逆流域の外縁を沿って旋回しながら下流 へと至る。この崩壊領域まわりの流れ場は図7のようなト ポロジーを有する。すなわち，バブル形の逆流域の上流側 に三次元渦状点としてのよどみ点を持った旋回流れ場であ る。

図 8 および図 9 は $\phi=0.37$ におらる横断面上の流れ方向絶対渦度および全圧損失の分布を示している。黒い流線は図 5 に示したものと同一の漏れ流線である。図 8 の横断面 I において漏れ渦の中心付近に絶対渦度の集中した渦コアに相当する領域が観察される。横断面 II では漏れ渦は膨張し コア領域の絶対渦度は急速に減少している。特に渦崩壊領域に位置する横断面IIIでは，漏れ渦の構造はさらに大きく変化して，渦度の集中したコア領域は消え，負の Normalized Helicityを持つ領域が現れている。渦崩壊領域では渦コア周 りの流れ方向渦度の集中が急激に消滅し，その結果崩壊領域の下流では漏れ渦コアに沿ったケーシング面圧力分布の谷が消滅する。すなわち，渦崩壊の発生により，漏れ渦の

（a）Plane II

（b）Plane III

（c）Plane IV
Fig． 12 Secondary flow vectors and vortexwise velocity distributions on crossflow planes for $\phi=0.36$

構造が設計点でのそれと比べて本質的に異なったものと なっている，また，全圧損失分布についても逆流領域内に位置する横断面 IIIにおいいて，漏れ渦の膨張により，漏れ流 れに伴う低エネルギー流体の集積部の顕著な広がりが認め られる。
図 10 はさらに低流量側の作動点 $\phi=0.36$ における翼先端漏れ流れ場を示す。翼前縁近傍では，漏れ渦コア上で Normalized Helicity がほぼ +1 の値であり，漏れ渦が強く巻 き上がっていることがわかる。その下流の流路中央付近で は漏れ渦コア上で Normalized Helicity が負の値を示してお り，この部分にバブル形の逆流域を伴う渦崩壊領域が認め られる。図中の左側流路にはこの逆流域を通過する流れが黒い流線で表示されている。逆流域の境界は下流側で開い ており，そこを黒い流線が流入および流出していることが わかる。逆流域は流れ方向，ピッチ方向およびスパン方向 に急速に成長しており，その大きなブロッケージ効果によ り漏れ渦が著しく颜張している。また，逆流域の下流では，漏れ渦コア上で Normalized Helicity が正の値へ回復してい る。

Fig． 13 Vortex cores colored with normalized helicity distribution， casing wall pressure distribution and leakage streamlines for flow rate $\phi=0.35$

図11に作動点 $\phi=0.36$ での漏れ渦に垂直な横断面上に おける流れ方向絶対渦度の分布を示す。同図中の黒い実線 は漏れ流線である，漏れ渦の崩壊領域（逆流域）よりも上流側の横断面 I では，流れ方向渦度の集中した漏れ渦コアに相当する領域が明確に認められる。しかしながら，崩壊領域の現れる横断面 II では，漏れ渦は急激に膨張し，渦コア まわりに集中していた流れ方向渦度は消滅する。崩壊領域内の横断面 III では，渦度の強い集中は認められず，負の流 れ方向渦度が現れている。崩壊領域の下流に位置する横断面IV では，漏れ渦内に再び正の流れ方向渦度が現れ，その弱い集中が認められる。この渦度の集中領域の再形成に対応して，図10の崩壊領域下流には，漏れ渦コア上の Normalized Helicity が再び +1 に近い値をとること，渦コア まわりに流線が巻き上がること，渦コアに沿ってケーシン グ面圧力分布の谷が再び形成されることが認められる。し かしながら，この再度巻き上がった漏れ渦における流れ方向渦度は極めて低く，拡散効果のため，その巻き上がりは羽根車下流の二次流れ場に認めることはできない。
図12は上流側から眺めた横断面上における二次流れべ クトルである。同図には，漏れ渦方向速度成分（横断面に垂直な速度成分）の分布が等高線（実線が逆流域に対応）で併せて表示されている。漏れ渦崩壊の発生開始点に位置す る横断面 II では，渦崩壊に伴う逆流域の急速な成長が引き起こすブロッケージ効果の著しい増加により漏れ渦を中心 にした放射状の強い二次流れが発生している。バブル形崩壊領域の中央に位置する横断面 III では，漏れ渦内に大きな逆流域が現れているが，その逆流域内においても渦の旋回方向は崩壊領域上流の漏れ渦と同じ時計回りである。その結果，図10で述べたとおり，逆流域内では Normalized Helicity が負の値を示す。また，横断面 III では逆流域の成長が止まって縮小が始まるため，ブロッケージ効果の増加 を表す二次流れは認められない。さらに崩壊領域下流の横断面IV では，前述の漏れ渦の巻上がりが圧力面近傍で認め られるが，逆流域の消滅に伴うブロッケージ効果の減少に より漏れ渦周辺で半径外向きの二次流れが発生している。
さらになお流量を $\phi=0.35$ まで下げると，崩壊領域は翼間を覆うほどに成長し，翼負圧面境界層と干渉し始める。こ の $\phi=0.35$ における翼先端漏れ流れ場を図 13 に示す。渦 コア上の Normalized Helicity は前縁付近で +1 の値を示して いるが，そのすぐ下流で負の値へと急変している。またケー シング面圧力分布によると，漏れ渦に沿った圧力の谷は前縁近傍のみに観察されるだけであり，漏れ渦は前縁で巻き上がった直後に崩壊する。さらに，逆流域内を通過する黒 い流線によると，逆流域はピッチ方向にも大きく成長し，翼負圧面と干渉している。その結果，負圧面上に開いた形の三次元はく離が発生する（図14）。これは，翼負荷の上昇 によって引き起こされた翼前縁からのはく離とは異なって おり，漏れ渦の崩壊に起因した翼の失速であると捉えられ なければならない。

Fig． 14 Limiting streamlines on blade suction surface for $\phi=0.35$

4．結 言

本報では，有限体積法を用いた緩和形陰的高解像度風上 スキームによるナビエ・ストークス流れシミュレーション および Critical point 理論に基づいた渦コア同定法による計算結果の可視化によって，軸流圧縮機動翼列の翼端隙間の圧力面側から負圧面側へ漏れ出る流れ（翼先端漏れ流れ）と主流との間のせん断層が巻き上がって形成される翼先端漏 れ渦の挙動を詳細に調べた，その結果，以下のことが明ら かにされた。

最高圧力上昇点よりも低流量側の作動域において，翼先端漏れ渦は翼間流路内で崩壊し，漏れ渦内にバブル形の逆流領域が現れる。この崩壊発生は漏れ渦の挙動に劇的な変化をもたらす。すなわち，バブル形の逆流領域を伴う渦コ ア流れの著しい減速が，漏れ渦の大きな膨張および漏れ流 れに起因した高損失領域の大きな広がりを引き起こす。さ らに，渦コアまわりに集中していた流れ方向渦度が消滅し， その結果漏れ渦に沿ったケーシング面圧力の谷も消滅す る。

崩壊に伴う漏れ渦の膨張は極めて大きなブロッケージ効果を持ち，その効果は崩壊発生点の上流にまで及ぶ，この ブロッケージ効果は崩壊領域（バブル形の逆流領域）上流 で強い半径内向きの二次流れを誘起する。一方，崩壊領域 の後半部では逆流領域が収縮することによりブロッケージ効果が流れ方向に徐々に減少し，その結果崩壊領域下流で は半径外向きの二次流れがケーシング側で誘起される。バ ブル形の逆流領域の直ぐ下流におろいて，漏れ渦は再び弱く巻き上がるが，そのコア部の渦度は小さく，拡散効果によ り動翼列下流では消滅する。
翼先端漏れ渦の崩壊は失速点近傍における動翼列特性を支配している。流量の減少とともに，崩壊領域は流れ方向， スパン方向およびピッチ方向に急激に成長する結果，翼負圧面境界層がはく魋していなくても，ブロッケージと損失 の著しい増大を招く，さらになお流量が蔵少すると，崩壊領域は翼負圧面境界層と干渉し始め，負圧面上に三次元は く離が引き起こされ，動翼列は翼先端側から失速する。こ の失速現象は，翼負荷の増大に伴う翼負圧面境界層のはく離，すなわち二次元的な翼の失速とは異なっており，翼先端漏れ渦の崩壊に起因した三次元的な失速現象である。さ らに，漏れ渦の崩壊は大きなブロッケージ効果を伴うこと， および翼負荷の増加とともに崩壊領域が成長することか ら，漏れ渦崩壊は動翼列における旋回失速の初生メカニズ ムにも関与していることが示唆される。

文 献

［1］Furukawa，M．，Saiki，K．，Nagayoshi，K．，Kuroumaru，M．，and Inoue，M．，1998，＂Effects of Stream Surface Inclination on Tip Leakage Flow Fields in Compressor Rotors，＂ASME Journal of Turbomachinery，Vol．120，No．4，pp．683－694．
［2］Furukawa，M．，Inoue，M．，Saiki，K．，and Yamada，K．，1998，＂A Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics，＂ASME Paper No．98－GT－239．
［3］Inoue，M．，Kuroumaru，M．，and Fukuhara，M．，1986，＂Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor，＂ ASME Journal of Engineering for Gas Turbines and Power， Vol．108，No．1，pp．7－14．
［4］Inoue，M．，and Kuroumaru，M．，1989，＂Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor，＂ ASME Journal of Turbomachinery，Vol．111，No．3，pp．250－ 256.
［5］Furukawa，M．，Saiki，K．，and Inoue，M．，1995，＂Numerical Simulation of Three－Dimensional Viscous Flow in Diagonal Flow Impeller，＂in ：Numerical Simulations in Turbomachinery， ASME FED－Vol．227，pp．29－36．
［6］Baldwin，B．S．，and Lomax，H．，1978，＂Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow，＂AIAA Paper No．78－257．
［7］Sawada，K．，1995，＂A Convenient Visualization Method for Identifying Vortex Center，＂Trans．Japan Soc．of Aero．Space Sci．，Vol．38，pp．102－116．
［8］Sujudi，D．，and Haimes R．，1995，＂Identification of Swirling Flow in 3－D Vector Fields，＂AIAA Paper No．95－1715

単段タービン性能予測に対する非定常段解析と定常段解析の比較
${ }^{*} 1$ 平井健二，${ }^{*} 1$ 児玉秀和，${ }^{*} 1$ 大山覀希彦，${ }^{*} 2$ 野崎理，${ }^{*} 2$ 菊地一雄，${ }^{*} 2$ 西澤敏雄，${ }^{*} 2$ 松尾裕一

Comparison between Unsteady Stage Analysis and Steady Stage Analysis for Evaluation of Aerodynamic Performance of Single－Stage Turbine

 byKenji Hirai，Hidekazu Kodama，Akihiko Oyama， Osamu Nozaki，Kazuo Kikuchi，Toshio Nishizawa，Yuichi Matsuo

Abstract

A three－dimensional time－accurate Reynolds－averaged Navier－Stokes code has been extended for use in a parallel supercomputer called Numerical Wind Tunnel（NWT）developed by the Japanese National Aerospace Laboratory．This study focuses on comparison between steady stage analysis and unsteady stage analysis for a stator－rotor configuration of a high pressure turbine．The result of the unsteady stage analysis shows better agreement with experimental data than that of the steady stage analysis．This is mainly attributed to better prediction of secondary flow near the casing by the unsteady stage analysis than the steady stage analysis．

1 はじめに

航空機エンジンを構成する翼列の設計は，現状では定常流れ解析が主流であるが，実際の翼列内部は上流 の翼列の伴流の影響等によって非定常性の強い流れと なっており，これは下流の翼列の性能にも大きく影響 する。そのため，より高性能な翼列設計のためには，非定常な空力性能を評価し，その影響を考慮する必要 がある。著者らは，数値風洞を活用する非定常3次元粘性流れ解析用並列化コードを開発してきたが，今回 は高圧タービンの単段解析を実施し，試験値との比較 を通じて，定常段解析と非定常段解析の翼列性能の予測精度の違いを調査したので報告する。

2 解析方法及び解析対象

解析方法

基礎方程式に非定常 3 次元ナビエ・ストークス方程式を用い，乱流モデルとして Baldwin－Lomax モデル （Baldwin ら，1978）を使用した。解法は差分法を基磱 とし，近似因子分解を用いて陰的に解いている。対流項は Chakravarthy and Osher のTVD スキーム
（Chakravarthy 5，1985）で評価し，粘性項は中心差分で評価した。なお定常段解析については，定常解 への収束を早めるために，局所時間刻みを用いて解析 を行った。本解析では NAL の所有する並列計算機 （NWT）を用いて並列計算を行っておら り，各翼間流路 に対して1計算機を割り当てる並列計算アルゴリズム を用いた。

解析対象

解析対象は内外壁径はともに一定で，静翼 28 枚，動翼 57 枚から構成される単段高圧タービンである（図 1）。本解析では簡素化のため静翼と動翼の翼枚数比 を1：2となるよらに，実際の動翼の翼枚数 57 枚を数値解析では 56 枚と仮定し，静翼1枚と動翼 2 枚から成 る $1 / 28$ 周を解析領域とした。この巽枚数の変更による動翼のソリディティの変化は 2% 以下であり，空力性能に与える影響は小さいと考えられる。比較のため， この仮定は非定常段解析および定常段解析で同様とし た。但し，定常段解析の場合には解析領域は静翼 1 枚 と動翼1枚とした。

[^21]入口境界条件として，全温，全圧，流扎角を与え，出口境界条件として静圧分布を与えた。また，翼面や ハブおよびケーシング壁面では滑りなし条件とした。 これらの境界条件は，非定常段解析，定常段解析とも に同一としている。静翼と動翼の接続境界では，定常段解析の場合，基礎方程式の基本変数を全て周方向流量平均した値を受け渡しているので，各基本変数は周方向に一定であり，半径方向分布のみを持つことにな る。一方，非定常段解析の場合，各時間刻み毎に接続境界の基本変数に格子点の相対位置に応じた線形補間 を行った値を受け渡しているので，周方向及び半径方向に分布を持っており，静翼と動翼の位置に従って時間とともに変化する。

解析格子には非定常段解析および定常段解析ともに同一なH型格子を用いた。静翼，動翼ともに格子点数 は流れ方向，円周方向および半径方向にそれぞれ，119 $\times 51 \times 61$ とした（図 2）。なお，動翼のチップクリア ランス部には半径方向に5点配置した。各翼列間の接続部では，計算の効率化を図るために，隣り合う翼列同士で半径方向に格子線を同一位置となるようにして，格子線上で情報のやりとりを行えるようにした。

3 結果

収束判定について
図 3 は基本変数の平均残差の収束履歴を示す。非定常段解析の場合，当然ながら解が一定の値に収束せず時間に対して周期的な変動をするが，本解析では，計算中に基本変数の時間変動量をモニターすることによ り，その周期性を用いて収束の判定を行った。具体的 には物理量の変動が周期的な変動を $6 \sim 7$ 周期繰り返 したところ（図3中の6000 侈レション付近）で収束した と判断した。また，本論文には示していないが，流量 などその他の物理量自体の時間変動の周期性について も，この収束判定方法を用いることに問題の無いこと を確認している。計算時間については，PE3台による並列計算で約 20 時間要した。なお，非定常段解析結果 のデータ処理については，収束と判断してから一周期分の結果を時間平坞した。

一方，定常段解析では 6000 回の繰り返し計算を行 い，残差が初期残差の 10^{-3} 倍以下となったことを確認

し，収束したと判断した。計算時間についてはPE2台 による並列計算で約5時間要した。

動翼下流での解析結果の比較

図 4 に非定常段解析結果と計測結果について，動翼後縁より 78% コード下流の計測面での全温分布の比較を示す（平井ら，1998）。静翼のウエィクの影響で形成される高温領域など，定常段解析では得られなか った周方向分布を捕らえている。さらに，図5に周方向流量平均した全温，全圧および流れ角の半径方向分布について，計測結果，非定常段解析および定常段解析の比較を示す。非定常段解析結果の方が定常段解析結果よりも全体的に計測結果と良く一致していること が分かる。特に，定常段解析では計測結果の示す 80% スパン付近に存在するピークを再現できておらず， 65% 付近にピークがずれている。

また，時間変動量を見ると，各変数で非定常性が強 く現れる場所が様々である。スワール角は，二次流れ渦のある 80% スパンの変動が特に大きくなっているが，全温はミッドスパンを中心にかなり広範囲にわたり非定常性が認められる。

三次流れの発達について

図6に非定常段解析結果との定常段解析結果の動翼負圧面近傍の全温分布の比較を示す。定常段解析では ケーシング側で大規模な二次流れが発生しており，動翼後縁において約 45% スパンを占めるまで発達してい るのに対して，非定常段解析では約 30% スパンを占め ており，二次流れの発達をより小さく予測しているこ とが分かる。この原因を考察するために，上流の静翼内の二次流れの発達について調査した（図7）。静翼負圧面のケーシング近傍で発達する静翼内の二次流れ についても，定常段解析と非定常段解析の結果に違い が出ていることが分かる。この二次流れが発達し始め る $1 / 2$ コード付近（図7（1））から，全圧分布に差が生じ始めており，徐々にその差が大きくなっているこ とが分かる（図7（2），（3））。静翼後縁付近の全圧分布において，定常段解析では流路中央部の全圧の 2%程度減少する全圧分布が 70% から 100% スパンに幅広 く存在しているのに対して，非定常段解析の結果を時

間平均した結果では最大で 1% 程度減少する全圧分布 が 80% から 100% スパンの位置に局所的に存在してお り，定常段解析に対して非定常段解析は二次流れを小 さく予測している（図7（3））。

一方八ブ側については，全圧損失の大きさもほぼ同 じであり，また，ハブ近傍に存在する極値的な分布も ほぼ一致することから，定常段解析結果と非定常段解析結果の間に大きな違いは無いことが分かる。チップ側の全圧分布において定常段解析結果よりも非定常段解析結果の方が二次流れが小さいという傾向が動翼及 び静翼の両方に存在することから，上流に存在する静翼内の二次流れの発達の違いが，動翼下流での定常解析結果と非定常解析結果の半径方向分布の違いの一因 と考えられる。

4 結論
同一の空間離散化方法及び計算スキームを用いた単段タービンの定常段解析と非定常段解析を実施し，両者の解析法の違いが翼列性能の予測に与える差を明ら かにした。

非定常段解析はタービン静翼負圧面のケーシング近傍において，定常段解析と異なる二次流れを予測する ことが判明した。その結果生じる静翼出口分布の差か ら，動翼内二次流れ分布の予測が異なつており，動翼下流での各物理量のスパン方向分布が異なつているこ とが分かつた。

参考文献

Chakravarthy，S．R．，Osher，S．，＂A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws＂，AIAA－85－0363， 1985
Baldwin．B．，Lomax，H．，＂Thin－Layer Approximation and Algebraic Model for Separated Turbulent Flows＂，AIAA－78－0257，1978

平井，児玉，野崎，菊地，西澤，田村，松尾，「航空機エンジン内の 3 次元非定常流れ解析」，航空宇宙技術研究所特別資料SP－37＂第15回航空機計算空気力学シンポジウム論文集＂，1998年2月

Flow

図1 試験装置

図3 収束履歴

（a）試験値

（b）計算結果

図4 動翼後縁から 78% コード後流での時間平均した絶対全温コンター図の比較

（a）全温

（b）全圧

（c）スワール角

図5 動翼後流での時間平均打よび周方向平均した各物理量のスパン方向分布の比較

図 6 動翼負圧面近傍の等全温線図

図 $7-$（1）静翼内全圧分布（流れ方向 $1 / 2$ コード付近：後視）

図7－（2）静翼内全圧分布（流れ方向 $3 / 4$ コード付近：後視）

図7－（3）静翼内全圧分布（流れ方向T．E．付近：後視）

松島紀佐 ${ }^{* 1}$ ，岩宮敏幸＊2，鄭 信圭 ${ }^{* 3}$ ，大林 茂 ${ }^{* 3}$

Aerodynamic Shape Design of a Wing for NAL＇s SST Using an Inverse Problem

by
Kisa MATSUSHIMA ${ }^{* 1}$ ，Toshiyuki IWAMIYA＊${ }^{2}$ ，Sinkyu JEONG＊3 and Shigeru OBAYASHI＊3

Abstract

The aerodynamic shape of a wing for NAL＇s SST has been designed by a supersonic inverse design method． This method handles SST＇s wing－fuselage configurations and provides the wing section geometry at every span． The design system consists of a new inverse problem solver and a Navier－Stokes simulation．The design procedure is iterative；the baseline shape is successively modified as the process of the inverse problem solver and Navier－Stokes simulation is iterated until the pressure distribution given by the designed wing converges to the target one．The design target is a NLF（natural laminar flow）wing for the wing－fuselage combination at the speed of $\$$ M＿infty $=2.0 \$$ ．Several design constraints need to be satisfied．By means of the method，a better wing shape has been designed which has much more desirable characteristics than that by thetraditional linear theory．

1．Introduction

A next generation supersonic transport（SST）is of great interest in Japan as well as in Europe and the U．S．because of the projected trends of the world avia－ tion market in the near future．Japan started an SST program in 1995 and will conduct the first flight test of National Aerospace Laboratory＇s experimental scaled SST in 2000 ．The program requires advanced CFD technology，especially to determine the SST＇s aerody－ namic shape［1］．The most effort needs to be put into developing design methods for determining the most aerodynamically efficient wing shape．This is because one of the most important challenges in designing a new SST is the improvement of the L／D ratio during cruising（ $M_{\infty}=2.0$ ）．

We have been developing and verifying a numeri－ cal inverse design method for supersonic wings［2］．It is used to design the wing section geometry for a wing whose planform is fixed．Usually，the wing section de－ sign is performed in two steps；first，the warp curva－ ture is determined three－dimensionally，then the thick－ ness is prescribed two－dimensionally for each span sec－ tion．Unlike most existing methods，our method treats both the warp curvature and the thickness distribution simultaneously，considering three－dimensional effects． The new method is based on the supersonic small dis－ turbance equation and thin wing theory．The equations to solve the supersonic inverse problem are derived to be the integral equations shown in section 2 ．In section 3 ，the structure of the design system is described．In section 4 ，the new method is applied to a highly prac－ tical problem involving NAL＇s SST，in which the aim is to design a natural laminar flow wing for the wing－ fuselage configuration．We also intend to satisfy design constraints．The principals of the new method and the

[^22]design results are presented．

2．Inverse problem for design

The basic idea of the inverse problem for the present design method is to define a mathematical function to relate the pressure difference on a surface，$\Delta C p$ ，to a geometrical correction，Δf ．It should be emphasized that the formulation is done in Δ－form．Δf and $\Delta C p$ ， variations from one state to another state of a flowfield， are used so that the method can gain wide applicability．

The formulation starts with the small disturbance approximation and thin wing theory．A wing is located at $z=0$ in a supersonic flowfield whose free stream Mach number is M_{∞} ．The x axis is streamwise，the y axis is spanwise，and the z axis is in the thickness direction of a wing．

The free stream velocity vector is assumed as $(1,0,0)$ ．A flow field is approximated by the linearl－ ized small disturbance equation：

$$
\begin{equation*}
\left(1-M_{\infty}^{2}\right) \bar{\phi}_{\overline{x x}}+\bar{\phi}_{\overline{y y}}+\bar{\phi}_{\overline{z z}}=0 \tag{1}
\end{equation*}
$$

ϕ is a perturbation velocity potential．The shape of a wing is expressed as $f_{ \pm}(\bar{x}, \bar{y})$ ．＋indicates the upper surface and－does the lower surface．

On the wing surface，the flow ought to be tangential to the surface as

$$
\begin{equation*}
\bar{\phi}_{z}(\bar{x}, \bar{y}, \pm 0)=\frac{\partial}{\partial \bar{x}} f_{ \pm}(\bar{x}, \bar{y}) \tag{2}
\end{equation*}
$$

According to the linearized Bernoulli＇s theorem，the pressure coefficients on a wing surface are related to the perturbation velocity；

$$
\begin{equation*}
C p_{ \pm}(\bar{x}, \bar{y})=-2 \bar{\phi}_{x}(\bar{x}, \bar{y}, \pm 0) \tag{3}
\end{equation*}
$$

+0 and -0 mean the upper and lower surface of a wing respectively．

Applying the Prandtl－Glauert transformation such as

$$
x=\bar{x}, \quad y=\beta \bar{y}, \quad z=\beta \bar{z}, \quad \phi(x, y, z)=\frac{1}{\beta^{2}} \bar{\phi}(\bar{x}, \bar{y}, \bar{z})
$$

where $\beta=\sqrt{M_{\infty}^{2}-1}$
and taking variation of Eqs．（1－3）by changing ϕ to $\phi+\Delta \phi$ ，the equations for variation of the perturba－ tion velocity potential，the correction in wing section shapes，and surface pressure difference between one state of the perturbation potential of ϕ and another one of $\phi+\Delta \phi$ are

$$
\begin{equation*}
-\Delta \phi_{x x}+\Delta \phi_{y y}+\Delta \phi_{z z}=0 \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial}{\partial x} \Delta f_{ \pm}\left(x, \frac{y}{\beta}\right)=\beta^{3} \Delta \phi_{z}(x, y, \pm 0) \tag{5}\\
\Delta C p_{ \pm}\left(x, \frac{y}{\beta}\right)=-2 \beta^{2} \Delta \phi_{x}(x, y, \pm 0) \tag{6}
\end{gather*}
$$

Now，we apply Green＇s theorem to Eq．（4）of a hy－ perbolic system and obtain $\Delta \phi$ in an analytical form，

$$
\begin{gather*}
\Delta \phi(x, y, z)=-\frac{1}{2 \pi} \frac{\partial}{\partial x} \iint_{\tau_{+}}\left\{\left[\Delta \phi_{\zeta}(\xi, \eta,+0)-\right.\right. \\
\left.\left.\Delta \phi_{\zeta}(\xi, \eta,-0)\right] \Psi(x, y, z ; \xi, \eta, 0)\right\} d \xi d \eta \\
+\frac{1}{2 \pi} \frac{\partial}{\partial x} \iint_{\tau_{+}}\{[\Delta \phi(\xi, \eta,+0)-\Delta \phi(\xi, \eta,-0)] \\
\left.\times \Psi_{\zeta}(x, y, z ; \xi, \eta, 0)\right\} d \xi d \eta \tag{7}
\end{gather*}
$$

where

$$
\begin{gather*}
\Psi(x, y, z ; \xi, \eta, \zeta)=\cosh ^{-1} \frac{x-\xi}{\sqrt{(y-\eta)^{2}+(z-\zeta)^{2}}} \tag{8}\\
\Psi_{\zeta}(x, y, z ; \xi, \eta, \zeta)=\frac{(x-\xi)(z-\zeta)}{\left[(y-\eta)^{2}+(z-\zeta)^{2}\right]} \\
\times \frac{1}{\sqrt{(x-\xi)^{2}-(y-\eta)^{2}-(z-\zeta)^{2}}} \tag{9}
\end{gather*}
$$

Then，the formulation is performed referring to Takanashi＇s method［3］which was developed for tran－ sonic wing $\left(M_{\infty}<1.0\right)$ design．Unlike a transonic flowfield which is mainly an elliptic system，the influ－ enced domain by the disturbance at $P(x, y, z)$ is lim－ ited．So the domain for integrations，which is a por－ tion of the physical space around a wing，should be carefully defined for Eq．（7）．Since the influenced do－ main is behind the bow shock wave and inside the Mach forecone from $P(x, y, z)$ ，the integral domain is bounded with the two surfaces in the manner shown in the first figure of Fig．1．On the surface of the bow shock wave and the Mach cone，each integrand in Eq．（7）becomes zero．The surface integral domain
where the integration remains nonzero is a portion of the wing surface which is bounded by the leading edge line and the hyperbola $(x-\xi)^{2}-(y-\eta)^{2}-(z)^{2}=0$ ． In Eq．（7），every integrand is divided into two func－ tions，one is for the upper surface $(\zeta=+0)$ and the other is for the lower surface $(\zeta=-0)$ ．So，the domain τ_{+}means the upper surface of the wing plane where $(x-\xi)^{2}-(y-\eta)^{2}-(z)^{2} \geq 0$ ．It is shown in Fig．1．

In order to expose the boundary condition $\Delta C p$ and the unknown shape function Δf as explicit functions， we do further calculus with Eq．（7）．In fact，$\Delta C p$ is associated with $\Delta \phi_{x}$ and Δf is associated with $\Delta \phi_{z}$ ． Differentiating Eq．（7）with respect to x and adding $\Delta \phi_{x}(x, y, z)$ at $z=+0$ to $\Delta \phi_{x}(x, y, z)$ at $z=-0$ we obtain

$$
\begin{gather*}
\Delta w_{s}(x, y)=-\Delta u_{s}(x, y)- \\
\frac{1}{\pi} \iint_{\tau_{+}} \frac{(x-\xi) \Delta w_{s}(\xi, \eta)}{\left[(x-\xi)^{2}-(y-\eta)^{2}\right]^{3 / 2}} d \xi d \eta \tag{10}
\end{gather*}
$$

where

$$
\begin{gather*}
\Delta u_{s}=\Delta \phi_{x}(x, y,+0)+\Delta \phi_{x}(x, y,-0) \\
=-\frac{1}{2 \beta^{2}}\left(\Delta C p\left(x, \frac{y}{\beta},+0\right)+\Delta C p\left(x, \frac{y}{\beta},-0\right)\right) \tag{11}\\
\Delta w_{s}=\Delta \phi_{z}(x, y,+0)-\Delta \phi_{z}(x, y,-0) \\
=-\frac{1}{\beta^{3}}\left(\frac{\partial \Delta f\left(x, \frac{y}{\beta},+0\right)}{\partial x}-\frac{\partial \Delta f\left(x, \frac{y}{\beta},-0\right)}{\partial x}\right) \tag{12}
\end{gather*}
$$

Similarly，differentiating Eq．（7）with respect to z and adding $\Delta \phi_{z}(x, y, z)$ at $z=+0$ to $\Delta \phi_{z}(x, y, z)$ at $z=-0$

$$
\begin{gather*}
\Delta w_{a}(x, y)=-\Delta u_{a}(x, y)+ \\
\frac{1}{\pi} \iint_{\tau_{+}} \frac{(x-\xi) \Delta u_{a}(\xi, \eta)}{(y-\eta)^{2} \sqrt{(x-\xi)^{2}-(y-\eta)^{2}}} d \xi d \eta \tag{13}
\end{gather*}
$$

where

$$
\begin{gather*}
\Delta u_{a}=\Delta \phi_{x}(x, y,+0)-\Delta \phi_{x}(x, y,-0) \\
=-\frac{1}{2 \beta^{2}}\left(\Delta C p\left(x, \frac{y}{\beta},+0\right)-\Delta C p\left(x, \frac{y}{\beta},-0\right)\right) \tag{14}\\
\Delta w_{a}=\Delta \phi_{z}(x, y,+0)+\Delta \phi_{z}(x, y,-0) \\
=-\frac{1}{\beta^{3}}\left(\frac{\partial \Delta f\left(x, \frac{y}{\beta},+0\right)}{\partial x}+\frac{\partial \Delta f\left(x, \frac{y}{\beta},-0\right)}{\partial x}\right) \tag{15}
\end{gather*}
$$

The same fundamental equations for pressure and surface geometry are found in Ref．［4］．

Eq．（10）is a Volterra integral equation of the second kind for Δw_{s} ，the thickness change at (x, y) on a wing， while Eq．（13）is the integral expression for Δw_{a} ，the curvature change of the wing section camber，at (x, y) ．

In the vicinity of the wing tip the Eqs．（10）and（13） become invalid，because neither the small disturbance approximation nor thin wing theory holds the same order of accuracy as they hold in the middle part of the wing．Thus，in the region around the tip，we use
the linearized two dimensional theory for supersonic airfoil such as

$$
\begin{align*}
& \Delta w_{s}(x, y)=-\Delta u_{s}(x, y) \tag{16}\\
& \Delta w_{a}(x, y)=-\Delta u_{a}(x, y) \tag{17}
\end{align*}
$$

After a trial and error examination，Eqs．（10）and（13） have been replaced with Eqs．（16）and（17）respectively in the region outward of the 70%－span station of the wing．

The geometrical correction is calculated using

$$
\begin{equation*}
\Delta f_{ \pm}\left(x, \frac{y}{\beta}\right)=\frac{1}{2} \beta^{3} \int_{L . E}^{x}\left[\Delta w_{s}(\xi, y) \pm \Delta w_{a}(\xi, y)\right] d \xi \tag{18}
\end{equation*}
$$

Therefore，we can obtain the geometrical correction everywhere on a wing，specifying the difference be－ tween target and current pressures，$\Delta C p=C p^{\text {target }}$－ $C p^{\text {current }}$ ．There needs to be special treatment for the integration，because the integrands of Eqs．（10 and 13） become singular on the Mach cone．We calculate it using the limiting operation of improper integrals．

3．Design Procedure

The design procedure for supersonic wings is an it－ erative method．Fig． 2 illustrates the procedure．The method determines the wing section geometry which realizes a specified target pressure distribution at all span stations of a wing．First，a baseline shape is guessed．Then the flow field around the wing is an－ alyzed by flow simulation to get the current $C p$ distri－ bution on the wing surface．Next the inverse problem is solved to obtain the geometrical correction value， Δf corresponding to the difference between target and current pressure distributions，$\Delta C p$ ．The new wing is designed by modifying the baseline shape using Δf ． Now，the current shape is updated．The next step is to go back to the flowfield analysis．The flow analysis is conducted to see if the current shape realizes target pressure distribution．If the difference between target and current pressure distributions is negligible，the de－ sign is complete．Otherwise，the next step is once again to solve the inverse problem and iterate the design loop until the pressure difference becomes negligible．This iterative procedure of reducing the residual is widely used in numerical aerodynamic design．

This procedure has two primary parts；one is flow analysis，where grid generation and flow simulation are conducted．The other is a design part where the inverse problem is solved to update the wing geometry．Both parts are completely independent from each other．So， any kind of simulation code can be employed or even a wind tunnel test can replace the analysis part，as long as it provides an accurate pressure distribution on the wing surface．For the present project，a Navier－Stokes （ $\mathrm{N}-\mathrm{S}$ ）simulation about a wing－fuselage configuration is conducted in the flowfield analysis［5］so that the fuse－ lage effect can be taken into account．The designed ge－ ometry approximately includes the aerodynamic effect
of the interaction between the fuselage and the wing． This is due to the Δ－form formulation of the inverse problem．

4．Wing design for NAL＇s SST

The wing of NAL＇s experiment－scale SST is aerody－ namically designed at $\mathrm{M}_{\infty}=2.0$ ．The SST planform is illustrated in Fig．3．The goal is to design a sec－ tion geometry for the SST wing which realizes Natural Laminar Flow on its upper surface and the optimum load distribution．We prescribe a target pressure whose elliptical load distribution minimizes the induced drag and whose upper surface distribution keeps the lami－ nar boundary layer significantly longer than traditional wings．For solving the inverse problem，the half span of the wing is divided into 82 （spanwise）$\times 50$（chordwise） panels．

The wing design starts from the baseline model． The baseline shape of the wing is the result of plan－ form and warp optimizations in terms of the L／D ra－ tio，while the shape of the fuselage is determined using the area rule $[1,6]$ ．The thickness distribution of the NACA66003 airfoil is adopted as the chordwise thick－ ness distribution for each span station of the wing． Despite optimizations，the performance of the wing of the wing－fuselage model is not as efficient as expected． This is because these optimizations were done for a wing alone．In other words，they did not take the wing－ fuselage interaction into consideration．Therefore，im－ provement of the aerodynamic shape of the SST wing by a method which can account for this interaction is necessary．

Several modifications are introduced in the design loop．We modify the currently obtained wing geometry at every iteration to satisfy constraints on the trailing edge and twisting axis as part of the design require－ ments．To guarantee that every section has a closed trailing edge，the solution Δw_{s} is modified as

$$
\begin{equation*}
\Delta w_{s}^{\bmod }(x, y)=\Delta w_{s}(x, y)-\frac{\int_{L \cdot E \cdot}^{T . E .} \Delta w_{s}(\xi, y) d \xi}{\int_{L \cdot E .}^{T . E .} d \xi} \tag{19}
\end{equation*}
$$

so as to satisfy the condition：

$$
\begin{equation*}
\int_{L . E .}^{T . E .} \Delta w_{s}^{\bmod }(\xi, y) d \xi=0 \tag{20}
\end{equation*}
$$

It is requested that the twisting axis of the wing of the SST goes through 70%－chord of every span section． Every point at 70%－chord on the mean line of a span section has to lie on a straight line．However，the z location of the mean line of every span station moves at random after solving the inverse problem and there－ fore breaks the constraint on the twisting axis．To solve this problem，the geometry at every span station is al－ lowed to move in the z direction so that every point at 70%－chord on the mean line can stay on a straight line．These modifications in Δw_{s} and z location do not
cause a substantial difference in the realized pressure distribution from that of the geometry without modifi－ cation．Another modification is to the specified target pressure．In general，an arbitrarily specified pressure distribution does not always correspond to a physically acceptable solution．Sometimes there might be no ex－ act solution．Thus，the desired role of the inverse de－ sign method is to find the solution whose pressure dis－ tribution is closest to the specified target pressure．In this sense，the specified pressure distribution is not ab－ solute．It should be modified if necessary in order to have the resulting geometry meet the design require－ ment．But the modification can only be accepted so long as the modified target pressure would not disturb the upper surface NLF．In this project，we modify the pressure distribution so as to create a leading edge in an appropriate shape，utilizing the pressure distribu－ tion generated by an existing wing．

The design results at several span stations are shown in Figs．4－6．Those results were obtained after twelve iterations of the design loop．Fig． 4 presents the wing section geometry and the realized pressure distribution along the chord at 30%－semispan station．The dashed line and＇+ －line＇indicate，respectively，the geometry and pressure distribution of the baseline wing section， while the solid line and＇$>$－line＇indicate those of the designed wing section．The target pressure is indicated by chain lines．Fig． 5 shows the wing section geometry and pressure distribution at the 50%－semispan station． Fig． 6 shows those at the 70%－semispan station．The resulting wing realizes much closer pressure distribu－ tion to the target than the baseline wing does．One of the most characteristic features of a NLF wing is the sudden expansion of the upper surface $C p$ distribution at the leading edge．Furthermore，on the upper sur－ face，a flat roof type of $C p$ distribution along the chord is highly desirable to make turbulence transition take place as late as possible．These features can be seen in the target pressure distributions of Figs．4－6．At every span－station，the designed wing can produce a $C p$ dis－ tribution which has the desired features of a NLF wing． In fact，the N －factor stability analysis has proven the improvement by the new method．

We also conducted the parametric study on the angles of attack（ α ）around 2° ，to verify the stabil－ ity of the flowfield around the designed wing．The pressure ditributions with $\alpha=1.0,1.5,2.0,2.5$ and 3.0 are shown in Figs．7－9．Fig． 7 is for those at the 30%－semispan station．Fig． 8 is for those at the 50%－ semispan station．Fig． 9 is for those at the $70 \%-$ semispan station．The surface Cp distribution on the designed wing does＇t show drastic change due to the small change of an angle of attack．Thus，the stability for the solution of the inverse method is proved in this application in a practical sense through these paramet－ ric studies，though the mathematical well－posedness of the inverse problem has not been guaranteed．

5．Sumarry

A three－dimensional supersonic inverse method has been developed and applied to the design of the wing of NAL＇s SST．The equations to solve the supersonic inverse problem were derived from the supersonic small disturbance equation and thin wing theory．They are the integral equations．The design methods consists of the inverse problem and the N－S flow analysis parts． Several modification techniques that did not violate the design concept were introduced to satisfy the design constraints and to make the use of this method practi－ cal．

The design method achieved the design of a wing for a wing－fuselage configuration．Since the formulation for the inverse problem was done in Δ－form and the design method adopted the residual－correction consept． This method could take the wing－fuselage interaction into consideration，when the analysis was conducted about a wing－fuselage configuration at each iteration step．In addition，the method was proved to be use－ ful for designing a NLF wing which had a typical $C p$ distribution on the upper surface．In fact，the current wing designed by the new method realized the desir－ able pressure distribution to attain a NLF wing．The inverse problem solver we have developed gives wing section geometry which realizes a specified $C p$ distri－ bution．This is the advantage of the new method，in contrast with traditional methods which handle just a load，not the $C p$ distribution itself．

The results certified that the method had the high feasibility for achieving practical aerodynamic design of supersonic wings．

References

［1］Yoshida，K．and Hayama，K．，：Numerical Methods for the Design and Analysis of Wings at Supersonic Speed． SAE Paper91－2056，Oct．， 1991.
［2］Jeong，S．，Matsushima，K．，Iwamiya，T．，Obayashi， S．，and Nakahashr，K．：inverse Design Method for Wings of Supersonic Transport．AIAA paper 98－0602，Jan．， 1998.
［3］Takanashi，S．：Iterative Three－dimensional Transonic Wing Design Using Integral Equations．J．Aircraft，22（8）， pp．655－660， 1985.
［4］Lomax，H．，Heaslet，M．A．and Fuller，F．B．：In－ tegrals and Integral equations in Linearized Wing Theory． NACA Rep．1054， 1951.
［5］Takaki，R．，Iwamiya T．，and Aoki A．，：CFD Analysis Applied to the Supersonic Research Airplain．CFD Work－ shop on SST Design，March， 1998.
［6］Sinbo，Y．，Yoshida，K．，Iwamiya T．，Takaki R．，and Matsushima，K．：Aerodynamic Design of Scaled Super－ sonic Experimental Airplane．CFD Workshop on SST De－ sign，March， 1998.

Fig． 1 Coordinate system for formulation．

Fig． 2 Design procedure．

Fig． 3 SST planform．

Fig． 4 Cp vs．chord at 30% semi－span． Pressure ：＋Baseline，－－Target，\diamond Designed Wing Section ：．．．Baseline，－Designed．

Fig． 5 Cp vs．chord at 50% semi－span．

Fig． 6 Cp vs．chord at 70% semi－span．

Fig． 7 Cp variation with angles at 30% semi－span．

Fig． 8 Cp variation with angles at 50% semi－span．

Fig． 9 Cp variation with angles at 70% semi－span．

超音速粘性流に対する非構造格子空間前進解法
 森野 裕行＊1，中橋 和博＊2，大林 茂＊${ }^{* 2}$

Space－Marching Method on Unstructured Grid for Supersonic Viscous Flows

by

Hiroyuki Morino＊${ }^{* 1}$ Kazuhiro Nakahashi＊2 Shigeru Obayashi＊${ }^{* 2}$

Abstract

A space－marching algorithm to solve the Navier－Stokes equations on unstructured hybrid grid is proposed for supersonic viscous flows about complex configurations．The method employs a domain－marching algorithm in which a band－like computational subdomain，named active domain，is marched in the hyperbolic direction starting from the upstream boundary of the flow field．A masking procedure is employed where the outside of selected domain is masked during the flux computation to minimize the overall arithmetic operations．The unmasked domain is integrated in time to get a locally converged solution．The method is applied to calculations of a supersonic laminar flow past a 10° half－angle circular cone，and a supersonic turbulent flow around a high speed civil transport（HSCT）configuration．It is demonstrated that the computational work can be significantly reduced by the present method as compared to conventional time－marching unstructured grid method without decreasing the solution accuracy．

1．はじめに

近年，世界各国で次世代超音速輸送機（SST）の研究•開発 が進められており，その設計ツールとして高精度•高効率 の CFD コー－ドが求められている。CFD の計算格子として一般的に用いられている構造格子では，複雑な航空機全機形状に対して格子生成に膨大な時間を費やすことになるが，非構造格子では複雑形状の格子生成も比較的容易である。 よって，非構造格子上で効率の良い計算手法やアルゴリズ ムを構築できれば，その有用性はさらに増すであろう。
空間前進解法とは超音速流れにおいて流れの情報は上流 から下流にしか伝播しないという特性を利用した計算効率化の手法で，1970年代から構造格子上でのみ適用されてき た［1］。しかし，この場合計算格子には，流れ方向とそれを横切る方向に格子線を持つ H 型格子が常に要求されるとい う格子トポロジーの制限があり，複雑な航空機全機形状へ の適用は極めて困難であった。
一方，非構造格子上では上記のような格子依存性がない ため，格子トポロジーの制限は排除され，任意の複雑形状周りの超音速流れを扱うことができる。中橋と斎藤は非構造格子上で格子トポロジーに拘束されない空間前進解法［2］ を提案し，超音速非粘性流れに対してこれを適用した。こ の手法は非常に計算効率が良く，また既存の計算コードへ

の組み达みも容易である。本研究では，この手法を超音速粘性流れに拡張し，さらに陰解法と組み合わせることによ り非常に計算効率の良い Navier－Stokes ソルバーを開発し た。

2．支配方程式

流れ場の時間依存計算には3次元非定常レイノルズ平均 Navier－Stokes 方程式を用いる。無次元化された保存則の積分形は次式で表わせられる。
$\frac{\partial}{\partial t} \int_{Q} Q d V+\int_{\partial Q}\left(F(Q)-\frac{M_{\infty} \sqrt{\gamma}}{\operatorname{Re}} G(Q)\right) \cdot n d S=0$
ここで，$Q=[\rho, \rho u, \rho v, \rho w, e]^{T}$ は保存変数ベクトルであ る。 ρ は密度，$u, ~ v, ~ w は そ れ そ ゙ れ ~ x, ~ y, ~ z$ 方向の速度成分 で，e は単位体積当たりの全エネルギーである。 $F(Q)$ ，
$G(Q)$ はそれぞれ非粘性流束ベクトル，粘性流束ベクトル である。式（1）の方程式系は理想気体の状態方程式

$$
\begin{equation*}
p=(\gamma-1)\left[e-\frac{1}{2} \rho\left(u^{2}+v^{2}+w^{2}\right)\right] \tag{2}
\end{equation*}
$$

によって閉じられる。ここで p は静圧であり，γ は比熱比 である。また，主流温度を T_{0} とすると，層流粘性係数 μ は

[^23]サザーランドの式より求められる。

$$
\begin{equation*}
\mu=\left(\frac{T}{T_{0}}\right)^{3 / 2}\left(\frac{T_{0}+117}{T+117}\right) \tag{3}
\end{equation*}
$$

支配方程式はセル節点有限体積法で離散化される。検査体積 Ω は図 1 のように非重合二重格子（non－overlapping dual cell）となる。
ここで，節点 i の保存変数 Q_{i} のセル積分平均 \bar{Q}_{i} を以下のように定義する。

$$
\begin{equation*}
\bar{Q}_{i}=\frac{1}{S_{i}} \int_{\Omega_{i}} Q d S \tag{4}
\end{equation*}
$$

S_{i} は微小検査体積 Ω_{i} の面積で，

$$
\begin{equation*}
S_{i}=\int_{\Omega_{i}} d S \tag{5}
\end{equation*}
$$

である。式（1）の第一項にセル積分平均 \bar{Q}_{i} を用いて式（1）を代数方程式で記述すると，
$\frac{\partial \bar{Q}_{i}}{\partial t}=-\frac{1}{V_{i}}\left[\sum_{j(i)} \Delta S_{i j} h\left(Q_{i j}^{+}, Q_{i j}^{-}, n_{i j}\right)-\sum_{j(i)} \Delta S_{i j} G\left(Q, n_{i j}\right)\right]$

ここで，$\Delta S_{i j}$ は両端の点が i と j である辺に関係する検査体積境界面の面積である。 $\Delta S_{i j}$ はその境界面の外向き法線 ベクトル $n_{i j}$ と同様に，その辺を共有するセルが寄与する面積の和をとることで計算できる。 h は検査体積境界面に垂直な数値流束で，$Q_{i j}^{ \pm}$はその辺について検査体積境界面の両側におうる保存変数ベクトルの値である。ここで $j(i) は i$ と対をなす全ての点について和をとることを意味する。
数値流束 h の計算で，検査体積内において基礎物理変数 $q=[\rho, u, v, w, p]^{T}$ を区分的に線形再構築した場合，∇q を勾配としてセル境界値を高次に外挿して空間2次精度にす ることができる。 $q_{i j}^{ \pm}$を検査体積境界面の両側における基硞物理変数ベクトルとすると，

$$
\begin{align*}
& q_{i j}^{-}=\bar{q}_{i}+\Psi_{i} \nabla q_{i} \cdot\left(r_{m}-r_{i}\right) \tag{7a}\\
& q_{i j}^{+}=\bar{q}_{j}+\Psi_{j} \nabla q_{j} \cdot\left(r_{m}-r_{j}\right) \tag{7b}
\end{align*}
$$

となる。ここで，r_{m} は辺 $i j$ の位置ベクトルである。また Ψ はスキームの単調性を保持するための制限関数で，ここで は Venkatakrishnan の制限関数［3］を用いている。

数値流束 h は HLLEW リーマン解法［4］を用いて計算し，時間積分は LU－SGS 陰解法［5］で行う。乱流モデルには Goldberg－Ramakrishnan 1 方程式モデル［6］を使用する。

図 1：検査体積

3．空間前進解法

3.1 計算領域の前進

構造格子上での空間前進解法では計算面が前進するのに対し，非構造格子上では図 2 のように，ある幅を持った計算領域が前進し，この計算領域内でのみ時間依存計算が実行される。計算領域内の上流側には収束判定領域が設定さ れ，この中の全節点が収束したと判定された時点で計算領域から収束判定領域を取り除き，下流側の未計算領域を新 たに計算領域に取り迄むことによって計算領域は下流側に前進する。最終的に計算領域内に節点がなくなった時点で，計算は終了する。
流れが超音速である限り，流れの情報は上流から下流へ しか伝播しないため，計算領域中の変化は上流側の既計算領域には影響を及ぼさない。粘性流れにおいては境界層内 に亜音速領域が存在するが，極端な剥離がない限り流れは放物型の特性を有すると考えられ，上流側への影響は工学的には無視できる。また計算領域内では時間依存計算を行 っているので，計算領域の䀦を大きく取ることによって， その影響を抑えることもできる。

図 2：計算領域の前進

3.2 マスキング

流れ場全体において，計算領域のみの計算を行うために， この領域とそれ以外の領域を区別しなければならない。こ れは節点や辺にマスキングを施すことによって行われる。3次元場では，2次元場と比べて節点数や要素数が格段に増大 し，それに伴い計算時間も大幅に増加するため，計算時間 の短縮には適切な計算領域の絞り込みが必要となる。本研究では計算格子により一意に最小限の計算領域をとるよう にするために，以下の方法を用いている。

まず全領域の計算格子を読み込み，流れ方向に最大長さ を持つ辺をサーチし，その辺の長さを基準として収束判定領域の幅を設定する。そして収束判定領域の $2 \sim 3$ 倍の幅を持つ領域を収束判定領域の下流側に加えて計算領域とする。 これらの領域を判別するために，全節点と辺にそれぞれ配列 MASKN（in），MASKE（ie）を用意する。図3に示してあ るように，MASKN（in）は節点の位置及びその接続状況に応 じて表1のような値を持つ。またMASKE（ie）は辺の両端の節点の MASKN（in）によって決まり，辺の両端の節点が共に MASKN＝5 または MASKN＝0 ならば MASKE＝0 となり， それ以外の辺は MASKE＝1 となる。流束計算は MASKE＝1 の辺についてのみ行われ，それ以外の辺はスキップする。保存量 Q の更新は MASKN＝2～4の節点で行われる。計算時間を短縮するために，高次精度計算は一方の節点が MASKN＝3～4 である辺でのみ行い，その他の MASKE＝1 の辺に関しては1次精度の流束計算を行う。また，保存量 Q の勾配 ∇Q を計算領域上流及び下流で正しく評価する ために，計算領域の直上流点（MASKN＝5）と直下流点 （MASKN＝1）も流速計算に関わるようにしている。

図 3：節点のマスキング

表1：節点のフラッグ

MASKN	計算点	保存量 の更新	高次精度計算	取東判定
0	\times	\times	-	-
1	\bigcirc	\times	$\times(1$ 次精度 $)$	-
2	\bigcirc	\bigcirc	$\times(1$ 次精度 $)$	-
3	\bigcirc	\bigcirc	\bigcirc	-
4	\bigcirc	\bigcirc	0	\bigcirc
5	\bigcirc	\times	O	-
6	\times	\times	-	-

4．計算例

4．1 Circular Cone

まず簡単な計算例として，図4のような半頂角 10° の円錐形状について計算を行った。この形状は構造格子の空間前進解法である Parabolized Navier－Stokes（PNS）方程式の計算コードの検証によく用いられるものである。図5に計算格子を示す。節点数は 171510 で四面体要素数，プリズム要素数はそれぞれ497562，161153である。最小格子幅は 2.0×10^{-5} とした。計算条件は Tracy の実験結果［7］と比較 するために以下のように設定した。

$$
\begin{gathered}
M_{\infty}=7.95 \quad \alpha=8(\mathrm{deg}) \quad \mathrm{Re}_{L}=4.2 \times 10^{5} \\
T_{\text {wall }}=309.8(\mathrm{~K}) \quad T_{\infty}=55.39(\mathrm{~K}) \quad \gamma=1.4 \\
\operatorname{Pr}=0.72 \quad L=0.1016(\mathrm{~m})
\end{gathered}
$$

ここで，L は円錐の長さである。図 6 は各マーチングステ ップでの等密度線図であるが，計算領域が前進していく過程がよくわかる。図 $7, ~ 8$ はそれぞれ $x / L=1$ ．での表面圧力と熱伝達率を示している。空間前進解法による結果は通常の全領域計算と完全に一致し，実験値とも良い一致が得 られた。

4．2 NAL－HSCT 風洞モデル

次に複雑な形状への適用例として，NALのHSCT風洞モ デルの計算を行った。図 9，10にモデル形状と計算格子を示す。節点数は690120で四面体要素数，プリズム要素数は それぞれ 919471，1034965である。計算条件を以下に示す。

$$
\begin{gathered}
M_{\infty}=2.023 \quad \alpha=4.453(\mathrm{deg}) \quad \operatorname{Re}=2.7584(1 / \mathrm{m}) \\
T_{\text {wall }}=\text { adiabatic } \quad T_{\infty}=162.629(\mathrm{~K}) \\
\operatorname{Pr}=0.72 \quad \gamma=1.4
\end{gathered}
$$

図 11 は各マーチングステップでの等マッハ線図である。図 12 に $y=116(\mathrm{~mm})$ と $y=175(\mathrm{~mm})$ での表面圧力分布 を示す。翼前縁で計算値が実験値より若干高くなっている が，これは翼前縁付近の格子解像度が悪いためであると考 えられる。しかし，空間前進解法と全領域計算では計算結果が完全に一致している。図13は揚力係数と抗力係数を示

しているが，揚力係数に関しては空間前進解法，全領域計算共に実験値と完全に一致している。抗力係数については，計算値が実験値より若干高くなっているが，空間前進解法 と全領域計算では一致している。

5．計算効率

図 14 は残差の収束履歴を示しているが，空間前進解法で は計算時間が全領域計算の約 3 分の1となっているのがわ かる。空間前進解法の残差が波打っているのは，各マーチ ングステップでの残差を表わしているからである。

6．結言

本研究では陰解法と空間前進解法を組み合わせた，非構造格子 Navier－Stokes ソルバーを開発した。これにより，計算精度を低下させることなく超音速粘性流の計算時間を約 3 分の 1 に短縮することができた。また非構造格子を用 いているので，複雑形状への適用も容易であり，航空機の設計ッールとしての有用性は極めて高いといえる。さらに， この手法は非常にシンプルであるので，既存の非構造格子 CFDコードへの組み込みも容易である。

参考文献

［1］Lawrence，S．L．，Chaussee，D．S．，and Tannehill，J．C．， ＂Development of a Three－Dimensional Upwind Parabolized Navier－Stokes Code＂，AIAA J．，Vol．28， No．6，pp971－972， 1991.
［2］Nakahashi，K．，and Saitoh，E．，＂Space－Marching Method on Unstructured Grid for Supersonic Flows with Embedded Subsonic Regions＂，AIAA J．，Vol．35， No．8，pp1280－1285，1998．（AIAA 96－0418）
［3］Venkatakrishnan，V．，＂On the Accuracy of Limiters and Convergence to Steady State Solutions＂，AIAA Paper 93－0880， 1993.
［4］Obayashi，S．，Guruswamy，G．P．，＂Convergence Acceleration of an Aeroelastic Navier－Stokes Solver＂， AIAA Paper 94－2268， 1994.
［5］Sharov，D．，and Nakahashi，K．，＂Reordering of Hybrid Unstructured Grids for Lower－Upper Symmetric Gauss－Seidel Computations＂，AIAA J．，Vol．36，No．3， pp．484－486， 1998.
［6］Goldberg，U．C．，and Ramakrishnan，S．V．，＂A Pointwise Version of Baldwin－Barth Turbulence Model＂，Comp． Fluid Dyn．，1993，Vol．1，pp．321－338．
［7］Tracy，R．R．，＂Hypersonic Flow over a Yawed Circular Cone＂，Memorandum No．69，California Institute of Technology Graduate Aeronautical Laboratories， Pasadena，Calif．，Aug． 1963.

図 4：円錐形状

（a）Grid overview

（b）Grid zoom up

図 5：Computational grid of a circular cone

（a） $7^{\text {th }}$ marching step

（b） $14^{\text {th }}$ marching step

（c） $21^{\text {st }}$ marching step
図6：各マーチングステップでの等密度線図

図 7：表面圧力分布

図8：熱伝達率

図 9：NAL—HSCT 風润モアル

図 10：Computational grid of a NAL－HSCT model

図 11：各マーチングステップでの等マッハ線図

（a）$y=116$（ mm ）

（b）$y=175$（mm）
図 12：表面圧力分布

図 13 （a）掦力係数

図 13 （b）抗力係数

図 14 （a）：収束履歴（Circular Cone）

図 14 （b）：収束履歴（NAL—HSCT）

HSCT模型の数値解析（その1）

海田 武司 ${ }^{*}{ }^{1}$ ，渡選 直樹 ${ }^{\circ} 1$
 Numerical Simulation of HSCT Wind Tunnel Test Model（phase 1）

by

Takeshi KAIDEN ${ }^{*}$ ，Naoki WATANABE＊1

ABSTRACT

Navier－Stokes analysis of HSCT F1，P1 standard model was carried out in order to validate CFD tool for HSCT aerodynamic design．The topology of grid system is the single structured C－O type．Roe＇s flux difference splitting with MUSCL is used to discretize the space．LU－ADI implicit method is adopted in time integration．The turbulence model is the algebraic model of Baldwin－Lomax．The numerical results are compared with those of wind tunnel tests．Though both of forces and pressure distribution give the good agreement，the discrepancy of suction peak at upper leading edge is found．In order to investigate this，the model including the fabrication tolerance and the case with another angle of attack are analyzed．

1．はじめに
超音速輸送機設計においては，亜音速から超音速までの幅広い速度域での性能確認を必要とするが，これをすべて風洞試験で行うには時間的にもコスト的にも膨大なものと なる。従って超音速輸送機設計では風洞試験と C F D 解析 とを併用して効率的に進める必要がある。本研究では， HSCT－F1／P1模型に対してC F D 解析を実施し，風洞試験 データとの比較によりCFD解析の妥当性の検証を行う。

2．数値解析

計算格子は，構造格子（C－Oタイプ）の単一格子を用い ている。総格子点数は半截モデルで約178万点，全機モデ ルでは約351万点となっている。図1に全機モデルの計算格子を示す。

流れ場解析においては，支配方程式には， 3 次元薄層近似圧縮性 Navier－Stokes 方程式を用いた。空間離散化手法と しては，対流項にはRoeの流束差分離法に MUSCL 法を組 み合わせた高解像度風上差分法を，粘性項には中心差分法 を用いた。時間積分法には，LU－ADI 陰解法を採用し，局所時間刻み法により解の収東を加速させた。乱流モデルに は，Baldwin－Lomax モデルを使用した（［1］－［3］）。解析に要する時間は，航空宇宙技術研究所NWTの1PEを用い て約 8 時間（半截モデル）である。

3．解析ケース

本解析では合計13ケースの解析を実施した。CFDと風洞試験との比較検討のために，横滑り角無し（ $\beta=0^{\circ}$ ） の条件において， $\mathrm{M}=1.4,1.6,1.8$ の各1ケース， $\mathrm{M}=2.0$ で 5 ケース，横滑り角有り（ $\beta=5^{\circ}$ ）では， $\mathrm{M}=2.0$ で1ケース を実施した。また，CFDと風洞試験との比較においての パラメトリッタスタディとして，薄翼における模型工作精度が空力特性に与える影響を把㨖するための形状変更ケー スと一樣流の気流偏向の影響を把握するための迎角変更ケ ースの解析を $\mathrm{M}=1.4$ ，2．0で行った。本解析において実施し

[^24]たケースを以下に示す。

ケース	M	α（deg）	β（deg）	Re	備考
1	1.4	3.0	0.0	風試 Re数	半截モデル
2	1.6				
3	1.8				
4	2.0	－ 2.1			
5		0.0			
6		1.4			
7		3.0			
8		4.5			
9		3.0	5.0		全機モデル
10	1.4	3.0	0.0		形状変更
11	2.0				ケース
12	1.4	3.3	0.0		迎角変更
13	2.0				ケース

4．解析結果

図2， 3 にケース $7\left(\mathrm{M}=2.0, \alpha=3.0^{\circ}, ~ \beta=0.0^{\circ}\right)$ の機体表面圧力分布を示す。また，図4，5にケース 9 （ $\mathrm{M}=2.0, \alpha$ $=3.0^{\circ}, \beta=5.0^{\circ}$ ）の機体上面圧力分布，図6，7に機体下面圧力分布を示す。

前縁を回り込んだ気流が膨張波となり，主翼上面に強い負圧領域が見られる。ケース7に対しケース 9 の風上側で は胴体の影響が小さくなるため，主翼付け根まで強い負圧領域となっている。逆に風下側では，胴体により膨張波が遮られるために内翼の負圧が緩和されている。また，機体下面では，主翼前縁の取り付け位置が胴体の上方にあり流 れを受け止める形状となっているため，前縁付近では胴体 から主翼まで圧力が非常に高くなっている。ケース7に対 しケース 9では，胴体が流れをせき止めるため，風上側で は圧力が増加し，風下側では圧力が減少している。

5．風洞試験との比較

5． $1 \quad \beta=0^{\circ}$
ケース $1\left(\mathrm{M}=1.4, \alpha=3.0^{\circ}\right)$ においてC F D と風洞試験と の比較を行う。図8に比較を行う断面圧力分布位置，図9 に断面圧力分布，図10に三分力特性を示す。

断面圧力分布では，いずれの断面においても傾向として は合っているものの，CFD（実線）と風洞試験（ $) ~ に ~$ は差が見られる。特に上面においてその差は顕著であり，風洞試験に対しCFDでは全体的に圧力レベルが低くなっ ている。また，三分力特性においてもおおよそ一致してい るが，揚力特性，揚抗特性において揚力が風洞試験より減少している。これは圧力分布からも容易に想像できる。

次にケース $7\left(\mathrm{M}=2.0, \alpha=3.0^{\circ}\right)$ での比較を行う。図 11 に断面圧力分布，図12に三分力特性を示す。

いずれの断面においても，上下面前縁付近で負圧ピーク に若干の違いは見られるものの風洞試験とC F D の対応は良い一致を示している。また，揚力特性においては風洞試験とC F D の一致は極めて良好である。揚抗特性において もCDOで若干の違いは見られるものの揚抗曲線の開きは良 い一致を示しており，C F D は風洞試験を精度良く模擬し ている。

5． $2 \beta=5^{\circ}$
ケース $9\left(\mathrm{M}=2.0, \alpha=3.0^{\circ}\right)$ においてC F D と風洞試験と の比較を行う。図13に比較を行う断面圧力分布位置，図 14 に風上側，図15に風下側の断面圧力分布，図16に横三分力特性を示す。
$\beta=0^{\circ}$ の場合と同様，断面圧力分布においては，風上，風下共に，前縁付近での負圧ピーク差は見られるもの の風洞試験とC F D の対応は良い一致を示している。また横三分力特性においては，横力特性，ローリングモーメン
ト特性，ヨーイングモーメント特性共に風洞試験とCFD の一致は極めて良好であり，C F D は風洞試験を精度良く模擬している。

6．検討

前章の風洞試験との比較において，両者の差を更に究明 するために，模型工作精度による薄翼の形状効果と偏流及 び模型取付誤差等による迎角効果について検討する。

6． 1 CFD と風洞試験との形状効果

CFDと風洞模型の差が最も大きいと思われる前縁から 10% 翼弦長までを工作精度分変化させた形状について解析 を行う。形状変更においては，前縁は固定とし，模型製作 における工作精度が機楲加工で䄪 0.04 mm であるため，主翼面に垂直方向に最大 0.04 mm 変化させ， 10% 翼弦長の位置 においてオリジナルの形状に滑らかに接した形状を定義し た。形状概念図を図17に示す。

解析はM＝1．4，2．0の条件で実施した。図18にケース1 $0\left(\mathrm{M}=1.4, \alpha=3.0^{\circ}\right)$ 。図19にケース11 $(\mathrm{M}=2.0, \alpha=3.0$ －）の断面圧力分布を示す。

ケース10，11共に形状変化による前縁付近での負圧 ヒーークの変化は小ざ，風洞試験との差は変わらない。ま

た，内翼よりも外翼における変化が大きいことが確認でき る。

このことから，模型製作における工作精度は空力特性に大きな影響は与えないものの，外翼に見られる様に薄翼ほ ど工作精度の影響が大きいことが確認された。ただし，今回の形状変更では前縁部分のみの変更に限っているため，今回の風洞試験模型を完全に模擬しているわけではない。

6． 2 CFD と風洞試験との迎角効果

$\mathrm{M}=1.4$ におけるCFDと風洞試験の揚力差は，風洞試験 の揚力特性より推算すると約 0.3° の迎角差分に相当する。 そのため，CFDにおいて $\alpha=3.3^{\circ}$ の解析を行い風洞試験 との比較を行う。また，同じ迎角でM＝2．0についても解析 を行った。図20にケース12（ $\mathrm{M}=1.4, \alpha=3.3^{\circ}$ ），図21 にケース13（ $\mathrm{M}=2.0, \alpha=3.3^{\circ}$ ）の断面圧力分布を示す。 いずれのケースにおいでも，迎角を 0.3° 増加させたこと により風洞試験結果と合致する傾向となっている。特にケ ース13（ $\mathrm{M}=2.0, \alpha=3.3^{\circ}$ ）においては風洞試験との差が大 きかった前縁付近での負圧ピークの差が小さくなってい
 として上面圧力レベルに大きな差が見られる。

このことから，CFDと風洞試験では一様流迎角に 0.3°程度の差が見られるものの， $\mathrm{M}=1.4$ の圧力レベルに関して は，迎角以外の原因によるものと思われる。

7．まとめ

超音速域で風洞試験とC F D 解析の比較を行った結果， M＝2．0においては圧力分布，カデータ共に良く一致してお り，設計ツールとしてC F D 解析が十分な精度を有するこ と，模型製作における工作精度は空力特性に大きな影響は与えないものの，薄翼になる程影響が大きくなることが確認できた。また，CFDと風洞試験では一様流迎角に 0.3°程度の差が存在することも確認した。

今後は遷音速，亜音速においても検証を行っていく必要 がある。また， $\mathrm{M}=1.4$ の圧力レベルの不一致の原因追及な ど，超音速域での更なる計算精度の向上を計るため，計算格子の品質，一様流マッハ数等の多種のパラメトリックス タデイを実施する必要がある。

8．参考文献

1）海田，前川，岩宮，＂SSTにおけるナセルのブリード流 ／バイパス流を考慮した数値シミュレーション，
第15回航空機計算空気力学シンポジウム，1998
2）Fujii，K．and Obayashi，S．，＂High－Resolution Upwind Scheme for Vortical－Flow Simulations，＂J．of Aircraft， Vol．26，No．12， 1989.
3）Baldwin，B．S．and Lomax，H．，＂Thin Layer Approximation and Algebraic Model for Separated Turbulence Flows，＂ AIAA Paper 78－257，Jan．， 1978.

図1 計算格子（全機モデル）

図2 機体上面匠力分布（ケース7）

图3 機体下面圧力分布（ケース7）

図5 機体上面圧力分布一風下眚（ケース9）

図6 機体下面圧力分布一風上湖（ケース9）

図7 機体下面圧力分布一風下飦（ケース 9 ）

図8 断面圧力分布位量

図9 断面圧力分布（ケース1）

図10 三分力特性（ケース1）

図11 断面圧力分布（ケース7）

図12 三分力特性（ケース7）

図13 断面圧力分布位置

図14 断面圧力分布（ケース9：風上側）

図16 横三分力特性（ケース9）

図 17 形状概念図

図15 断面圧力分布（ケース 9 ：風下側）

図18 断面圧力分布（ケース10）

$\eta=0.504$

図19 断面圧力分布（ケース11）

図20 断面圧力分布（ケース12）

図 2 1 断面在力分布（ケース13）

企画セッション：HSCT模型の数値解析（その2）
 嶋英志 ${ }^{1}$

Numerical Flow Analysis for HSCT model（2） Eiji Shima ${ }^{2}$

Abstract

Some details of NS computation of the wind tunnel model configuration of NAL HSCT were presented．Formulation of MFGS（Matrix Free Gauss－Seidel）implicit numerical algorithm for parallel computation of the unstructured CFD code was shown． 87% of parallel efficiency is achieved using 32 processors of NAL－NWT for the moderate size NS simulation using 1.7 million mesh points and converged solution was obtained in 1000 seconds．Four turbulence models were applied and results agreed each other on lift and pressure drag．However small discrepancy of friction drag among the computations．In order to clarify the characteristics of the turbulence models，flat plate turbulent boundary layers using these model were analyzed．

1．はじめに

NAL（航空宇宙技術研究所）は次世代超音速輸送機（HSCT）開発の技術蓄積のために無人実験機 の飛行実験を計画している。その一環として，NAL－ HSCT実験機計画の風洞試験模型形状（F1－P1形状）のNS解析を行った。

超音速大型機の開発経験を有する欧米諸国に伍 して，大型試験設備の点で劣る我が国が，近未来の空力設計の分野で応分の役割を果たすことが出来る とすればCFDの分野しかありえないと考える。

NALのNWTは，（計算機の進歩の速さを考えれ ば，）導入より年月を経ているが，CFDの実効性能に おいては未だに世界最高水準にある。また，NWTと同様の，CFDの実効性能に優れるベクトル並列計算機は，現時点で，我が国の独壇場であり，今後しばら くは，このリードを保つことが可能だろう。したがって， この計算力を空力設計に結び付けることが出来れば，大きな力となろう。

空力設計にCFDを空力設計に適用する上で，形状適合性，ターンアラウンドタイム，精度の向上が重要であることは以前から指摘されてきている。

形状適合性については，非構造格子やマルチブ ロックの利用により，時間をかけさえすれば，どのよう な複雑形状であっても解析することが可能になった。少なくともHSCTの形状に限定すれば，大きな問題に ならないレベルである。しかし，任意の形状にたいす る，質の良い格子の自動生成は未だ大きな研究課題である。

並列計算による解析の高速化の要求はいらまでも なく，大型並列計算機を十分に活用できる実用コー ドを早急に整備しなければならない。実機設計に用 いるには並列CFDコードの検証が久かせず，実験機 はまたとない機会であると考える。

並列計算機を用い，十分な格子点の使用を前提 にすれば，解の精度に関して最大の問題は，コード の検証を除くと，乱流および遷移のモデルであると考 えられる。これらは，HSCTの性能推定にあたつて，大きな影響力を持っている。未だ，完全な物理モデ ルは存在しないが，適切なモデルを選定し，適用範囲や精度を明確にしておく必要がある。

近年，CFDとEvolutional Computing等を結びつ けた最適設計が大規模CFDの応用として注目されて いる。 ${ }^{[1]}$ このような最適設計においては何らかの方法 で設計結果の性能推定が必要であり，設計の精度向上のために解析精度を向上しなければならないの は人手による設計の場合と同じである。また，多くの試行回数を必要とするため解析自体を高速化する必要があるのも，格子生成の自動化の要求も同じかそ れ以上である。したがって，自動設計，手動設計，い ずれにしても，前記の項目について設計適用のコー ドのための技術を蓄積することがHSCTへのCFDの応用の上で重要であると考える。

そこで，本稿では上記のうち格子生成を除く項目 につき，まず，解析の高速化に関して，複雑形状に対応できる非構造CFDコードのベクトル並列計算機 への適合上の工夫を述べる。また，摩擦効力推定 の精度向上のための乱流モデルの評価について報告する。

2．基礎方程式とMFGS陰解法

基礎方程式は圧縮性レイノルズ平均Navier－
Stokes（RANS）方程式で，積分形式で次の様に書け る。RANSの乱流モデルについては後述する。

$$
\begin{equation*}
\iiint Q_{t} d v+\iint(\hat{E}-\hat{R}) d s=0 \tag{1}
\end{equation*}
$$

ここで，$Q, ~ \hat{E}, ~ \hat{R}$ は保存変数，非粘性流束，粘性流束である。積分形の基礎方程式を検査体積（セ

[^25]ル）を多面体とし，検査体積が時間的に変化しないと すると非構造格子有限体積法（FVM）の基礎式が得 られる。
$\frac{V_{i}}{\Delta t_{i}} \Delta Q_{i}+\sum_{j}\left(\widetilde{E}_{i, j}-\widetilde{R}_{i, j}\right) s_{i, j}=0$
$\Delta Q_{i}=Q^{n+1}{ }_{i}-Q^{n}{ }_{i}$
ここで添え字 i, j はi番目のセルの j 番目の境界面もし くは，その面で接する隣のセル， $\mathrm{n}, \mathrm{n}+1$ は時間ステッ プ，$V_{i}, s_{i, j}$ はセルの体積及び境界の面積，
$\widetilde{E}_{i, j}, \widetilde{R}_{i, j}$ は非粘性／粘性流速の平均値を示す。また，局所時間刻み Δt_{i} を用いている。右辺の非粘性項の評価にはMUSCL＋SHUS ${ }^{[2][3]}$ を用い，粘性項は発散定理を利用した中心差分に相当する手法を用いた。
有限体積法のEuler陰解法は左辺に一次精度風上法を用い線形化を行って，次のように書ける。
$\left(\frac{V_{i}}{\Delta t_{i}}+\sum_{j} s_{i, j} \tilde{A}^{+}{ }_{i, j}\right) \Delta Q_{i}-\sum_{j} s_{i, j} \tilde{A}^{+}{ }_{j, j} \Delta Q_{j}$
$=-\sum_{j}\left(\widetilde{E}_{i, j}-\widetilde{R}_{i, j}\right) s_{i, j}=\Delta Q_{i}{ }^{*}$
ここで，$\widetilde{A}^{+}{ }_{i, j}$ 等はi番目のセルのj番目の境界面（辺） での流速に対する，正の固有値成分のみを分離した流束のヤコビアンである。風上法を用いると優対角
性が得られ，GS（Gauss－Seidel）法等の緩和法が利用できる。GS反復は非構造格子にも容易に適用でき るが，この線型方程式の解を求めるには数多くの反復が必要である。しかし，陰解法の計算を安定に進 めるだけが目的であれば数回の反復で十分であるこ とがわかっている。
Yoon\＆Jameson ${ }^{[4]}$ はLU－SGS法において $\tilde{A}^{+}{ }_{i, j}$ をス ペクトル半径 σ を用いて近似した。粘性項に対応す る固有値を加えて，次の様に書ける。
$\widetilde{A}^{+}{ }_{i, j} \approx \frac{\tilde{A}_{i, j}+\sigma_{i, j} I}{2}$
$\sigma_{i, j}=\left|V_{n i, j}\right|+c_{i}+\frac{2\left(\mu+\mu_{T}\right) s_{i, j}}{\rho_{i} V_{i}}$
$V_{n}=u x_{n}+v y_{n}+w z_{n}$
ここで，cは音速，V_{n} は境界に垂直な速度，μ, μ_{T} は分子／乱流粘性，x_{n}, y_{n}, z_{n} は j からiへ向から法線べ クトルである。この近似マトリックスを用いると逆行列 がスカラーの除算に簡略化される。
$\Delta Q^{\text {new }}{ }_{i}$
$=\left\{\sum_{j} s_{i, j} \tilde{A}^{+}{ }_{j, i} \Delta Q_{j}+\Delta Q_{i}{ }^{*}\right\} /\left(\frac{V_{i}}{\Delta t_{i}}+\sum_{j} s_{i, j} \frac{\sigma_{i, j}}{2}\right)$

$$
\begin{gathered}
\widetilde{A}^{+}{ }_{j, j} \text { の乗算も逆線形化により近似できる。 }{ }^{[5]} \\
\widetilde{A}^{+}{ }_{j, i} \Delta Q_{j} \approx \frac{\hat{E}_{j, i}\left(Q_{j}{ }^{n}+\Delta Q_{j}\right)-\hat{E}_{j, i}\left(Q_{j}{ }^{n}\right)+\sigma_{j, i} \Delta Q_{j}}{2}
\end{gathered}
$$

ここで，\hat{E} は定義式の非粘性流束である。
$\hat{E}_{j, i}=\left(\begin{array}{l}\rho V_{n} \\ \rho u V_{n}+p x_{n} \\ \rho \nu V_{n}+p y_{n} \\ \rho w V_{n}+p z_{n} \\ (e+p) V_{n}\end{array}\right)$
LU－SGSでは反復回数を往復の2回に限定すること で簡単化しているが，収束加速には10回程度の往復反復が適当であることが数値実験によってわかっ た。反復回数を往復2回以上にする場合には元のGS反復の方がLU－SGSより手順が単純である。GS反復 を用いる場合には，$Q_{i} \approx Q_{j}$ と発散定理を応用して，右辺を更に簡略化することが可能で，最終的に次の ような反復解法が構成できる。
$\Delta Q^{\text {new }}{ }_{i}$
$=\left\{\sum_{j} s_{i, j} \frac{\hat{E}_{j, i}\left(Q_{i}{ }^{n}+\Delta Q_{j}\right)+\sigma_{i, j} \Delta Q_{j}}{2}+\Delta Q_{i}{ }^{*}\right\}$
$/\left(\frac{V_{i}}{\Delta t_{i}}+\sum_{j} s_{i, j} \frac{\sigma_{i, j}}{2}\right)$
但し右辺の ΔQ_{j} はGS反復中での最新の値を使用す る。
本手法はLU－SGS陰解法への幾つかの新たな近似 の追加（付け加えた近似は幅広い条件で収束性に悪影響を生じないことを確認している）以上のもので はないが，もはやLU－SGSではないのでMFGS （Matrix Free Gauss－Seidel）陰解法と呼んでいる。 ${ }^{[6]}$

図1に同一のC型格子での本手法と近似対角化 AF（Approximate Factorization）法との収束履歴を示す。本手法がやや短い計算時間で収束しているこ とがわかる。

本手法は

- 非構造格子への適用が容易
- 並列計算への応用が容易で並列化効率が高い （次節参照）
- 係数行列が不用で実在気体等にも応用が容易
- 計算時間の点でAF法より，やや優れている といった特長を有している。

なお，本手法は時間一次精度で，収束解の空間精度は右辺のみに依存する。

図1 2 次元 NS 解析でのMFGS と近似対角化AF 法 の収束特性の比較。MFGSの方が短い総計算時間で収束している。

3．モデル形状と計算メッシュ
NALによって漼備された半截形状約170万点のC－ ○構造格子を変換し，六面体およびピラミッド（胴体前方の格子特異線上のみ）の非構造格子として使用 した。モデル形状は超音速風洞試験用の翼胴モデ ルである。
本研究の目的のひとつはCFDコード相互の比較で あり，そのためには同じ格子を用いた比較を行らのが適当であるとかんがえられる。また，精度の良い粘性解を少ない格子点数で得るには，非構造格子ソルバ ーを用いる場合でも，このような構造格子のほうが少 ない格子点数ですむので有利であるという側面もあ る。

4．並列計算

領域分割とPVMによるメッセージパッシングを用い て並列計算を行った。PVMに関しては，EWS用のコ ードをほぼ無修正でNWTで使用することができた。
領域間のメッセージパッシングは境界条件の一種 として取り扱えるのでコード化は容易である。また非構造格子法では，元々，隣り合うセルの値だけを用 いるアルゴリズムが用いられており，メッセージパッシ ングにおいても，各段階で隣合う一層分のデータし か必要としない。したがって，メッセージパッシングは単純になる。ただし，現時点ではコードを単純化する ことに主眼を置き，原理的には可能な，計算と通信 のオーバーラップや通信の集中化等は行っていない が，後述のように，境界でのデータ交換は大きな問題にはなっていない。
陰解法中のSGS（対称Gauss－Seidel）反復におい て，前進あるいは後退スィープの直前に隣り合う領域 の値を境界条件として交換している。即ち，領域内の反復はGSであるが領域間のデータ依存性は点 Jacobi法的である。これにより領域分割が収束性に影響を与えることが懸念されるが，図2に示されるよう に，少なくとも32PEまでは，ほとんど影響は見られな

い。なお，PE内でのベクトル化の為にマルチカラー法を併用した。

図2 1PEと32PECの場合の収束履歴の比較。両ケ一スはほぼ同STEP数で収束してお り，並列計算が収束性に影響を与えていな いことがわかる。

図3 並列計算による速度向上

非構造格子法の特徴としてどのような格子であって も，ほぼ同数のセルを有する領域に分割可能なので，負荷分散は良好である。任意の形状に分割できるか ら，メッセージパッシングを最小にするような分割を行 らことも比較的容易であるが，ここでは，XYZの各々 の座標に従ってセルをソートした後，2x4x4（32PEの場合）に分割する単純な方法を用いた。領域分割の計算時間の点でも，メッセージパッシングの最小化の点でも，最良の手法とは言えないが，現時点では何 ら問題になっていない。

図3に170万点のHSCT模型の解析について32PE までの並列化による速度向上を示す。32PEで 87% の並列化効率が得られている。
本解析では複数ケースのターンアラウンドを考慮し て，半裁形状で6PE，全機で12PEを主に用い，1ケ ースあたり約5000秒で収束解が得られることを確認 した。また試験的に行った32PEを用いた解析では， 1000 秒以内で収束解を得ることが可能である。

NWTでの並列計算の結果を分析した結果，幾つ かの興味深い事実が明らかになった。
－非構造格子法はリストベクトルによりベクトル長が稼げるため 10^{3} 程度のメッシュでほぼ最大性能に達する。そのため，分割数を増やし一ブロックが小 さくなっても，ベクトル性能が落ちないのでNWTの ようなバクトル並列機には適している。
－1PEあたりの速度は330MFLOPSで，NALの別の研究における実用的構造格子コードの速度 $694 \mathrm{MFLOPS}{ }^{[7]}$ の）半分以下である。（最大性能は 1700MFLOPS）一方，並列化に関しては32PEで 87% の効率が得られているから，この程度の規模 のCFD解析に対しては，並列化よりもベクトル化の方が改良の余地は大きい。
－NWTのようなPEが高速で台数が少なく，インター コネクトも高速な並列計算機の場合，境界でのデ ー夕転送の最適化はそれほど重要ではなく，ごく単純な方法でも十分な性能が得られる。
－並列化のオーバーヘッドで最大のものは SUM，MAX，MIN等のスカラーリダクションであり（総経過時間の8\％），転送データが少ないにもかかわ らず，また出来る限り少なくするように工夫している にもかかわらず，境界でのデータ交換（4\％）より大き い。これは，同期の時間を含んでいるせいでもある。 いずれにせよ，境界値の交換は計算規模一定で PEが増大するとデータ量が減少するのに対し，同期およびスカラーリダクションは増大の一方である から，より多くのPEを用いる場合には重大な問題 になる。

5．乱流モデルの特徴
HSCTのような高レイノルズの流れを高精度に解析 するには，現在の計算機の能力ではRANS乱流モデ ルを使用する必要がある。
本コードでは沉用的な利用を目的として数種類の RANS乱流モデルが利用可能である。これらは基本的に空力設計への応用を念頭において選択された ものであり，丈夫さという点に関しては，どのモデルも， かなり広い範囲で一様流条件でImpulsive Startが可能という条件を満足し，一般的なレベルでは，非常に丈夫な部類のモデルである。しかしながら，複雑形状 の解析に伴って避けられない，局所的なメッシュのひ ずみや大きなストレッチングに対しては，完全とは言 えず，各モデルの違いが生じる。
今までの経験から，各々のモデルには下のような特徴があると判断している。ただし，精度に関しては遷超音速の翼回りの境界層を想定し，また，丈夫さに関しては我々の経験であって，コーディングにも大き く依存する。
（1）Baldwin－Lomax0方程式モデル（BL）${ }^{[8]}$
方程式を解かないので丈夫かつ早い。元来平板の モデルであり，複雑形状への適用は困難。
（2）Baldwin－Barth 1 方程式モデル（BB）$)^{[9]}$ k－ε モデルを元にした 1 方程式モデル。以前の一方程式モデルとは異なり，長さスケールの指定を必要と

しない。高精度モデルとは認識されていないが付着境界層の精度には問題ない。かなり丈夫。
（3）Spalart－Allmaras 1 方程式モデル（SA）${ }^{[10]}$
乱流粘性俰数がソース項付移流拡散方程式に支配 されるといら過程から導いた半経験的なもデル。精度 は良好であるが，格子によっては安定性に問題の生 じることがある。
（4）Coakley＇s $q-\omega 2$ 方程式モデル $(q-\omega)^{[11]}$
境界層の精度はあまり良くない。丈夫さでSAに勝り BBに劣る。

6．各種乱流モデルでのHSCT模型の解析

各種の乱流モデルをマッハ数 $2, ~ \mathrm{C}_{\mathrm{L}}=0.1$ のケース に適用したところ，積分力の結果は表1のようになり，全場乱流の条件で摩摖抵抗係数（ $\mathrm{C}_{\text {DF }}$ ）に6カウント程度の差が生じた。なお，乱流遷移の条件は全場乱流 とした。

表1乱流モデルによるSSTモデルのC $\mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{D}}$ の差揚力（CL）や圧力抵抗（CDP）にはほとんど差がないが摩㡜抵抗（CDF）には6カウント程度の差がある。

	CL	$C D$	CDP	$C D F$	CM
BB	0.1015	0.0135	0.0078	0.0058	-0.0039
BL	0.1013	0.0130	0.0078	0.0052	-0.0039
SA	0.1014	0.0134	0.0078	$\mathbf{0 . 0 0 5 6}$	-0.0039
$\mathrm{q}-\mathrm{w}$	0.1015	$\mathbf{0 . 0 1 3 3}$	0.0078	$\mathbf{0 . 0 0 5 5}$	-0.0040

HSCTの設計においては，超音速での揚抗特性の改善が重要なテーマであり，解析においても高い精度が要求される。揚力および抵抗の圧力成分につい ては，乱流モデルによる違いは小さく，また，各コード間の違いも小さいことが，本作業を通じて示され，最大の差は摩擦抵抗にあることが分かった。本コード内 での各乱流モデル間の差は6カウント程度であるが， コード間の違いはもつと大きいようである。
風洞試験においてもこのような微小な摩摖抵抗を正碓に測定するのは容易ではない。翼胴形態で，摩擦抵抗のみの正しい値を実験的に調べるのは，ほと んど不可能である。
ところで，実機の高レイノルズ数の抵抗推算を行う場合，航空機のような流線型物体に対して，しばしば用いられる方法は表面積に乱流境界層の摩擦係数 を乗ずる方法で，簡略な方法としては，かなり良い近似を与える。特に，HSCT模型の形状は，比較的単純な翼䏤形態であり，摩擦抵抗は，巡航形態では平板と近い値になると考える。平板の乱流境界層は詳 しく研究されているので，まずは平板に対して正しい解を与えることを確認することが第一段階として必要 であろう。そこで，平板について各々の乱流モデルの特性を調査した。

7．平板乱流境界層の解析とHSCT用の乱流モデル
奥行き方向に1メッシュのみを使うことで，本コード で2次元境界層解析を実施した。平板長を1，厚み方向の計算領域を2，最小格子間隔を 1×10^{-5} とし，翼

形の解析に使われるのとほぼ等しい格子を用意した。同じ格子を用いて，異なるレイノルズ数（平板長基準）の解析を実施し，これは最小格子の無次元長さ y^{+}を変化させることに対応し ている。各乱流モデル，各レイノルズ数での摩擦係数の平均値を図4に示す。最小格子のy ${ }^{+}$はBL の結果に基づくと，各々1．0，3．7，8．2に対応す る。この結果から，摩擦係数に関しては， BL，BB，SAの各モデルは y^{\dagger} く 4 程度であれば，かな り近い結果を与え，特にBBとBLは良く一致する ことがわかる。HSCT模型の解析ではy ${ }^{+}$は1程度で ある。

図4 各乱流モデルによる平板乱流摩擦係数（平均） の比較

各々のケースについて 90% 位置での速度プロ ファイルを図5－7に示す。q－wモデルは低いレイ ノルズ数でも壁法則との一致が不充分である のに対し，BL，BB，SAはy ${ }^{+}$く4であれば良く一致し ている。BLに関してはy ${ }^{+}=8$ 程度でも一致はかな り良い。これらの結果から y^{+}く 4 程度の最小格子 であれば，BL，BB，SAは乱流平板境界層に関して かなり正確であることがわかる。今後の複雑形状への適用を考慮すると，SA，BBが有利である。

そこでHSCT模型の解析においては，丈夫で幅広 い条件に関してモデルの変更を必要としない，BBモ デルを標準的に用いた。

8．まとめ

HSCTの設計にCFDを適用して行く上で重要と考え られる，並列計算技術と乱流モデルに関する我々の取り組みを紹介した。
MFGS陰解法は簡単かつ，非構造格子や並列計算に適用容易な手法でありながら，構造格子のAF法 を上回る計算効率を有している。この手法を用いた NWTでの非構造格子CFDの並列計算は170万点程度の中規模の解析に対しても 32 PE で 87% の並列化効率を示した。数種類の乱流モデルを適用し」 HSCT模型の解析の解析に対してはBaldwin－ BarthあるいはSpalart－Allmarasモデルが適切と考え られ，若干，丈夫さに優れるBBモデルを標準的に用 いた。

9．今後の課題
（1）乱流遷移のモデル
抵抗推算において乱流への遷移は，大きな課題 であるが，実機レイノルズ数での遷移については正確には知り様がないのが実情で，これを調査すること自体が実験機のテーマのひとつとうかがつている。

乱流粘性モデルでも乱流への遷移を模擬すること は出来るが，遷移の物理をなぞったものではない。本解析では，未知の要素を減らすために，全場乱流 を仮定し，この仮定のもとでは乱流モデル間の結果 に6カウント程度の違いしかなかった。一方，測定値 との差はそれより大きく，抵抗を正確に求めるには，乱流遷移の予測が鍵である。
（2）複雑形状の短時間での解析
並列計算技術によって複雑な形状のNS解析でも 10分以内で収束解を得ることは現実的になった。ど のような複雑な実機形状でも，メッシュを生成すること は出来るが，このためには多大の時間を要するのが現状である。非構造格子を用いた自動格子生成はこ れを解決する有力な手法であり期待される。
（3）設計対応計算の信頼性の向上
CFDを空力設計に適用する場合に解の信頼性は重要なテーマである。ここでの信頼性とは期待される品質の解が常に得られることを意味している。即ち，高精度な解が常に得られれば，もちろん信頼性は高 いが，精度の低い解でも安定した品質ならば，設計者の精度の認識のもと，設計への利用は可能である。例えば，平面翼のポテンシャル解析しか出来ない渦格子法が今なお，現役なのは，この意味で信頼性が高いからである。逆にNSの解であっても，それに見合ら精度の保証が無ければ信頼は得られない。

もうひとつ，考慮す心゙き点は，設計プロジェクトでは ショートレスポンスの要求は絶対であるといらことであ る。期限に間に合わない計算は，無いよりも悪い。 （余分の人手を要するから）したがって，格子収束性 の確認を数種の格子を用いて確認するなどの解の慎重な吟味はできないと考えるべきである。

このCFDの信頼性の向上のためになすべきことは幾つかあるが，ひとつには，計算手法のみならず， あるソースコード自体の検証が必要であろうと考える。使い慣れたコードであっても，ちょっとした，変更によ って思わぬ副作用を招いたことは，プログラマーであ れば，誰しを経験あることと思う。設計に使用するソー スコードは，同様の形状の同様の流れ場に対する適用経験がなければ信頼して使えないと考えるのは自然であろう。

本稿で述べた乱流境界層の検証は，ごく基本的な ものであって，決して十分ではない。しかし，少なくと も，乱流平板境界層が正確に計算できなくては， HSCT形状の抵抗推算が不可能なことも明白である。 このような検証を積み重ね，HSCT実機開発の時期 には高い信頼性をもつCFDコードを用意しておくの が我々の目標である。

謝辞

本研究のうちCFDコードの並列化は航空宇宙技術研究所と川崎重工業の共同研究「ヘリコプタ周りの複雑流れ場の解明」の一環として実施された。この機会を与えていただいた航空宇宙技術研究所，齊藤茂氏に感謝します。また，NWT上での並列化や
HSCT実験機の計算について多大なるご協力いただ いた航空宇宙技術研究所，中村孝氏，岩宮敏幸氏 に感謝します。

参考文献

［1］大山聖，大林茂，中橋和博，中村孝，「三次元遷音速翼の空力最適化」，第15回航空機計算空気力学シンポジウム論文集，NAL－SP－37，pp253－ 258，1998
［2］嶋英志，「三次元非構造格子NSソルバーUG3」，第11回航空機計算空気力学シンポジウム論文集， NAL－SP－22，pp25－30，1993
［3］Shima，E．，Jounouchi，T，＂Role of CFD in Aeronautical Engineering（No．14）－AUSM Type Upwind Schemes－＂，NAL－SP－34第14回航空機計算空気力学シンポジウム論文集，pp7－12，1997
［4］Yoon，S．and Jameson，A．，＂Lower－upper symmetric－Gauss－Seidel method for the Euler and Navier－Stokes equations＂，AIAA J．，Vol．26， No．8，p 1025－1026， 1988
［5］Men＇shov，Ol．S．\＆Nakamura，Y，
＂Implementation of the LU－SGS Method for an Arbitrary Finite Volume Discretization＂，第9回数値流体力学シンポジウム講演論文集， pp．123－124， 1995
［6］嶋英志，「構造／非構造格子CFDのための簡単な陰解法」，第29回流体力学講演会講演集， pp325－328，1997
［7］Takashi Nakamura，Toshiyuki Iwamiya， Masahiro Yoshida，Yuichi Matsuo，Masahiro Fukuda，＂Simulation of the 3－Dimensional Cascade Flow with Numerical Wind Tunnel （NWT）＂，Proceedings of the 1996 ACM／IEEE Supercomputing Conference， 1996
［8］Baldwin，B．S．，Lomax，H．，＂Thin－Layer Approximation and Algebraic Model for Separated Turbulence Flows＂，AIAA－78－ 257，1978
［9］Baldwin，B．，Barth，T．，＂A One－Equation Turbulence Transport Model for High Reynolds Number Wall Bounded Flows＂，AIAA－91－ 0610，1991
［10］Spalart，P，R．，Allmaras，S．R．，＂A One－Equation Turbulence Model for Aerodynamic Flows＂， AIAA－92－439，1992
［11］Coakley，T．J．，＂Turbulence Modeling Methods for the Compressible Navier－Stokes Equations＂， AIAA－83－1693，1983

図5 $\mathrm{Re}=5 \times 10^{6}$ ，最小格子の $\mathrm{y}^{+}=1.0$ の場合の平板上 の速度プロファイル。q－ω モデル以外は壁法則と良 く一致している。

図6 $\mathrm{Re}=2 \times 10^{7}$ ，最小格子の $\mathrm{y}^{+}=3.7$ の場合の平板上 の速度プロファイル。 $\mathbf{q}^{-\omega} \omega$ モデル以外は壁法則と良 く一致している。

図7 $\mathrm{Re}=5 \times 10^{7}$ ，最小格子の $\mathrm{y}^{+}=8.2$ の場合の平板上 の速度プロファイル。BLモデルのみが壁法則と一致 している。

H S C T 模型の数値解析（その 3）

若井 洋＊
\title{ Numerical Analysis on HSCT model }
by
\section*{Hiroshi WAKAI}
Fuji Heavy Industries Ltd．

Abstract

Numerical Flow Analysis around the HSCT model was carried out using Multi－Grid Euler Code．The results are evaluated by comparing with results of Supersonic Wind Tunnel Test that was conducted by NAL．The numerical results ware well agreed with wind tunnel test results in pressure integrated value（CL，CM）．As for the drag coefficient，the boundary layer correction was performed to results of Euler code and it made CD closer to wind tunnel results than original Euler results．All these analysis took 4hours／case on EWS and it seems reasonable time and quality level for preliminary aerodynamics examination phase．

1．はじめに

NAL が主体となって開発が進められている，小型超音速実験機は，その飛行実験の主たる目的の一つに，C F D による空力設計の検証•評価がある。実験機の開発に協力 するメーカ备社も，各社の主たるCFDコードの特徴を明確にし，S S T 形状解析への適用性を探ることが求められ ている。

NAL ではC F Dとの比較検討に供することを目的とし たHSCT模型（F1，P1模型）の風洞試験を実施して おり，このHSCT模型に対し，富士重工業で主に全機形状の解析に使用しているCFDコードで数値解析を実施 した。本報告では，解析に用いたCFDコードの概要と幾 つかの解析例を紹介し，また H S C T 模型の解析結果と風試結果との比較により，解析の妥当性，解析に要する時間 も含めた解析コードの特徴を述べる。

[^26]
2．CFDコードの概要

HS CT模型形状の解析には，富士重工業が現在，全機形態の解析に主に使用している3次元の Euler コードを用いた。全機形状の概念検討の段階では，より多くの形状 の解析を短期間でサイクリックに実施することで形状の絞り达みを行う必要があり，その観点で Eulerコードは計算機の処理速度の進餒と相まって，パネル法等に代わり近年十分実用に足るツールとなってきている。本 Euler コー ドの特徴を以下に列挙する。
－計算格子
空間敋子は Cartesian 座橂格子，物体表面は形状適合格子の Multi－Grid の Euler コード。翼，胴体，ナセル等 の物体表面格子の各要素同士，及び空間格子と物体表面格子は互いに Overset するため，格子の生成が容易であ る。また物体形状を多少変更した場合でも空間格子や他 の物体要素格子を生成し直す必要がないため，形状のバ

ラメトリックスタディーが容易である。更に Multi－Grid の各格子毎の Local Time Step で加速収束することで，計算の効率化を図つている。
－離散化及び積分法
離散化は対流項は有限体積法を用いており，4－STAGE のRunge－Kutta Schemeにより，定常解を求めている。 －物体表面の境界条件

物体表面の境界条件は，物体内に有限体積のセルを1段想定して，物体表面で Flux の流出入をキャンセルする状態量を与える手法をとつている。
－境界層補正
全機の摩擦抵抗を算出するために，Euler 解析後に物体表面で境界層方程式を別途計算。境界層計算は，層流，乱流，遷移に対応した3種類の手法で計算する。

層流：Cohen and Reshotko Method
乱流：Green＇s Lag－Entrainment Method
遗移：Granville Method
で㟟移位置の指定と自動判定が可能。
本 Euler コードはEWS上で50万点規模の計算で約 4 時間程度で収束し，また境界層計算も約 4 時間程度で可能であり実用的な解析が可能となりている。

解析例として図1－1～1－2に風洞支持スティング付 RAE101模型周りの計算格子（ブロック）と表面 Cp分布（M0．9，$\alpha=1.0^{\circ}$ ，Re 数 1 mil ）を示す。また図 2 に ナセル付 S S T 形状のCp分布（M2．0，$\alpha=3.0^{\circ}$ ）を示す。

3．H S C T model の数値解析

第2項で紹介したEulerコードを用いてHS C T model凮りの流れ場の数値解析を実施した。HSCTmodel形状はNALから提供していただき，表面格子及び空間格子は富士重工で作成した。図3にH S C T model表面格子 を，図4に空間格子（サブブロック配置）を示す。各格子数は，

表面格子：23440点
主翼コード方向 160 点 \times スパン方向 65 点
䏱体機軸方向 121 点 \times 周方向 72 点

空間格子：約 450000 点
となっている。
解析条件はNALから提示していただいた。下表に解析条件一覧を示す。

H S C T model 解析条件

Case No．	Mach数	$\alpha(\mathrm{deg})$	Re数 $\left(\times 10^{7} 1 / \mathrm{m}\right)$
1	1.4	3.0	2.4
2	1.6	3.0	2.5
3	1.8	3.0	2.6
4	2.0	-2.1	2.8
5	2.0	0.0	2.8
6	2.0	1.4	2.8
7	2.0	3.0	2.8
8	2.0	4.5	2.8

本解析では横滑角 $\beta=0$ のみとした。また Euler 解析後に すべてのケースで境界層計算を実施し，その際遷移位置の自動判定は行わず全域乱流とした。

4．解析結果

代表的な解析結果として，M1．6／$\alpha=3.0^{\circ}$ 及び M2．0／$\alpha=3.0^{\circ}$ の表面 Cp 分布を示す（図5，6参照）。 いずれの Mach 数でも，主翼 Kink 位置後縁付近の下面に静圧の上昇が見られる。

図7にM2．0での迎角による揚力（CL）特性を示す。H SCTmodelのNALB風洞における風試データ（実線） と本解析結果（■）は良く一致しているといえる。図8にM2．0での迎角による抗力（CD）特性を示す。風試データ（実線）と Euler 解析結果（■），Euler 解析結果に境界層補正を行った結果（ $\mathbf{(1)}$ ）を比べると，Euler は風試に対し50 count程度抵抗が少なく，この差分には摩擦抵抗分が含まれていると考えられる。逆に境界層補正後の解析結果は，風試よりも 20 count 程度増加しており，全域乱流と設定したことと相まって，本補正は摩擦抵抗を大きく見積もる傾向にあることが分かる。迎角による摩擦抵抗の変化はほとんど見られない。

図 9～13に主翼断面のCp 分布を示す。数値解析結果は，風試結果と比べて外舷側前縁付近での，上面負圧の立ち上 がり及びビークを捉えていないが，それ以外の部分では，良く一致している。

5．まとめ
H S C T model 周りの流れ場の Euler 解析を実施し，超音速風洞試験結果と比較した。圧力分布の細部で風試と解析は若干の差が生じるが，圧力積分による全機特性を評価 する上では比較的良好な一致を示していると考える。機体形状の概念設計や空力設計の初期段階においては，短時間で数多くの形状に対してパラメトリックな解析を行 う必要があり，ぞの点では短いターンアラウンドタイムで すむ Euler 解析は有効なツールといえる。また摩擦抵抗補正は，迎角による変化が少ない事から，初期検討ではすべ てのケースで境界層計算を実施する必要性は低いと考え る。今後摩擦抵抗や前縁負圧ピークの差異に関して詳細に検討，改善していく予定である。

本解析は，NAL 主導のもと，H S C T model の風試と の対応計算の一環として実施された。ここに記して関係各位に感謝する。

図1－1．スティソグ付RAE101模型計算格子

図1－2．スティング付 RAE101模型解析結果 （M0．9，$\alpha=1.0^{\circ}$ ，表面 Cp 分布）

図2．ナセル付 SST形状解析結果
（M2．0，$\alpha=3.0^{\circ}$ ，表面 Cp 分布）

図 3．H S C T model表面格子

図4．HSCTmodel空間格子 （サブブロック配置）

図 $5-1$ ．M1．6 $/ \alpha=3.0^{\circ}$ 上面 Cp 分布

図 $5-2 \cdot \mathrm{M} 1.6 / \alpha=3.0^{\circ}$ 下面 Cp 分布

図6－1．M2．0／$\alpha=3.0^{\circ}$ 上面 $\mathrm{C} p$ 分布

図6－2．M2．0／$\alpha=3.0^{\circ}$ 下面 Cp 分布

図7．揚力－迎角特性（M2．0）

図 8 ．抗力一迎角特性（M2．0）

図 9－1． $\mathrm{M}=1.6 \quad \alpha=3.0 \quad Y=0.116 \mathrm{~m}$

図 10．1．$M=1.8 \quad \alpha=3.0 \quad Y=0.116 \mathrm{~m}$

断面 Cp 切り出し位置

図 9－2．$M=1.6 \quad \alpha=3.0 \quad Y=0.175 \mathrm{~m}$

図 10－2．$\dot{M}=1.8 \quad \alpha=3.0 \quad Y=0.175 \mathrm{~m}$

図 11－1．$M=2.0 \quad \alpha=1.44 \quad Y=0.116 m$

図 11－2．$M=2.0 \quad \alpha=1.44 \quad Y=0.175 m$

図 12－2．$M=2.0 \quad \alpha=3.0 \quad Y=0.175 \mathrm{~m}$

図 13－2．$M=2.0 \quad \alpha=4.5 \quad \gamma=0.175 \mathrm{~m}$

HSCT 權型の数値㙚析 －非構造ハイブリッド格子法による計算－

鹿野 信太郎 ${ }^{1}$ ，中橋 和博 ${ }^{2}$
Computations of HSCT Model by Unstructured Grid Method
by

Kano Shintaro，K．Nakahashi

Abstract

Until recently，applications of unstructured grid methods had been limited to mostly inviscid flows due to the poor computational efficiency and solution quality for the Navier－Stokes equations．Accurate resolution of thin boundary layers developed along the wall surface requires very fine grid that causes a stiffness problem of the flow solver．Moreover，generation of such a fine and stretched grids near the wall is another crucial issue of the unstructured grid methods．One promising approach is to use a hybrid grid which is comprised of structured or semi－structured grid for viscous region and unstructured grid for the rest of computational domain．In this paper，capability of the hybrid grid method we have developed is discussed for supersonic viscous flows of airplanes．

1．はどめに

非構造格子法は，三次元の複雑形状に容易に対応できることから1990年代に入って盛ん に研究されてきている。しかしながらその多くは，非粘性流れか比較的低いレイノルズ数流れ，もし くは物体壁近くの精度が余り要求されない問題 への適用がほとんどであった。航空機のように，高レイノルズ数流れでかつ壁面摩擦係数までの高い精度が要求される Navier－Stoke 計算では，非構造格子は計算時間と精度の点でこれまでは実用レベルには達していなかった。
近年，この非構造格子での Navier－Stokes計算 で様々なブレイクスルーがなされている（e．g． Refs．1－5）。一つは物体壁近くに高アスペクト比の非構造格子を作る方法［1，2］であり，またその格子上での高効率な計算法［3－5］である。両技術とも高 レイノルズ数流れの計算には不可欠である。

ここでは，ハイブリッド非構造格子に Cell－ vertex 有限体積法を適用し，さらに LU－SGS 陰的時間積分， 1 方程式乱流モデルの組み込えだ計算法を用いて超音速デルタ翼，および NAL－ HSCT 風洞模型機体形状に対する Navier－Stokes計算を行い，計算精度の検証とその有用性，問題

点について議論する。

2．ハイブリッド格子生成

四面体非構造格子は，任意の三次元場において完全自動的に生成できる点で有利である。しかし ながら，高レイノルズ数流れにおける薄い境界層 に対しては，演算量の増加，非等方的四面体格子生成の困難さ，打ち切り誤差等の点から望ましく ない。従って，非構造格子法でも高レイノルズ数流れの計算では壁近傍に層状の格子を使うこと が一般的になりつつある。

ハイブリッド格子は，高レイノルズ数流れを精度良く解くために壁近傍には層状のプリズム格子，残りの領域には形状融通性に富えだ四面体格子を用いるものである。格子生成は表面定義の後，表面格子生成，境界点による四面体生成，これを背景格子として壁境界面からのプリズム格子の前進生成，そして残りの空間への四面体格子生成 の順で行う。プリズム格子生成では，壁面での垂直方向の最小格子幅，前進格子幅比等を指定する。表面•空間格子生成の詳細は文献 C ］に講る。

3．数值計算法

[^27]基礎方程式は，3次元非定常 Navier－Stokes 方程式である。無次元化された方程式は積分形表示 で以下のようになる。

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\Omega}^{\mathrm{Q}} d V+\int_{\partial \Omega}\left(\mathrm{F}(\mathrm{Q})-\frac{\mathrm{M}_{\infty} \sqrt{\gamma}}{\operatorname{Re}} \mathrm{G}(\mathrm{Q})\right) \cdot n d S=0 \tag{1}
\end{equation*}
$$

ここで Q は保存変数ベクトルである。 $\mathrm{F}(\mathrm{Q}) \mathrm{G}(\mathrm{Q})$
はそれぞれ非粘性流束ベクトルおよび粘性流束 ベクトルである。 γ は比熱比で， $\mathrm{M}_{\infty}, \mathrm{Re}$ はそれぞ れ主流マッハ数，レイノルズ数である。 n は検査体積 Ω の境界面 $\partial \Omega$ における，検査体積の外側に向いた単位法線ベクトルである。

式（1）は有限体積法のセル節点法で離散化する と，検査体積において次の代数方程式で記述する ことができる。
$\frac{\partial \mathrm{Q}_{i}}{\partial t}=-\frac{1}{V_{i}}\left[\sum_{\text {位 }} \Delta S_{i j} \mathrm{~h}\left(\mathrm{Q}_{i j}^{+}, \mathrm{Q}_{i j}^{-}, \mathrm{n}_{i j}\right)-\sum_{j(i)} \Delta S_{i j} \mathrm{G}\left(\mathrm{Q}, \mathrm{n}_{i j}\right)\right]$

ここで $\Delta S_{i j}$ は両端の点が i と j である辺に関係の
ある検査体積の境界面の面積である。 $\Delta S_{i j}$ はその
境界面の外向き単位法線ベクトル $\mathrm{n}_{i j}$ と同様に，そ
の辺を共有する四面体のおのおの寄与する面積 の和をとることで計算できる。h は検査体積境界面に垂直な数値流束で，$Q_{i j}^{ \pm}$はその辺について検査体積境界面の両側における保存変数ベクトル の値である。ここで $j(i) は i$ と対をなす辺のすべの点について和をとることを意味する。

数值流束hの計算で，検査体積内において基礎理変数，密度，速度，圧力を区分的 1 次関数で再構築して検査体積の重心における勾配を利用し て，セル境界値を高次に外插して空間 2 次精度に する。スキームの単調性を保持するために線形再構築された値がその点自身のを含む隣接点内で最大値と最小値の間にあるように勾配を制限す るために，ここでは収束性の優れた

Venkatakrishnan の制限関数［6］を使用する。この ように 2 次精度の基礎物理変数によって境界面の両側で評価された $\mathrm{Q}_{i j}^{ \pm}$により HLLEW リーマン解法
［7］を用いて数値流束hを計算する。
粘性流束ベクトルG（Q）において，粘性応力およ び熱流束を評価する際に，検査体積境界面におい て，速度，温度の一階の空間微分を求めなければ ならない。セル節点法では，単純に節点で勾配を評価し，それを用いて辺の中点で平均値を求める ことにより評価できる。しかしながら，文献［8］ において指摘されているように，そのような評価法を用いると数値上の振動が発生することがあ る。これに対処するため，一階の空間微分は直接辺上で計算される。乱流モデルには一方程式モデ ルの Goldberg－Ramakrishnan モデル［9］を使用す る。
（4．間積分には計算時間の短縮のために，非構造格子法のために拡張された，陰解法である LU－ SGS（Lower－Upper Symmetric Gauss－Seidel）法［5］ を適用する。

4．結果

4.1 超音速デルタ翼

超音速流れの検証例として，図1に示す実験モ デルの計算を行った［10］。この翼は超音速飛行で の高揚力を目的に設計された翼であり，設計条件 で抵抗を抑えるために翼上面において衝撃波が発生しないようになりている。そのため，線形理論やポテンシャル流れの計算コードの検証に用 いられた［11］。ここでは非構造ハイブリッド格子 による Navier－Stokes 計算結果の検証を行う。

計算条件は主流マッハ数が 1.62 ，翼根長基準の レイノルズ数が 3.97×10^{6} ，迎角は $0 \sim 12$ 度まで， それぞれ2度おきに計算を行った。

図1は対称境界と翼上面の計算格子である。翼 の頂点を $x=0$ として翼弦方向に一致するように x 軸をとり翼根長を 1 とする。また $x=0.835$ に おける翼弦方向に垂直な断面のNavier－Stokes 用計算格子も示す。翼表面近傍においてプリズム層 が生成されているのがわかる。この格子における

最小格子幅，格子幅の増分係数，プリズム層の数 はそれぞれ，5． $0 \times 10^{-5}, ~ 1.2, ~ 25$ である。

図2は迎え角12度における等圧力線図であり，図3は翼弦方向に垂直な断面の圧力分布と実験結果の比較を示す。断面は x の位置が， 0.455 ， 0.650 ， $0.835,1.023$ の 4 ヶ所である。両方の図 において計算結果は実験結果とよく一致する。

図4に揚抗曲線を示す。ここではEuler および Navier－Stokes 計算結果での圧力によるに抗力分 を同時に示す。図よりNavier－Stokes 計算は実験結果より若干高めであるが，おおむね実験結果と一致している。また，Navier－Stokes 計算の圧力 による抵抗と Euler 計算による抵抗もよく一致し ており，これらの結果より，摩擦抵抗が十分精度良く見積もられているといえよう。

4．2 NAL 風洞モデル

NAL の HSCT 風洞モデルの格子を図5に示 す。ここで計算に用いた全体の計算格子データ は，節点数 421779 ，四面体数 629896 ，辺数 1942834 ， プリズム数 593841，ピラミッド数 4171，境界三角形数 45440，境界四辺形数 10944，である。こ の計算格子データで計算するために必要なメモ リーは約 610 MB である。

計算は迎角 3 度のマッハ数スイープとマッハ数 2．0における迎角スイープを行った。図6にマッ八数 2 ，迎え角 4.5 度，レイノルズ数 2.7584×10^{7} のケースについて， 3 ヶ所のスパン位置における圧力分布を示す。圧力分布は全般にわたって実験結果とよい一致を示している。しかし，全般に翼前縁において実験値より圧力が高くなっている。 とくにスパン 215 mm において顕著である。これは明らかに翼前縁において翼弦方向における計算格子密度が不足しているためであり，そのために翼前縁において発生する吸引力（suction force） を解像することができていない。

図 7 に揚力，抗力，ピッチングモーメントの実験と比較を示す。抗力において，計算結果は圧力抗力の値も示した。各条件において揚力は実験結果と非常によく一致することがわかる。抗力は実験結果より若干高くなる。この抗力の結果を反映 して，ピッチングモーメントも実験結果と一致し

ない。マッハ数 2.0 の結果から，抗力とピッチン グモーメントにおいて，値は一致しないが傾向は計算と実験とでよく合うことがわかる。抗力の違 いは圧力分布のところで述べたように翼前縁に おける吸引力を捕らえてないことが影響してい るかもしれない。その分だけ圧力抗力が高めに見積もられていると思われる。また，摩摖抗力であ るが，マッハ数 2.0 の結果より迎角によらず値は ほぼ一定であり，圧力分布を見る限り，抵抗の値 が実験結果と違うのは圧力抗力が高めなのであ り，摩擦抗力は計算でよく評価されていると思わ れる。ピッチングモーメントの結果も，吸引力の解像次第では実験にちかづくと考えられる。

5．おわりに

非構造格子法を用いて NAL－HSCT モデルおよ び他の翼の検証計算を行った。計算結果はおおむ ね良好であるが，翼前縁近傍における格子解像度 が不足している。構造格子とは異なり，アスペク ト比の大きな表面格子を用いることが困難であ るため，薄い翼の計算には更に表面格子生成法等 の検討が必要であろう。計算時間については既存 の構造格子計算法にひけを取らないまでになっ てきている。また，低速•高迎角条件でも解適合細分化を用いることにより十分な計算精度が得 られることを確認しており［12］，今後，非構造格子法は空力設計ツールとして重要なアプローチ となろう。

参考文献

［1］Pizadeh，S．，＂Viscous Unstructured Three－ Dimensional Grids by the Advancing－Layer Method＂，AIAA Paper 94－0417，January 1994.
［2］Sharov，D．and Nakahashi，K．，＂Hybrid Prismatic／Tetrahedral Grid Generation for Viscous Flow Applications，＂AIAA Journal， Vol．36，No．2，1998，pp．157－162．
［3］Frink，N．T．，＂Assessment of an Unstructured－Grid Method for Predicting 3－D Turbulent Viscous Flows＂，AIAA Paper 96－0292，January 1996.
［4］Mavpilas，D．J．，＂Multigrid Strategies for Viscous Solvers on Anisotropic Unstructured Meshes＂， AIAA 97－1952，June 1997.
［5］Sharov，D．and Nakahashi，K．，＂Reordering of Hybrid Unstructured Grids for Lower－

Upper Symmetric Gauss－Seidel Computations＂，AIAA J．，Vol．36．，No．3， pp．484－486， 1998.
［6］Venkatakrishnan，V．，＂On the Accuracy of Limiters and Convergence to Steady State Solutions，＂ALAA Paper 93－0880， 1993.
［7］Obayashi，S．and Guruswamy，G．P．， ＂Convergence Acceleration of an Aeroelastic Navier－Stokes Solver，＂AIAA Paper 94－ 2268，1994．
［8］Parthasarathy，V．and Kallinderis，Y．，＂Adaptive Prismatic－Tetrahedral Grid Refinement and Redistribution for Viscous Flow，＂ALAA Journal， Vol．34，No．4，1996，pp．707－716．
［9］Goldberg，U．C．and Ramakrishnan，S．V．，＂A Pointwise Version of Baldwin－Barth Turbulence Model，＂Int．Journal of Computational Fluid Dynamics，Vol．1，1993，pp．321－328．
［10］Pittman，J．L．and Mason，W．H．，＂Supersonic， Nonlinear，Attached－Flow Wing Design for High Lift With Experimental Validation，＂NASA TP－ 2336，1984．
［11］Siclari，M．，Visich，M．，Cenko，A．，Rosen，B．，and Mason，W．，＂Evaluation of NCOREL，PAN AIR， and W12SC3 for Supersonic Wing Pressures＂， Journal of Aircraft，Vol．21，No．10，1984，pp． 816－812．
［12］Kano，S．and Nakahashi，K．，＂Flow Computatiojns Around Delta Wings Using Unstructured Hybrid Grids，＂J．of Aircraft，Vol．36，No．2， 1999.

図1 デルタ翼の格子

図2 等圧力線図，マッハ数1．62，迎え角 12度，レイノルズ数が 3.97×10^{6}

（a）$x=0.445$

（b）$x=0.650$
図 3 圧力分布の比較，
マッハ数 1．62，レイノルズ数が 3.97×10^{6}

（c）$x=0.835$

（d）$x=1.023$
図3 圧力分布の比較（続き）， マッハ数 1．62，レイノルズ数が 3.97×10^{6}

（a）格子全体図

（b）$x=0.7$

（c）$y=175 \mathrm{~mm}$

図5 NAL－HSCT モデルの格子

図4 揚抗極曲線

（a） 116 mm

（b） 175 mm

（c） 215 mm

図 6 圧力分布，マッハ数 2 ，迎え角 4.5 度， レイノルズ数 2.7584×10^{7}

（a）揚力

（b）抗力

（c）モーメント

図7 揚力，抗力，モーメント係数 マッハ数 2

Numerical Simulation of a flow around an HSCT Model

by
Ryoji Takaki
National Aerospace Laboratory

Abstract

Numerical simulations of a flow around a HSCT model are carried out in order to establish reliability of CFD．Mulit－Block type structured grid and parallelization by Message Passing Library are used to treat three dimensional complex configurations．Numerical results are compared with experimental data and they show good agreement．Numerical simulations are also carried out in order to check grid convergency．

1．はじめに
航空宇宙技術研究所が主体となって次世代超音速旅客機開発に向けた小型高速実験機プロジェクト1，2） が本格的に開始されている。この実験機プロジェク トは次世代高速航空機の国際共同開発への主体的参加に必要な中核的な技術開発を行なう事を目的とし ており，我が国独白の先端的かつ実用的な航空機技術および航空機設計技術の実証•開発が目標とされ ている。その中で特に CFD による空力設計技術の確立が重要なテーマとして設定されている。そこで この小型高速実験機の開発•研究と連係を取り，実験 で想定されている HSCT 機体形状に関して風洞実験データによるCFD 技術の検証を行なうことにし た。CFD 技術の検証ということで手始めに要素単位の簡単形状での検証を実施し，良い結果を得た ${ }^{3}$ ）。 そこで次のステップとしてより実機に近い形状での検証を試みる。そこでより実機に近い形状として次世代高速航空機の翼胴形態を模擬した HSCT 模型 を対象に数値解析を行なうことにする。この解析結果を実験データと比較することで数値解析手法の検証を行なう。本報告では数値解析手法の特徴を紹介 するとともに計算格子による影響を調べたのでその結果についても報告する。なお今回検証する CFD コードは航技研小型高速実験機の空力設計 ${ }^{4,5)}$ に実祭に活用されているものである。

2．数値解析手法

速度領域が低超音速であるため気体は比熱比 $\gamma=1.4$ の完全気体とし粘性，圧縮性を考慮した。そのため支配方程式としては3次元完全 Navier－Stokes 方程式を用いた。この支配方程式を離散化する際に有限体積法（Finite Volume Method；FVM）を用いて離散化した。有限な大きさを持つセルは計算格子を頂点とする六面体（Cell－Center 型）とした。セルフェ イスでの数値流束の評価には Flux Vector Splitting （FVS）スキームの一種である，AUSMDVスキーム 6）を用いた。このスキームはFVS スキームの特質で ある頑丈さ，簡易さを持つと同時に Roe スキームと ほぼ同じ解像度を有している。またセルフェイスで

の数値流束の評価の際にMUSCL 法を用いて高精度化している。その時制限関数を用いる事でTVD 条件を満足する様にしている。制限関数としては一般的な minmod リミターを用いている。粘性項に関 しては一般に良く用いられる中心差分スキームを用 いて離散化を行っている。また乱流モデルとしては Baldwin－Lomax ${ }^{7}$ ）の代数モデルを用いて全域乱流の計算を行っている。時間積分はMatrix Free Gause Saidel（MFGS）陰解法8）を用い，局所時間刻法を併用している。

計算格子としてはブロックを組み合わせる事で計算空間を構築するマルチブロック型構造格子9，10） を採用した。これにより複雑な形状に対する格子生成の効率を高めることが可能となった。またマルチ ブロック格子にすることで物体形状の再現性が向上 し，単一格子では問題になった翼胴結合部の格子の質を向上させることができた。またマルチブロック の接合を普遍的に扱う為，各ブロックの境界条件を窓と言う概念で一般化した。図1に境界条件，ブ ロック問接合を設定する窓の模式図を示す。

図1：窓の模式図

[^28]各ブロックはそれぞれ位置（インデックス），属性で表される窓を持ち，窓の属性として各種境界条件， ブロックと接合，壁，流入境界，流出境界等を与え られている。またブロックと接合している場合は隣接ブロックの番号，窓番号，接続形態といった情報 を与えてある。接続形態とはそれぞれのブロックの インデックスがどう対応しているかを示す。本計算 では計算領域を 14 ブロックに分割している。（図2 を参照）まず計算空間を上部，下部に分割。それぞ れのサブ空間で胴体を前胴，中胴，後胴の 3 分割，主翼部を内翼，外翼の 2 分割，ウェーク領域を主翼 と同じく内外の 2 分割，合計して全体で 14 ブロッ クとなる。

大規模計算に対応させるためメッセージパッシ ングライブラリー（Message Passing Library；MPL） を用いた並列化を行なった。使用した並列計算機は航技研の数値風洞（Numerical Wind Tunnel；NWT） である。各要素計算機（Processor Element；PE）に複数個のブロックを対応させた。また各PEが担当 するブロック群の格子点数を指標として静的なロー ドバランスが取れる様に各ブロックをPEに割り当 てた。図2に計算空間のブロック分割の様子と各 PEへの割り当ての様子を示している。今回使用し たPEは6台である。後で説明するがより細かい格子を用いた計算も行っておりその場合は 22 台の PE を用いて計算を行った。

図2：各ブロックのPEへの割り当て
MPLを用いた並列化を行なった事，及び1PEに複数ブロックを割り付ける方式とした事のため実際の計算の際にブロック数に捕らわれずに自由にPE 数 を選択することが可能となった。なお，この各PEへ のブロックの割り振りについてはPE 内ブロック間通信を最大（ PE 間ブロック通信を最小）にし，なおか つ静的なロードバランスを確保する最適問題となる。 この最適解を求める事は今後の課題である。メッセー ジパッシングライブラリーとしては PVM（Parallel Virtual Machine）と MPI（Message Passing Inter－ face）を用いたが本発表では主にPVM を用いて計算を行なった。

3．解析結果

HSCT 模型に対して数値解析を行った。まず初めに風洞試験データとの比較を行い，次に数値計算手法

の格子依存性に関して確認した。
計算に用いた格子点数は約 134 万点（片舷）であ る。図3に計算格子を示す。各ブロックをそれぞれ異なった色で表現している。

図 3：計算格子

3.1 風試データとの比較

HSCT 模型は力計測用の HSCT－F1 模型及び圧力分布計測用の HSCT－P1 模型の二つが用意されそれぞ れ力計測，圧力分布計測に使用された。数値解析対象として設定された条件は横滑べり角 $\beta=0$ 度の ケースが 8 ケース，$\beta=5$ 度のケースが 1 ケースの計 9 ケースである。 $\beta=0$ 度の 8 ケースは $\alpha=3$ 度 でのマッハ数スイープ及びマッハ数 $M_{\infty}=2$ での迎角スイープで構成されている。ここでは主に $\beta=0$度8ケースの解析結果について言及する。表1に各 ケースの計算条件を示す

表 1：HSCT 模型の計算条件

ケース番号	M_{∞}	$\alpha[d e g]$.	$R_{e_{\infty}} \times 10^{7}[1 / \mathrm{m}]$
3	1.435	2.984	2.36
11	1.614	2.980	2.50
23	1.822	3.021	2.64
32	2.023	-2.114	2.76
33	2.022	0.001	2.76
34	2.023	1.435	2.76
35	2.022	2.992	2.76
36	2.023	4.453	2.76
36	2.023	4.453	2.76

図 4 に $M_{\infty}=2$ での揚力特性，抗力特性，モー メント特性に関する計算結果と実験結果の比較を示 す。黒印が計算で得られた値を示し白印が実験で得 られた値である。モーメント特性の傾きに違いが見 られる他は実験値と計算値とでそれぞれ良く一致し ていることがわかる。

図5に設計点に近いケース $35\left(M_{\infty}=2.022\right.$ ， $\alpha=2.992$ ）の各スパン位置（ $\mathrm{y}=29 \mathrm{~mm}: 13 \%$ ， $\mathrm{y}=116 \mathrm{~mm}: 50 \%, \mathrm{y}=175 \mathrm{~mm}: 76 \%, \mathrm{y}=215 \mathrm{~mm}: 94 \%)$ での C_{p} 分布を示す。

図 5：C_{p} 分布（ケース 35 ）

横軸はローカルコード長で無次元化されている。三角印が上面の C_{p} 分布をダイヤ印が下面の C_{p} 分布 をそれぞれ示す。また黒印が計算で得られた C_{p} を示 し白印が風洞実験で得られた C_{p} である。全体的に実験値と計算値で良く一致していることがわかる。他 ケースにおいても全体的に実験値と計算値で良く一致しているが，低マッハ数ケースの中翼部（ケース 3），低マッハ数ケースで外翼部前縁加速領域（ケース 3，11），低迎角ケースでの中翼部前縁加速領域（ケー ス 32,33 ）において実験値と計算値で差が見られる。図6にケース3の各スパン位置での C_{p} 分布を示す。図6．bが示す様に中翼部（ 50% スパン）において翼上面でのずれが顕著である。それ以外に関しては後述する外翼部前縁付近を除けば比較的良く一致して いる。

図6：C_{p} 分布 $($ ケース 3$)$
図7にケース11の各スパン位置でのC C_{p} 分布を示す。図6．c，図6．d 及び図7．c，図7．dが示す様に外翼部（ $76 \%, 94 \%$ スパン）において前縁加速領域の広 さが実験値と計算値で明らかな差が見られる。圧力低下の最大値が実験と計算でほぼ同じであるが，計算で得られた加速領域（膨張領域）が実験のそれよ りも小さくなっている。これは前縁剥離渦を正確に捕えられていないため，また計算では全域乱流で計算を行っているが，前縁付近で実際は層流から乱流 に遷移していると考えられるがその影響のためと考 えられる。

図7：C_{p} 分布（ケース 11 ）続く

図7：C_{p} 分布（ケース 11 ）
図 8 及び 9 に低迎角であるケース 32 及び 33 の各スパン位置での C_{p} 分布を示す。図 $8 . \mathrm{b}$ 及び図 9．b が示す様に中翼部前縁加速領域において実験値と計算値で差が見られる。前縁付近の差異に関しては同 じように前縁剥離渦や遷移の問題等が考えられる。

図8：C_{p} 分布（ケース 32 ）

a）スパン： 13%

b）スパン：50\％

図 $9: C_{p}$ 分布（ケース 33 ）続く

c）スパン： 76%

d）スパン： 94%

図 9：C_{p} 分布（ケース 33 ）

3.2 格子依存性

次に数値解析手法の格子依存性を調べた。まず機体表面での最小格子幅の影響を調べるために，機体表面での格子幅を通常の半分にした格子で計算を行 なった。ちなみに通常の格子では最小格子幅として一般に良く使われる $0.1 / \sqrt{R_{e}}$ を用いて決定している。 そのため最小格子幅を半分にしたものは $0.05 / \sqrt{R_{e}}$ となっている。計算を行なったケースは $3,33,36$ の 3 ケースである。図 10 に $M_{\infty}=2.010$ での各特性 （揚力，抗力，モーメント）を示す。これらの図より最小格子幅は各特性に全く影響を与えていないこと がわかる。

図 10a：揚力特性

図 10b：抗力特性

図 10c：モーメント特性

次に格子点数を増やしてより細かい計算格子で解析を行ない，格子収束性について調べた。標準格子の格子点数は約 134 万点である。この格子の翼 コード方向を 2 倍，空間方向を 2 倍，全体で 4 倍，約537万点の格子で計算を行なった。細かい格子で の計算では計算空間を56 ブロックに分割しNWT のPEは 22 台を使用した。図 11 に $M_{\infty}=2.010$ で の各特性（揚力，抗力，モーメント）を示す。

図 11a：揚力特性

図 11b：抗力特性

図 11c：モーメント特性

各特性とも標準格子と細かい格子で良い一致を示し ている。また図 $12,13,14$ にそれぞれケース $3,33,36$ の各スパン位置での C_{p} 分布を示す。それぞれの図 において各スパン位置での標準格子，細かい格子の C_{p} 分布をプロットしているが，全てのケースにおい て両者とも殆んど一致しており標準格子での解析が十分な格子収束性を持っていることが確認できる。 しかしながらこの事は逆に，低マッハ数での全体的 な C_{p} 分布の不一致，特に前縁付近での膨張域の広 さの違い，高マッハ数での前縁付近の膨張領域での不一致等について格子を細かくすることでは改善で きなかった事を示す。前縁付近における前縁剥離渦 を正確に捕えられていない事，全域乱流の計算のた め前縁付近で起こる層流から乱流への遷移の取り扱 いに関しては今後の課題と考えられる。

a）スパン： 13%

c）スパン：76\％

b）スパン： 50%

d）スパン： 94%

図13：C_{p} 分布（ケース 33 ）

図 $14: C_{p}$ 分布（ケース 36 ）

4．おわりに

HSCT 模型を対象に超音速領域で数値解析を実施 した。計算結果と風洞実験データとの比較を行った ところ圧力分布，カデータともに良い一致をした。今回のこの検証作業で HSCT 形態に関して設計点 （マッハ数 2 程度の巡行状態）におうけるCFDの信頼性を確認することができた。CFDによる空力設計技

術を確立することは今後の航空機開発のためには非常に重要な事であり，今後も更成る信頼性の確立の ため設計点以外の状態，離着陸時の大迎角飛行，打 ち上げ形態，エンジン付形態についても検証を行な う予定である。また今回の検証作業では不十分だっ た前縁剥離渦の捕獲，遷移の取り扱い及び各種乱流 モデルによる差等については今後詳細な検討が必要 と考える。

参考文献

1）K．Takasawa．：Outlook for Research Activi－ ties on Advanced Aircraft at Japan＇s National Aerospace Laboratory．AIAA Paper 95－3866， 1995.

2）高澤金吾．：小型高速実験機システム設計と CFD の役割．第 15 回航空機計算空気力学シン ポジウム論文集 NAL SP－37，pp．1－8， 1998.

3）R．Takaki，Y．Matsuo，T．Iwamiya and N．Hi－ rose．：First Europe－US High Speed Flow Field Database Workshop Part II．In ：First Europe－US High Speed Flow Field Database Workshop Part II， 1997.

4）Y．Shimbo，K．Yoshida，T．Iwamiya，R．Takaki and K．Matsushima．：Aerodynamic Design of the Scaled Supersonic Experimental Airplane． In 1st CFD Workshop for Supersonic Trans－ port Design， 1998.

5）高木亮治，岩宮敏幸，橋本桂子．：小型高速実験機における CFD 解析。第15回航空機計算空気力学シンポジウム論文集 NAL SP－37，pp． 57－61， 1998.

6）Y．Wada and M．S．Liou．：A Flux Split－ ting Scheme with High－Resolution and Ro－ bustness for Discontinuities．AIAA Paper 94－ 0083， 1994.

7）B．S．Baldwin and H．Lomax．：Thin layer Approximation and Algebraic Model for Sepa－ rated Turbulent Flows．AIAA Paper 78－0257， 1978.

8）嶋英志．：構造／非構造格子 CFDのための簡単 な陰解法，第29回流体力学講演会論文集，pp． 325－328， 1997.
9）高梨進，佐藤求．：新しい格子生成アルゴリズム とその応用。第7回航空機計算空気力学シンポ ジウム論文集 NAL SP－10，pp．189－193， 1989.

10）S．Takanashi．：Large－Scale Numerical Aero－ dynamic Simulations for Complete Aircraft Configurations．In Proc．of ICAS 90，Stock－ holm， 1990.

NAL と ONERA による Euler／Kirchhoff 法を用いた還音速ロータ馶音の予測

青山剛史，齊藤茂，岩宮敏幸（航技研）
Joelle Zibi，Cyril Polacsek，Olivier Rouzaud，Jacques Sides（ONERA）

Prediction of Transonic Rotor Noise using Euler／Kirchhoff Methods of NAL and ONERA

by
Takashi Aoyama，Shigeru Saito，Toshiyuki Iwamiya（NAL）
Joelle Zibi，Cyril Polacsek，Olivier Rouzaud，Jacques Sides（ONERA）

Abstract

The high－speed impulsive（HSI）noise generated by helicopter rotors in hover or forward flight is computed using two Euler／Kirchhoff codes which are separately developed by NAL and ONERA．The main purpose of this common work is to validate the aeracoustic computations on non－lifting delocalized test cases．The pressure distributions on the blade surface computed by the Euler codes are compared before the analysis of the aemacoustic results provided by both Kirchhoff codes．In hover，the computations are conducted using three types of grids：coarse，medium，and fine．The aerodynamic and the aeroacoustic results obtained by each partner are in good agreement．In forward flight，the aerodynamic computations are performed using Euler grid generated by NAL．The results on the blade surface are in good agreement each other，with a satisfactory correlation with experiment．However，some discrepancies appear on the aeroacoustic results obtained using Euler grids generated by each partner．The discrepancies may be explained by the different Kirchhoff formulations（rotating surface for NAL and fixed surface for ONERA）．

1．はとめに

ヘリコプタの普及を妨げている主要な原因の1つとして，騒音問題が挙げられる。ヘリコク゚タの騒音源としてはメイン・ロ ータが最も大きく，そこから発生する主な騒音として，高速衝撃騒音，ブレード／渦干渉騒音，広帯域騒音の3つが挙げられ る。前者2つは衝撃騒音に分類され，ひとたびこれらが発生す ると他のいかなる騒音にも卓越する。この内高速衝撃騒音は，高速ヘリコプタの出現によって顕在化するようになってきたも ので，ヘリコプタが高速前進飛行する際，前進側のブレード上 に生ずる衝撃波に起因して発生する。これは，ブレードの回転面内前方に指向性を持つ極めて耳障りな音であり，その音圧波形は鋭い負のピークを持つ。この高速衝撃騒音を予測すること

を目的として，NAL と ONERA の双方て独自に騒音解析ツー ルの開発が行われてきだ（1）2）。そこで，両ツールの比較と検証を目的として，1996年から2年間にわたってNALとONERAの間で＂Rotorcraft Euler Flow Simulation＂と題する共同研究 ${ }^{(3)}$ が行われた。ここでは，その成果について報告する。

2．䀲算法

2．1．NALの計算法

計算法は Euler コードのと Kirchhoff の波動方程式を解くコ ード（1）を組み合わせたものである。高速衝撃騒音の原因となる㣫繋波は，それぞれ単極子音と双極子音に分類される翼厚音や荷重音とは異なり，流体内部から発せられる4極子音に分類き

れる。従って，これを解析するためにはブレードを取り囲む流体の情報が必要となる。そこで，まず圧力変動が起きているブ レードの周りの流れ場を，Euler コードで計算する。この Euler コードで用いられている数値解法は，効率化された Beam－ Warming 法を基礎とし，右辺に Chakravarthy－Osher のTVD スキームを適用したものである。前進飛行時，即ち，非定常の計算を行うときには，ニュートン反復法を加えて時間精度を高 めている。

次に，その計算領域の内側に衝撃波などの非悢形現象を包み込む閉曲面，即ち Kirchhoff 面を定義し，その上の圧力及び圧力勾配を Euler 計算の結果から求める。非線形現象の影響はこ の閉曲面上に反映され，閉曲面外の流体は均一であるという仮定の元で Kirchhoff の波動方程式を用いて任意の観測点での音圧を計算する。Kirchhoff コードは Farassat ら（5）の導出した式 に基づいており，Kirchhoff 面はブレードに固定されて空間内を回転している。図1に，CFDの計算格子と Kirchhoff面を示し た。

2．2．ONERA の計产法

計算法はNALと同様，Eulerコード（6）と Kirchhoff の波動方程式を解くコードサを組み合わせたものである。Euler コードは有限体積法に基づくもので，予測子修正子法を用いた陽解法部分と ADI 法を用いた陰解法部分に分けられる。定常計算の場合 には，陽的な人工散逸項は加えられておらず，陽解法部分の 2次の項に起円する陰的な粘性散逸が働く。一方，非定常計算の場合には，2次の準TVD 修正を加えることによって，粘性散逸が強められている。

Kirchhoffコードは KARMA と名付けられておろり，Goldstein の式に基づいている。Kirchhoff 面はロータ全体を覆うもので，空間内に固定されている。図2に，CFD の計算格子とKirchhoff面を示した。

3．結果及び考察

3．1．ホパリンク時

計算に用いたのはUH－1H のモデルローダ（8）で，ねじりのな いアスペクト比13．71のブレードを持ち，その翼型はNACA0012 である。計算条件は翼端マッハ数 0.90 で，騒音の観則者位置は ロータ回転面内の回転中心から3．09R 離れた場所である。ここ で，Rはロータ半径を表す。また，騒音データのサンプリング レートは2048／rev，である。

計算結果の比較は全く同じ格子で行うのか理想的であるが，両機関のKirchhoff 法の相違からそれが困難であるため，計算 にはそれぞれの機関で作成された Coarse，Medium，Fine の 3

種類の格子が用いられた。それらの格子点数を表1に示す。格子点数の設定は ONERA が行った。NAL と ONERA で Chord－wise 方向の点数が異なるのは，NAL が O－H 型格子を， ONERAが C－H型格子を用いていることに起因する。

図3は，NAL と ONERA で計算された無揚力ホバリング時 のブレード翼面上圧力分布である。図にはスパン位置が 0.90 R と 0.95 R での結果が示されている。図より，NAL の結果は Medium Grid で衝撃波の直前にわずかな振動が見られる。これ は，Normal 方向の格子点数に対して敏感であるNAL，のソルバ ーにとって， 32 点という格子点数が不十分であることに起团す ると考えられる。従って，Fine Grid ではこの問題か解消され ている。また，3つの格子による結果を比較すると，細かい格子ほど衝撃波を鋭くとらえている様子がわかる。一方，ONERA の結果は，細かい格子ほど衝撃波を鋭くとらえているものの，特に0．95R の位置で格子への依存性が顕著であり，Fine Grid のケースでは，衝撃波の位置に関してNAL との結果に顕著な差が見られる。ここで，NAL の結果には格子点数によって衝撃波の位置が変化するという傾向が見られないので，衝撃波の位置に関しては，NALの結果の方が妥当であると思われる。

図 4 は，NAL とONERA で計算された高速衝撃騒音の音圧波形を実験值 ${ }^{88}$ と比較したものである。Kirchhoff コードに入力 する空力データとしては，上で示した空力計算の結果を用いた。図より，NALの結果はCoarse Grid で多少細かい振動が見られ どの格子でも波形の幅と負のピーク後の圧力回復を過小予測し ている。しかし，非局所化発生時に見られる非対称な音圧波形 の特徴や高速衝撃騒音を評価する際に重要となる負のピーク値 は，どの格子でも正確にとらえられている。一方，ONERA の結果は，NAL の結果と同様にどの格子でも波形の幅と負のピー ク後の圧力回復を過小予測している。しかし，細かい格子ほど音圧波形の非対称性をとらえ，Fine Grid で負のピーク値を正確に予測している様子が示されている。

3．2．驵隼我行時

計算に用いたのは，取り外し可能な翼端を持つONERA の 2枚ブレードモデルローダ（9）で，矩形翼端を持つロータはF00，30度の後退角付き翼端を持つロータはF30と名付けられている。 F00 のアスペクト比は 4.74 で，F30のそれは 5.28 である。両者ともにねじりのないブレードを持ち，その翼型は NACA00xx である。F00 の計算条件は，翼端マッハ数 0．624，前進比 0.45 で，F30のそれは，翼端マッハ数 0.653 ，前進比 0.396 である。騒音の観測者位置はロータ回転面内で，上流方向に回転中心か ら3．6R離れた場所である。また，騒音データのサンク゚リングレ ートは512／rev．である。

F00 を用いたブレード翼面上圧力分布の比較は，NAL で作成された C－H 型格子で行われた。その格子点数は，Chord－wise方向に239点（翼面上に200点），Span－wise 方向に40点（翼面上に 22 点），Normal 方向に 51 点である。図5は，NAL と ONERA で計算された無揚力前進飛行時のブレード翼面上圧力分布を実験値と比較したものである。比較は3カ所のスパン位置（0．85R，0．90R，0．95R）で，それぞれ前進側（方位角位置 90 度と 120 度）について行われた。図より，両者の結果はとも に実験値との一致がよく，強いて言えば，NAL の結果の方が若干衝撃波を鋭くとらえており，また衝撃波の位置を上流側に予測していることがわかる。
F30を用いた高速衝撃騒音の音圧波形比較は，それぞれの機関で作成されたC－H 型格子で行われた。NAL の格子は，ブレ －ド翼面上圧力分布の比較に用いられたものと同じであり， ONERA の格子点数は，Chord－wise 方向に 141 点（翼面上に 95点），Span－wise 方向に 61 点（翼面上に 33 点），Normal 方向に31点である。図6は，NAL とONERA で計算された高速衝撃騒音の音圧波形を実験値甽と比較したものである。図には， Kirchhoff 面の位置が，1．09R，1．19R，1．32R，1．42R の 4 つの結果が示されている。図より，ONERA の結果は Kirchhoff面 の位置によらず実験結果を過大予測している。ただし，波形の非対称性に関して言えば，十分ではないもののその傾向をとら えている。一方，NAL，の結果は Kirchhoff面の位置に大きく依存することが示されている。1．32Rでは，Kirchhoff 面の位置が内側過ぎるため，閉曲面の中に衝撃波の韭線形効果に起因する 4 極子の音源を十分包み込めないことから，負のピークと負の ピーク後の音圧勾配を過小予測している。また，1．42R では CFD の解に十分な精度が保たれないなどの原因で大きな振動が見ら れる。従って，Kirchhoff 面の位置の最適値は1．32Rと1．42R の間にあると考えられる。NAL と ONERA の結果の相違に関 しては，今後のさらなる検討が必要であると思われるが，その一つの原因として挙げられるのは，NAL の Kirchhoff 面がブレ ードとともに回転し，ONERA の Kirchhoff 面は空間に固定さ れているという Kirchhoff面の扱い方の相違である。

4．結䤅

NAL と ONERA 双方で独自に開発されたヘリコグタの高速衝撃騒音解析ツールを，ホバリング時と前進飛行時の計算に適用してその結果を比較し，以下のような結論を得た。

ホパリング時

－ブレード翼面上の圧力分布に関しては，格子への依存性に おいて傾向の相違が見られたが，NALとONERA の結果 は概ねよく一致した。
－高速衝撃騒音の音圧波形に関しては，両機関の結果はとも に，どの格子でも実験で得られた波形の幅と負のピーク後 の圧力回復を過小予測した。しかし，音圧波形の非対称性 や負のピーク値は，NALの 3 種の格子と ONERAの Fine Gridでよく予測された。

前進升行時

－ブレード翼面上の圧力分布に関しては，両機関の結果とも実験値とよく一致した。
－高速衝撃騒音の音圧波形に関しては，Kirchhoff 面の位置 への依存性において大きな差が見られた。ONERA の結果 はKirchhoff面の位置によらず実験結果を過大予測，NAL の結果は Kirchhoff 面の位置の最適値が 1.32 R と 1.42 R の間にあることを示した。

考考文献

（1）Aoyama，T．，et al．，Unsteady Analysis of Transonic Helicopter Rotor Noise，19 ${ }^{\text {th }}$ ERF，Paper No．B2， 1.993.
（2）Zibi，J．，et al．，Prediction of HSI Noise using a Coupled Euler／Kirchhoff Method for a Helicopter in Hoverflight， $22^{\text {nd }}$ ERF，No．49， 1996.
（3）Zibi，J．，et al．，Predictions of High－Speed Impulsive Rotor Noise using Euler／Kinchhoff Methods of ONERA and NAL，Heli Japan 98，T4－1， 1998.
（4）Aoyama，T．，et al．，Unsteady Calculation for Flowfield of Helicopter Rotor with Various Tip Shapes， $18{ }^{\text {th }}$ ERF，No． B03， 1992.
（5）Farassat，F．et al．，Extension of Kirchhoff＇s Formula to Radiation from Moving Surfaces，Journal of Sound and Vibration，Vol．123，No．3， 1988.
（6）Boniface，J．C．，et al．，Numerical Simulation of Steady and Unsteady Euler Flows around Multibladed Helicopter Rotors，19 ${ }^{\text {th }}$ ERF，No．C10， 1993.
（7）Polacsek，C．，et al．，High Speed Impulsive Noise Computation in Hover and Forward Flight using a Kirchhoff Formulation， $16^{\text {th }}$ AIAA Aeroacoustic Conference， 1995.
（8）Boxwell，D．A．，et al．，Hovering Impulsive Noise－Some Measured and Calculated Results，Vertica，Vol．3，1979， pp．35－45．
（9）Prieur，J．，Experimental Study of High－Speed Impulsive Noise in a Wind Tunnel， $16^{\text {th }}$ ERF， 1990.

表1 格子点数

		Chord－wise	Normal	Span－wise	Total
Coarse	ONERA	$131(87)$	22	$42(21)$	121,044
	NAL	$89(87)$		82,236	
Medium	ONERA	$221(147)$	32	$70(35)$	495,040
	NAL	$149(147)$		333,760	
	Fine	ONERA	$285(189)$	42	$90(45)$
	NAL	$191(189)$			1077,300

（ ）内はブレード翼面上の点数

図 1 NALのCFD計算格子と Kirchhoff面

図2 ONERAのCFD 計算格子と Kirchhoff面

Conrse grid

Medium grid

図3 ホバリング時のブレード翼面上圧力分布の比較

ONERA

NAL

図4 ホバリング時の騒音波形の比較

図5 前進飛行時のブレード翼面上圧力分布の比較

ONERA

NAL

図6 前進飛行時の騒音波形の比較

ロータCFDと空力騒音解析

中尾雅弘 ${ }^{*}{ }^{2}$ ，内山直樹 ${ }^{*} 1$ ，鈴木博史 ${ }^{* 2}$ ，藤井孝藏 ${ }^{* 3}$ ，大村 稔 ${ }^{*} 4$

Rotor CFD and Numerical Analysis of Aerodynamic Noise
 by

Masahiro Nakao，Naoki Uchiyama，Hiroshi Suzuki，Kozo Fujii，Minoru Ohmura

Abstract

In this paper MHI activities about rotor CFD and aerodynamic noise analysis of helicopter are presented．Two types of rotor CFD codes（transforming－deformation grid system and overlapping grid system）have been developed．The overlapping grid CFD code is combined with acoustic analysis code to predict the BVI（Blade－Vortex Interaction）noise．Applications have been done for the wind tunnel and flight testing of helicopters．The computed pressure distributions and sound pressure histories are compared with experimental data and show good agreement．Furthermore，some future work about rotor CFD is mentioned．

1．はじめに
近年，民間へリコプタ開発においては，飛行性能のみ ならず騒音に対する考慮も重要な設計ポイントとなってき た。特にロータの形状設計においては，ブレード材料の発達とともに形状の自由度が増したことで，空力，騒音等を総合的に評価した 3 次元的な形状を設計することが可能に なってきた。しかしながら，固定翼のようにC F D による設計がまだ，十分発達していない現状では，空力性能や騒音評俩は風洞試験や実機試験に大きく依存している状態で ある。このような状況に対して，ここ数年各国でロータ空力解析ツールや騒音解析ツールの開発が進められてきた が，三菱重工でも5年前からロータ空力解析および空力騒音解析ツールの開発に着手し，設計ツールとしての活用を めざして，開発を進めてきている。

ヘリコプタのロータ・ブレードは，前進飛行時，シャ フト軸まわりの回転の他，サイクリック変化するフェザリ ング，フラッピング及びリード・ラグ運動を行つている （図1）。固定翼に比べヘリコプタの空力解析を困難にし ている要因の1つが，定常巡航状態でも現れるこのブレー ドの運動である。空間を細かい格子で模擬しそれらの中で離散化された基礎方程式を解いていくC F D の手法で，一様流，ブレードの回転，さらにブレードの運動という状態 を模擬するためには，空間格子適用法の考え方から新たに構築する必要があった。三菱重工業では，宇宙科学研究所 との受託研究を通して，これらの剛体運動を模擬するた め，移動変形格子法と重合格子法の 2 種類の方法を適用し たCFDコードを開発した。図2，3にそれぞれの方法の概略図を示す。重合格子法は，ブレード近傍の格子と計算領域全体を含む格子を別個に生成し，ブレードの運動はブ レード近傍の格子を全体格子の中で動かす方法である。—方，移動変形格子法はブレードの運動に合わせて格子を変形していく方法である。重合格子法は，ブレードや胴体と いった複数の計算対象を比較的簡単に計算に導入すること ができる利点がある。欠点としては，格子間でデータの補間を行うため，補間による誤差を生じやすい。移動変形格子法は補間による誤差がない代わりに，胴体など複雑な形状も含めて取り扱うのは容易ではない。しかしなからら，へ リコプタブレードの弾性変形も考慮する場合には，どうし

[^29]ても格子を変形する必要が生じてくる。将来的にはこれら の手法を組み合わせることにより，ブレードの弾性変形ま で考慮したツールの開発を進める予定である。また，重合格子法の手法は，音場解析コードを組み合わせることによ り，ロータのBVI（Blade－Vortex Interaction）騒音を推算す る空力騒音解析コードとしても発展させている。

ここではこれらのロータCFDおよびそれを用いたロー夕空力騒音解析について紹介する。

2．解析手法
ここではまず，空力解析手法について紹介し，次に音場解析手法について述べる。

2． 1 空力解析プログラム
移動変形格子法と重合格子法の 2 種類の手法についてそ れぞれ説明する。

2．1．1 移動変形格子法
ブレード運動の模擬を単一格子で可能とするため，ブ レードの動きに合わせて格子を移動変形ずる手法であ る。図2に示すように，ブレードを含む空間をH－O夕 イプの格子で離散化し，一様流の境界条件のもとで，ブ レードの運動に合わせて格子を移動変形させながら回転 する。格子の移動変形の方法は次のように行う。あらか じめ設定したトリム条件に対して各時間ステップでのブ レード方位角を算出し，以下の式により，ブレードの空間座標を求める。この際，ピッチ角 θ 及びフラップ角 β は それぞれ方位角ゅの一次の調和関数として次式で与える ものとする。

$$
\begin{align*}
& \theta=\theta 0-\theta 1 \cos \psi^{\prime}-\theta 2 \sin \psi \tag{1a}\\
& \beta=\beta 0-\beta 1 \cos \psi^{\prime}-\beta 2 \sin \psi \tag{1b}
\end{align*}
$$

式（1a）に於いて，$\theta 0$ はコレクディブ・ビッチ，$\theta 1$ ，θ_{2} は それぞれチップパスプレーンの横及び縦のサイクリッ ク・ピッチを表す。同様に式（1b）では，乃oはコーニン グ，β_{1} ，$\beta 2$ はそれぞれ縦及び横の傾きを表す。これらの係数には各飛行条件に応じた値が予め代入される。ブレ ード格子の各点の座標（ $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ）は，初期座標（ $\mathrm{x} 0, \mathrm{y} 0$ ， z0）に対し，ビッチング，フラッピング及び方位角问転 に伴う次の座標変換を順に施すことにより求める。

$$
\begin{align*}
& {\left[\begin{array}{l}
x_{\theta} \\
y_{\theta} \\
z_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{\beta} \\
y_{\beta} \\
z_{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \beta & 0 & -\sin \beta \\
0 & 1 & 0 \\
\sin \beta & 0 & \cos \beta
\end{array}\right]\left[\begin{array}{l}
x_{\theta} \\
y_{\theta} \\
z_{\theta}
\end{array}\right]+\left[\begin{array}{l}
E \\
0 \\
0
\end{array}\right],} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{\beta} \\
y_{\beta} \\
z_{\beta}
\end{array}\right]} \tag{2}
\end{align*}
$$

ここで，Eはフラッビングのオフセット・ヒンジを表 す。

図 3 にブレードのスパン位置での格子の変形の様子 を模式的に示す。格子の変形はブレード近傍ではブレ ードの移動とともに移動し，ブレードから距離が離れ るに従って，移動量が減少し，外側境界領域では変形 が 0 となるように重みがつけられている。すなわち，各ブレードスパン位置断面での表面点の移動量をベク トル $\overrightarrow{V s}$ で表すとその表面点位置と同じL方向（ブレード表面から離れる方向）の格子点の移動ベクトル $\overrightarrow{\mathrm{Vg}}$ は，以下に示すような式で表現される。

$$
\begin{equation*}
\overrightarrow{V_{g}}=\frac{s_{g}}{s_{o}} * \overrightarrow{V_{s}} \tag{3}
\end{equation*}
$$

ここで，So，SgはそれぞれL方向最外縁の点と表面点 および格子点との距離を表す。
基礎方程式は空間に固定された座標系で記述された 3 次元非定常オイラー方程式である。以下に計算空間 における基礎方程式を記述する。

$$
\begin{equation*}
\partial_{\tau} \hat{Q}+\partial_{\underline{E}} \hat{E}+\partial_{\eta} \hat{F}+\partial_{\tau} \hat{G}=0 \tag{4}
\end{equation*}
$$

ここで，Qは保存変数，E，F，G はそれぞれ一般曲線坐標（ $\tau, \xi, \eta, \zeta)$ 上での対流項流束を表す。流体の方程式を離散化する方法としては，安定性の良い風上差分法を適用した。風上差分法の中で流束を評価する方法はいくつかの種類があるが，ここではRoeの平均化を用いた流速差分法を用いている。この方法は遷音速領域では安定で，しかも，境界層内で人工粘性が自動的 に小さくなるという利点がある，ここでの計算は非粘性であるが，将来，粘性計算への発展を考えてこの方法を用いた。

2．1． 2 重合格子法
領域分割法を用いて格子の移動を考慮する手法で，計算格子系は，個々のブレードを囲みブレードと共に移動 する物体境界適合格子（以下，ブレード格子）と，計算領域全体を覆う背景直交格子から構成される。ブレード格子はブレード方位角中に対応してビッチング及びフ ラッビング運動を行う。

本解析コードにおいても，移動変形格子法コードと同様，空間に固定された座標系で記述された三次元非定常 Navier－Stokes／Euler 方程式を基礎方程式とする。本手法においては，ブレード格子と背景格子との間で，計算過程の中で逐次更新される物理量を互いに補間する必要 がある。図4に示すようにブレード格子の境界点におい ては，これを囲む背景格子よりその物理量を線形補間 し，逆にブレード格子内部の格子点により囲まれる背景格子点は，ブレード格子点での値を用いて補間される。 これにより，格子間の流れの連続性が達成される。本過程は解強制置換法［1］を用いて実現される。本手法で は必要箇所において解の強制置換を可能とする解強制置換項を右辺に有した以下の基礎方程式を扱う。

ここで，S は薄層近似した粘性流束を表す。また，Re はレイノルズ数を表す。右辺に関し，保存変数 Q を強制解Qf に置換する必要のある格子点においては 2 に十分大 きな値（ $\chi=100,000$ ）を代入し， $\mathrm{Q}=\mathrm{Qf}$ が実用的な精度 で満たされるようにする。また，解の強制置換を必要と しない大部分の格子点においては $\quad \chi=0$ とする。また対流項の評価にはMUSCL法により高次精度化したRoeの風上差分法を用い，陰的時間積分法にはLU－ADI法を適用し た。

基礎方程式は計算時間の短縮を目的に，ブレード格子 と背景真交格子で以下の様に別とする。

> ブレード格子: 粘性計算時にはレイノルズ平均薄層

Navier－Stokes方程式を使用。乱流モデルにはBaldwin－ Lomaxモデルを適用。非粘性計算時にはEuler方程式を使用。

背景直交格子：Euier方程式

2．2 ロータ騒音解析プログラム

音源項を評価するために必要なロータ近傍の空力解析と音波の遠方場への伝播をシミュレートする波動解析によ り構成される。空力解析手法は重合格子法を用いてい る。音場波動方程式には，NASA Langley のヘリコプタ騒音解析コードWOPWOP［2］にならい，Ffowcs Williams－ Hawkings 方程式をFarassatの1A型に展開したものを適用 する。
2．2．1基礎方程式
音場の波動方程式には以下のFW－H方程式を用いる。同方程式は，Navier－Stokes方程式を移動境界面を考慮し て，一定音速 を特性速度とした線形波動方程式に変形

することにより導出される。

$$
\begin{aligned}
& \left(\frac{1}{a_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) p^{\prime} \\
& =\frac{\partial}{\partial t}\left[\rho_{0} v_{n}|\nabla f| \delta(f)\right]-\frac{\partial}{\partial x_{i}}\left[l_{i}|\nabla f| \delta(f)\right] \\
& +\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left[T_{i j} H(f)\right]
\end{aligned}
$$

ただし，
p^{\prime} ：音圧。観測点圧力の一様流圧力からの差。
$\rho_{0} \quad$ ：一様流密度。
ν_{n} ：ブレード局所移動速度の法線成分。
\boldsymbol{f} ：ブレード面等高値。面上 $\mathrm{f}=0$ ，外部 $\mathrm{f}>0$ 。
l，：単位面積当たりの流体力。 i 方向成分。
$\delta(f)$ ：デルタ関数。
$T_{i j}$ ：Lighthill の応カテンソル。
$H(f)$ ：ヘビサイド関数。

上式右辺の 3 項はそれぞれ音響学的に単極子，双極子及び四極子に分類され，物理的にはそれぞれ翼厚音，荷重音及 び乱流や衝撃波等の流体の非線形現象に起因した音源項に対応する。
本研究は亜音速域でのBVI騒音の推定を目的とするため，寄与の小さい第 3 項を無視した。式（6）は，右辺をCFDから求めた数値解で評価して既知のものと扱うことにより，そ の解析解を積分型で記述することができる。本研究では以下に示す Farassat の1A型［2］と称する積分型を用いた。

$$
\begin{equation*}
p^{\prime}(\overrightarrow{\boldsymbol{x}}, t)=p_{T}^{\prime}(\overrightarrow{\boldsymbol{x}}, t)+p_{L}^{\prime}(\overrightarrow{\boldsymbol{x}}, t) \tag{6b}
\end{equation*}
$$

$$
\begin{aligned}
4 \pi p_{T}^{\prime}(\overrightarrow{\boldsymbol{x}}, t) & =\int_{f=0}\left[\frac{\boldsymbol{\rho}_{0} \dot{v}_{n}}{r\left(1-M_{r}\right)^{2}}\right]_{r e t} d s \\
& +\int_{f=0}\left[\frac{\rho_{0} \nu_{n}\left(r M_{i} \hat{r}_{i}+a_{0} M_{r}-a_{0} M^{2}\right)}{r^{2}\left(1-M_{r}\right)^{3}}\right]_{r e t} d s
\end{aligned}
$$

$4 \pi p_{L}(\overrightarrow{\boldsymbol{x}}, t)=\frac{1}{a_{0}} \int_{t=0}\left[\frac{\dot{l}_{i} \hat{r}_{i}}{r\left(1-M_{r}\right)^{2}}\right]_{r e t} d s$
$+\int_{t=0}\left[\frac{l_{r}-l_{i} M_{i}}{r^{2}\left(1-M_{r}\right)^{2}}\right]_{r e t} d s$
$+\frac{1}{a_{0}} \int_{r=0}\left[\frac{l_{r}\left(r \dot{M}_{i} \hat{r}_{i}+a_{0} M_{r}-a_{0} M^{2}\right)}{r^{2}\left(1-M_{r}\right)^{3}}\right]_{r e t} d s$
6d）

ただし，

Po 音源から観測点までの距離。
\hat{r}_{i} ：音源から観測点方向に向かう単位ベクトル。
M ：ブレードの局所移動マッハ数。
M_{i} ：局所移動速度のマッハ数表示。 i 方向成分。
$M_{r} \quad: M_{i} \cdot \hat{\boldsymbol{r}}_{i}$
$l_{r} \quad: l_{i} \cdot \hat{r}_{i}$
$d s$ ：プレード微小面積要素。
rel ：遅延時刻による被積分項の評価。
式（6c），（6d）において，p_{r}^{\prime} ，p_{L}^{\prime} はそれぞれ翼厚音及び荷重音を示す。上式は，時刻，観測者位置 に届く音圧 がブレードの各微小面積要素からそれぞれ異なる遅延時刻に発せられた音圧の総和であることを示す。遅延時刻 は各微小面積要素に対し，以下の方程式の解として求め られる。

$$
\begin{equation*}
\tau-t+\frac{r}{a_{0}}=0 \tag{6e}
\end{equation*}
$$

2．2．2 計算方法

実際の計算においては，ブレード面上の要素分割を CFDの計算格子による分割と等しくとり，式（6c），（6d） を数値積分により計算した。このとき，各要素に対する遅延時刻 は式（ 6 e ）をニュートン法を用いて解くことによ り求めた。また式（6c），（6d）中に現れる時間微分値に関 しては，遅延時刻を挟むデータの差分により評価した。

3．解析結果

3． 1 空力解析結果
1）AH－1G OLSロータ前進飛行時の非粘性計算
移動変形格子法コードを用い，NASA AMES研究所で行われたAH－1G ヘリコプ夕による前進飛行試験［3］と同条件の解析を行い，ブレード表面上の圧力分布を両者 で比較した。同機体のロータはOLSロータと称し，対称

翼型を有する2枚の矩形ブレードから成る。ブレード は -10° の線形の㹉りを有する。計算格子点数は約 90,000 点である。飛行条件は前進速度 82 kt ，翼端マッ八数0．65 とした。図5はブレード表面上の圧力分布を表し，ブレード方位角による圧力変動が捕らえられて いる。図5（1）にスパン位置75\％での圧力分布を本解析結果と飛行試験データとで比較する。ブレード前進側 （ $\psi=90^{\circ}$ ）及び後退側（ $\psi=270^{\circ}$ ）ともに前縁付近で の圧力に試験データとの相違がみられるが，傾向的に は概ね良い一致がみられる。
同じケースを重合格子法を用いて解析した結果が，図5（2）である。計算格子数は背景格子が295，245点， 2 つのブレード格子がそれぞれ 95,445 点とした。移動格子法に比べて，前縁での圧力のビークが良く捕らえ られていることがわかる。移動格子法では全空間を 1 つの格子で表すため，翼断面方向はHタイプの格子と なる。このため，前縁付近での格子の解像度が落ちる可能性があるが，重合格子法では，翼まわりはCタイ ブの格子が生成できるため，前縁での解像度を上げる ことができる。圧力分布の差はこれが要因の 1 つと考 えられる。

3． 2 空力騒音解析結果

－OLSロータ前進飛行時の空力騒音計算

本計算ケースはOLSロータの1／7スケール風洞試験［4］に対応した条件での計算で，BVIが特に顕著と なる場合である。翼端マッハ数 0.664 ，前進比 0.164 で の前進飛行時の非粘性解析を行い，この結果を用いて風洞試験でのマイクの位置に対応した以下の 3 点で音圧計算を行った。
－点A：ロータ回転面内，上流。ロータ中心から3．4 R

- 点B：点Aから 30° 下方。ロータ中心から 3.4 R
- 点 C ：点 B から 30° 右舷。ロータ中心から 3.4 R

図6に各音圧計算点の位置と，各点で計算された音圧履歴を風洞試験と比較して示す。点Aでの本計算に よる音圧履歴から，ロータ回転面内で顕著となる翼厚音による負圧が捕られられていることがわかる。点 B，Cにおいては，風洞試験結果でみられるようなBVIに伴うスパイク状のビークは十分には捕らえられていな いものの，荷重音による正圧変動を捕らえていること が確認できる。十分な音圧ピークをとらえるために は，空力解析コードの更なる精度向上を図る必要があ ると考えられる。

4．今後の展望
－重合格子法によるロータ十胴体空力干渉解析
現在，重合格子法を用いて，ロータと胴体を含んだ空間に格子を生成し，C F D 解析を試みようとしてい る。ヘリコプタの空力設計に適用するCFDコード開発という観点から，特に前進飛行時の空力特性を検討 するにあたっては，䏱体とロータの空力干渉は重要な ポイントとなる。図7に生成した格子の例を示す。現段階ではまだ十分な結果が得られていないが，今後解析を進め，上述の手法と組み合わせることで設計ツー ルとしての実用化を図る予定である。

5．まとめ
（1）移動変形格子及び重合格子を用いたロータ

CFDコードをそれぞれ開発した。
（2）重合格子法を用いた空力解析コードと音場解析コー ドを組み合わせ，ロータ空力騒音解析システムを開発し た。
（3）今後はこれらの手法を組み合わせるにより，ヘリコ プタ空力解析，騒音解析コードの実用化を目指す。

参考文献

［1］Fujii，K．，＂Unified Zonal Method on the Fortified Solution Algorithm，＂J．Comp．Phys．，Vol．118， 1995.
［2］Farassat，F．and Succi，G．P．，＂The Prediction of Helicopter Rotor Discrete Frequency Noise，＂Vertica，Vol．7，No．4， 1983.
［3］Cross，J．L．and Watts，M．E．，＂Tip Aerodynamics and Acoustics Test，＂NASA RP－1179，Dec．， 1988.
［4］Yung H．et al．，＂Aerodynamic and Acoustics of Rotor Blade－Vortex Interactions，＂J．Aircraft Vol． 32 No．5（1995）．

図1 ブレードの運動

図2 移動変形格子法

図3 計算格子の変形（移動変形格子法）

図4 重合格子法

（2）重合格子法
図5 ブレード表面上圧力分布の比較

（1）モデル形状

（2）格子例

図7 ブレード＋胴体重合格子

航技研におけるヘリコプタ機外騒音研究について

舞藤茂，青山剛史，末永尚史
Study of the Helicopter External Noise in NAL

 byShigeru SAITO，Takashi AOYAMA，Hisashi SUENAGA

Abstract

The study on the helicopter external noise was started since 1996 as a special research project at NAL．The CFD technique has been used to analyze the mechanism of the noise generated from a helicopter rotor，specifically for the impulsive noise．Euler code for high－speed impulsive noise was used for the comparison with ONERA code．The CFD code for blade－vortex interaction noise is validated by using experimental data that was conducted in DNW wind tunnel by the advanced technology institute of commuter helicopter（ATIC）．The new computer code by moving overlapped grid method is now developing under the research cooperation between NAL and Kawasaki Heavy Industries in order to investigate flow characteristics around a helicopter ．

1．はじめに
へリコプタは固有の特徴として空中静止，前進，横進，後退等固定翼ではとうていまねのできない飛行が可能であ る。その飛行特性故に，遭難救助，救急医療，警察，農薬散布，報道等とその活用と行動範囲は大変広い。しかしな がら航空機の持つ使命としての人員輸送の面においては図 らずも十分に活用されているとは言い難い。この理由とし ては，多九考えられるが最大の要因として騒音の問題があ る。特にヘリコプタが離発着するヘリポートは人口の密集 している地堿が多い。したがって，固定翼機と同様にへリ ポート周辺における騒音は今後のヘリコプタの発展におい てさけては通れない緊急の課題となりつつある。ヘリポー ト周辺で特に問題となる騒音は衝軗騒音と呼ぼれ，ヘリコ プタが高速で飛行する場合に頨上に発生した衝撃波に起因 する騒音や緩降下時にブレードと渦とが干渉しあって発生 する騒音がそれである。

このような状況に鑑み，航技研では平成8年度より特別研究として「回転翼機の騒音発生機精解明とその低減法の研究」を開始したところである。これらの騒音発生機構の解明については，数値計算（C F D）の技術を駆使するこ とまた騒音解析コードについては従来の移動する騒音源か らの波動方程式を解く方法や直接C F Dによって解析する方法などを組み合わせて回転翼からの騒音解析手法を確立 してきた。さらに，高速回転翼試験装置を整備して風洞内 で騒音を計測しその発生機構と騒音のデータベースの構築 を図る計画である。本報告では，現在までに得られた解析

手法の現状と試験設備の進渉状況を解説する。

2．数値解析手法

ヘリコプタの騒音は，図1にあるように主にロータから発生するものとエンジン，トランスミッションなどから発生するもの，さらにロータ及び胴体から発生する渦に起因 するものとに分けられる。このらちメイン・ロータから発生する騒音のらち衝熬的な騒音が特に問題となる。これら衝軽騒音がいったん発生すると，他の騒音に卓越する。特 にブレードから昍出された翼端渦と自身または後続のブレ ードが干渉しあって発生するブレードー渦干渉騒音（B V I騒音）は，ヘリポート周辺では近隣の騷音䍗境に大きく影響する。また，ヘリコプタの高速化に伴い，前進飛行時 のヘリコプタ・ブレードは，前進側の翼端付近における相対速度が遷音速領域に達し衝撃波が発生する。この衝撃波 による擾乱が伝播し，衝撃的な騷音を発生する（HS I 騒音）。図2には，ブレード座標系で描いた速度を示したもの であるが，ブレード上に発生した超音速領堿が外の超音速領域とつながりこれが原因で，衝撃波による摂乱がロータ の外に伝わってゆき状況を示したものである（非局所化現象）。

HS I 騒音に関しては，CFD技術を用いた解析手法は ほぼ確立され，現在フランスの ONERA との間で，解析コ ードの相互評価に関する国際共同研究を実施しているとこ ろである。BVI騒音に関しては，渦理論とCFD及び騒音解析コードとの組み合わせによる解析手法を構築中であ

り，現在検証を進めているところである。図3はこの 1 例 であり，翼端に下半角を持つブレードが緩降下時において B V I 騒音を発生しているときのブレード上における圧力分布及びBVI騒音波形を示している。ブレードの前縁側 において急激な圧力の増加が見て取れる。

3．国内外の研究機関との関係

航技研におけるヘリコプタの騒音研究は，平成 6 年度よ りコミュータヘリコプタ先進技術研究所（ATIC）との間の共同研究として主に解析技術を確立する目的で始まっ た。航技研にある計算機環境と相まって，CFD技術をフ ルに活用することでより詳細な流れ場解析から音場解析に至る一連の解析手法の確立を目指している。HSI騒音の解析技術は，高性能／低騒音翼型の設計開発に応用され， ATICにおけるAK080AおよびAK100D翼型を生み出している ${ }^{[1]}$ 。前述のようにこの解析コードは ONERA との性能相互比較に使われた ${ }^{[2]}$ 。図 4 は，オイラーコードに よるBVI騒音波形の相互比較の1例である。両図とも，各種格子に対してBVI䭽音波形を良く表しているが， ONERA の波形はネガティブピークの値が，荒い格子にな るほど過大評価となっている。航技研のコードはどの格子 に対しても，このビーク値を良く捕らえていることがわか る。

ATICでは，平成9年度に航技研にある大型低速風洞 での風洞試験に続き，オランダにあるドイツーオランダ共用無響風洞（DNW）において，新設計のロータ・ブレー ドAT1の空力特性と音警特性を把握するための風洞試験 を実施した。この結果は，現在データの整理と解析が行わ れている。図5は，DNWの風洞内に設置された直径 4 m のロータブレード模型である ${ }^{[3]}$ 。また，図 6 は，DNWで得 られた矩形翼の騒音特性である。この騒音カーペットは，回転巽試験装置のメインロータ面から下方 2.4 m のところを 13 本のマイクロホンを装備したトラバース装置によって計測作成されたものである。図の上側が計測結果であり，下方が解析結果である。BVI騒音の特徴であるロータの前進側約50度付近と後退側の300度付近に騒音のピー クが現れている。解析結果でもこの傾向は示されているが騒音のレベルは計測結果に対して 5 dB 位過大評価となっ ている。解析においては，ブレードの弾性変形や翼端禍の軌跡の理論的な推定精度の問題があり，現在，渦理論，C FD，騒音解析と 3 段階での各理論の組み合わせによる解析手法のさらなる改良が必要である。

翼端渦とブレードとの干渉によって発生するBVI騒音

は，翼端禍の空間位置の推定精度が解析結果に大きく影響 することがわかっている。このため，空間における翼端洞 の精度向上と胴体まわりの流れ場の正確な把握を目的とし て，平成 9 年度に川崎重工業との間で共同研究を開始した。 これはCFD技術を適用してへリコプタ全機周りの流れ場 を正確にシミュレートすることによって，ロータハブ部の抵抗軽減やロータから発生する騒音解析ひいては虽音低减化技術の取得を目指しているものである。図7は，研究成果の 1 例であり，移動重合格子法を用いてロータまわりの流れ場解析を行い，翼端渦の軌跡を渦度表示したものであ る ${ }^{[4]}$ 。翼端渦がブレードから吐出されて，螺旋状に後方に流 されてゆく状況が良く捕らえられている。しかしながら， ロータが 1 回転する間に，数値粘性の影警によって渦が減衰し翼端渦の形状を保つことができなくなる様子も示され ている。このため翼端渦が正確に計算されていないとブレ ードとの干渉現象によって発生するBVI騒音を捕らえる ことができない。現在，コードの高精度化をはかり，BV I 騒音解析に適応することを進めている。

4．おわりに

ヘリコプタの機外騒音研究において，理論的な特性の把握特に BVI 騒音の特性解析はその重要性が詺識されている にもかかわらずまだその緒についたばかりである。世界的 にも，騒音低減技術が重要な課題となっている昨今，一研究機関だけですべての研究課題をを網羅することは，設備 や人員の観点から言っても現実的ではない。研究を進める に当たって内外の研究協力が期待されるところである。

5．参考文献

［1］青木誠，他：ヘリコプタの高速衝転騒音を低减するブレ ード形状の設計に関する考察，第13回航空機計算空気力学シンポジウム，6月，1995年。
［2］J．Zibi，C．Polacsek，O．Rouzaud，Y，Aoyama，S．Saito， T．Iwamiya：Predictions of High－Speed Impulsive Rotor Noise using Euler／Kirchhoff Methods of ONERA and NAL， Heli Japan 98，4． 1998.
［3］H．Nakamura，H．Nishimura，N．Kondo，E．Yamakawa， T．Aoyama，S．Saito：Effect of Blade Geometry on BVI Noise in Various Flight Conditions，Heli Japan 98， 1998.
［4］A．Ochi，E．Shima，T．Aoyama，S．Saito：Parallel Numerical Computations of Helicopter Rotor by Moving Overlapped Grid Method，Heli Japan 98， 1998.

図1 ヘリコプタ騒音の種類

図3 下反角翼端をもつブレードの翼渦形の相互比較

図2 ブレード周りの等マッハ数分布

図4 NAL－ONERAにおけるBVI波干渉時における圧力分布と騒音波形

図5 DNW 無響風洞内に設置されたATIC回転翼試験装置

図6 DNW無響風洞において計測された騒音のロータ下方のカーペット図と解析結果との比較

図7 移動格子法によるロータまわりの解析結果（渦度による翼端渦表示法）

図8 KH I との共同研究におけるへリコブタ胴体まわりの流れ場解析結果 （胴体表面上の圧力分布）

河内啓二 ${ }^{1}$ ，相川 慎 ${ }^{2}$

Analytical Method for Roll－up Behavior of Tip Vortices of Helicopter Rotor Blade

 byKeiji KAWACHI ${ }^{1}$ ，Makoto AIKAWA ${ }^{2}$

Abstract

A simple method using many vortex filaments has been developed to analyze roll－up behavior of a tip vortex．The accuracy of the method was verified in comparison with experiments．Using this method，the distance and the strength of a par of vortices were made clear to prevent the roll－up for avoiding the strong blade－vortex interaction noise．

1．はじめに

ヘリコプタが多方面に使われる機会が増えるにつれ，その騒音対策が重要性を増している。ヘリコプタのロータ駩音の中で翼渦干渉（B V I 騒音）は，主に降下飛行中に発生し， ひとたび発生すると他の騒音成分に卓越して大きい。翼渦干渉音は先行するブレードの翼端渦と後続のフレードが接近 し，後続ブレードの圧力が急変することにより発生するもの で，荷重音の一種であり，ロータ面に垂直な方向に指向性を持つ。従って，民間ヘリコプタとして最も厳しい環境，つま りヘリポート周辺の飛行径路直下の騒音の中で支配的な音源 となるので，その対策は極めて重要で近年多くの研究が行わ れている ${ }^{1) 2)}$ 。固定翼機では離陸中に最大地上騒音が発生す るのに対し，ヘリコブ夕では通常，着陸進入中に最大騒音が発生するのは，この翼渦干渉音のためである。
翼渦干渉音の推定には，先行ブレードの翼端渦の強さ，位置，構造が必要不可欠であるが，それらを精度良く求める解析法は未だ確立していない。可能性があるのはCFDによる方法か渦理論を用いるものであるうが，C F Dによる方法 は，格子間隔が現在の計算機のレベルでは粗すき，翼端渦の強さが過剰減裏してしまう。これを防ぐためには，後流専用 のメッシュを通常の計算メッシュに加えて 2 重に設定した り，移動格子を用いたりする試みが現在もいろいろと試され ている段階である ${ }^{3)}$ 。一方，渦理論はもともとはブレードの疲労破壊に対する動的荷重を求めるために開発された計算法 であるので，ブレード回転数の5～6倍程度の動的荷重まで しか考慮できず，翼端渦の挙動を推定できるほど細かなモデ ルにはなっていない。現在，広く使われているこの計算法に基づく計算コードでは，ブレードの分割数は半径方向にも回転方向にも20～30程度であり，翼端渦は多くても数本

[^30]の渦系で表されている4）。しかし，渦が発生してから翼渦干渉が生するまでの時間はかなり短く，最近の研究により明ら かになってきたモデル5）から推定すると，渦強度の減衰は極 めて小さいと考えられるので，渦理論を基本とする計算法は大変魅力的である。

本研究では，Krasny ${ }^{6 / 1}$ の提案した方法に従い，多数の渦系 で翼端渦を構成する計算法を開発し，実験値と比較してその信頼性を確かめる。また，この計算法により，有限渦芯を持った一対の渦の巻き上がり（Roll－up）を支配する主な物理量を明らかにし，翼端渦を多数の小渦に分割することによ り，翼渦干渉音を減少させる可能性を見出す。

図1 計算モデル

2．計算方法

翼後流の挙動は，図1に示すように多数の渦糸で記述でき る。翼から発生した渦系は，翼のそくばく渦の翼幅方向の変動に対応してその強さが決まり，またその位置は下流方向の各 x 点において，翼幅に平行な $\mathrm{y}-\mathrm{z}$ 平面上で，全ての渦の誘起する誘導速度 v と一様流Vの和によって構成される局所流速によって流されるとして，それぞれ計算される。ただ し，計算の簡略化のために，本方法では渦の発生する誘導速度 v は $\mathrm{y}-\mathrm{z}$ 平面上でScully モデル ${ }^{\text {T }}$ で与えられるものと する。Scully モデルはヘリコプタロータの誘導速度の計測

データから得られたもので，無限上流から無限下流まで渦が伸びている場合の誘導速度は次式で与えられる。

$$
\begin{equation*}
v=\frac{\gamma}{2 \pi} \frac{r}{r^{2}+\delta^{2}} \tag{1}
\end{equation*}
$$

上記の近似は物理的には渦系の誘導速度を計算する際には，渦系が直線に伸びていると仮定したことになる。この仮定に より，数値積分が避けられる上に，渦系の変形を上流側から下流側へ一方向に進めることができ，計算量は大幅に減少す るが，渦の変形が急激な場所では誤差が増大する。 γ は渦系 の強さ，rは渦系の中心と計算点の距離，δ は渦系の渦芯の大きさを示し，本研究では翼弦長のcの1 \％，すなわち $\delta=0.01 c$ を使用した。また，充分下流では（1）式を使用 するが，翼近傍ではそくばく渦の誘導速度を考慮し，渦系の長さもそくばく渦までの有限のものとして誤差を小さくし た。さらに，（1）式より得られるScully モデルの誘導速度分布を，参考のために図3に示した。具体的な計算法は，こ のようにして $x=x$ までの渦位置が求まったとすると，Δt 秒後に渦は $x=x+\Delta x$ の位置に移動するので，その点におけ る $\mathrm{y}-\mathrm{z}$ 平面上の渦系の位置を，全ての渦少からの誘導速度 と一様流の和によって局所流速を求め，その速度で渦糸が流 されるとして計算する。計算法として 2 次のルンゲクッタ法 を用いるので，Δx の間の各計算点でもそれぞれの局所流速を推定している。

上記の計算法により，独立した1つの翼端渦の渦芯を計算 し，図2に示す。時間とともに運動する渦芯を多数の渦系を用いて示したもので，黒丸と白丸は各渦糸の位置を示し，白丸の動きによって渦芯が回転しながらしかも同じ形を保存し続けることがわかる。このような計算では使用する渦系の数 が充分であることが必要で，ここでは169の渦系で1つの渦芯を表している。

図2 単一渦芯の計算例

図3にはこの時の誘導速度分布を他のモデルと比較して示 す。この計算例では各渦系の強さ γ を一定にしているので，本計算法とランキンモテ゚ルとの誘導速度分布の差は，本計算法で渦糸に対して渦芯の大きさ δ を考慮しているためであ る。
この計算法の精度を検証するために，アスペクト比6．6 の固定翼の翼端渦の巻き上がりを本計算法で求め，得られた誘導速度分布を実験値 ${ }^{81}$ と比較した。結果を図4に示す。本

図3 単一渦芯の誘導速度モデル

図4 翼端渦の誘導速度分布 （ $A=6.6$ ）

計算法では翼の幾何形状を入力し，翼面上のそくばく渦の循環分布を局所運動量理論 ${ }^{9}$（で求め，これに基づいて各渦系の強さを定めている。図よりわかるように迎え角 $\alpha=8^{\circ}$ の ケースを除いて，理論値と実験値は翼端渦芯の位置，誘導速度の大きさにおいて良く一致している。また，$\alpha=8^{\circ}$ のケー スも翼端渦位置を除くと，誘導速度分布は実験値と良く一致 しており，さらに他の実験ケースと比較すると，$\alpha=8^{\circ}$ の ケースだけ実験データの翼端渦位置が何らかの原因で外側に

移動した可能性が高い。従って，本計算法は翼に近い領域 $x=4.0 c$（ c は翼弦長）では，巻き上がりの挙動を良くとら えることができるといえる。
図5には $\alpha=8^{\circ}$ のケースに対して翼端渦かどのように巻 き上がるかの挙動を示す。翼近傍では小さな渦芯であったも のが下流へ流されるにつれ急速に巻き上がって成長して行く様子が示されている。

図5 翼端渦の巻き上がり

$$
\left(\mathrm{A}=6.6, \alpha=8^{\circ}\right)
$$

3．翼端渦の分割の可能性

翼渦干渉音は強い翼端渦に後続のブレードが接近して生ず るものであるので，翼端渦をいくつかの小渦に分割できれ ば，翼渦干渉音を低減できる可能性がある。本研究ではその可能性を調べるため，まず翼近傍で翼端渦が 2 つの渦芯に分割できることを示す。

翼端渦を分割するためには，翼幅方向の束縛渦の分布を急変させてやれば良い。これを実現するための翼の幾何形状は いくつか考えられるが，本研究では幾何形状そのものには主眼を置かず，その後の渦のふるまいに主眼を置いて研究を進 めたので，望みのそくばく渦の翼幅方向分布を実現できる可能性を確認することだけを目的として，図6に示すような もっとも簡単な翼形状を考え，図中の e をパラメタとして翼端渦の巻き上がりを翼近傍で計算した。結果を，

図6 翼形状
$e=0.75,0.50,0.25$ に対して図 7 に示すが，翼近傍 $x=4.0 c$ において，翼端渦が一対の渦に分割でき，さらに $e=0.25$ の時に両者の循環がほほ等しいことが明らかに なった。

図 7 翼端渦の分割

4．一対の渦の巻き上がり

上記のように，翼近傍では翼端渦を 2 つの小渦に分割でき ることが確認できたので，これが翼渦干渉音を生ずるような充分下流まで流されていく間の挙動を調べた。結果を図8～図10に示す。なおこのような計算には多数の渦系が必須 で，例えば 2 つの渦を 1 つづつの渦系で近似した場合，両者 は等しい距離を保ちつつ互いに円運動を行う解が得られるだ けである ${ }^{10)}$ 。

本研究では一対の渦の芯の大きさ r_{c} が等しい場合に，両者の距離がどこまで近づくと巻き上がりが起こり，1つの渦 に統合されてしまうのかの境界を調べた。これは実際のロー夕では，前述の方法でせっかく2つに分割した翼端渦が，そ の後再統合されて 1 つになってしまうことに相当する。図 8，9の結果を比較すると，一対の渦の強さが互いに等しい

図 8 一対の渦の相互干渉

$$
\left(\Gamma_{1}=\Gamma_{2}=0.5 \Gamma, L_{V} / r_{c}=3.0\right)
$$

図 9 一対の渦の相互干渉

$$
\left(\Gamma_{1}=\Gamma_{2}=0.5 \Gamma, L_{V} / r_{c}=4.0\right)
$$

図10 一対の渦の相互干渉

$$
\left(\Gamma_{1}=0.3 \Gamma, \Gamma_{2}=0.7 \Gamma, L_{V} / r_{c}=4.0\right)
$$

場合，両者の距離 L_{v} が渦芯 r_{c} の 4 倍以上離れていれば，巻 き上がりはおこおらす，両者はほほ等しい距離を保ちなが ら，渦芯の形を若干変形させつつ渦重心のまわりに円運動を行う。しかし 4 倍以下の距離であると，巻き上がりが生じ両者が1つに統合されてしまうことがわかる。さらに両者の渦 の強さが異なる場合は，強い方の渦が弱い方の渦を吸収しや すくなるため，図10に示すように渦芯の4倍離れていても巻き上がりが生じてしまう。この場合 （ $\Gamma_{1}=0.3 \Gamma, \Gamma_{2}=0.7 \Gamma$ ）は，巻き上がりを防ぐためには両者の距離が 5 倍以上離れていることが必要で，この時， 2 つ の渦は渦重心を中心としてほほ定常な回転運動に入る。一般 に一対の渦の渦強度が不均一になるほど，巻き上がりが起こ りやすくなり，これを防ぐためには，両者の距離を不均一さ に応じて大きくしてやる必要がある。

5．翼渦干渉音の低減

翼渦干渉音は Ffowcs Williams and Hawking の波動方程式 の荷重音の一種であり，先行ブレードの翼端渦が後流のブ レードに接近して，フレレードの圧力が急変することから生じ るので，その大きさを表す指標として $\frac{d C_{\ell}}{d \tau}$ を採用すること にする。ここで c_{ℓ} はブレードの 2 次元揚力係数，τ は $b V$ で無次元化された時刻，また $b=1 / 2 c$ である。この指標は，観測点を遠距離と仮定して近距離場音を省略し，また，翼の

コード方向の音源をコンパクトと見なすと，遠距離音場音の被積分関数が $\frac{d C_{\ell}}{d \tau}$ にほほ比例することから導かれたもので ある。
翼に動く圧力は以下に述べる 2 次元の非定常翼理論により求める。これは計算の簡略化のためでもあるが，また，大き な翼渦干涉音はブレードと先行ブレードの翼端渦が平行に遭遇した時に主に発生し，これをモデル化するためには，2次元非定常翼理論でかなりその本質が捕らえられるためでもあ る。翼はバネル法を用いて表し，各バネル内で翼弦方向に線形に変化する渦度分布を仮定し，バネル内のコントロール点 で翼表面に沿って流れが発生するように，また後緑において非定常のクッタ条件を満足するように渦度を定める。翼の後流については，翼の後縁に最も近い部分は，翼と同様に流れ方向に線形に変化する渦度分布を持った1枚のバネルで表し て計算の精度を高め，その後は離散渦で表した。この離散渦 も時刻ごとに各点の局所流速で流されるものとして， 2 次の ルンククッタ法でその位置を時刻ごとに定めた。局所流速 は，一様流速に，そくばく渦，後流の吐出渦（Shed Vortex），先行プレードの翼端渦のそれぞれが誘起する誘導速度が加 わったものである。このようにしてできあがった買面上の非定常圧力の計算コードの精度を他の理論 ${ }^{11)}$ と比較して図1 1 に示す。これは翼下方 -0.26 c の距離で，前方から翼 に水平に近づいてきた，強度 $0.2 \mathrm{c} \mathrm{U}_{\infty}$ を持つ翼に平行な渦が，翼と干渉して自分の位置を変えつつ翼に圧力変動を引 き起こした計算例である。図に示されているように両者は極 めてよく一致しており，本計算法の精度を検証できた。

図11 平行渦に対する揚力変動

図12 単一渦の翼渦干渉

プレードが先行ブレードの翼端渦のコアの中に侵入する最 も厳しいケースを計算すると図12のようになる。この時考 えているブレードの迎え角は 0° であり，また通常のロータ の翼渦干渉の生ずる条件に従い，先行ブレードの翼端渦は図 において時計回りの循環を持っている。従って渦の接近とと もに翼はまず負の揚力を発生し，翼の下面の流速の方が上面 より速くなり， 1 つであった翼端渦の芯が翼により 2 つに分断されると，下面の渦系の方が速く翼面上を進行する。渦系 が後縁に近づくにつれ翼の揚力は正に変化するので $\frac{d C_{\ell}}{d \tau}$ は図13（A）（B）の破線で示すように変化する。図からわ かるように $\frac{d C_{\ell}}{d \tau}$ のピーク変動幅はかなり大きい。

図13 $\frac{d C_{\ell}}{d \tau}$ の変動
一方，先行ブレードの翼端洞が2つの小渦に分割されてい る場合は，図 9 に示したように渦重心の回りにお互いに回転 しながら後続のブレードに接近してくる。従って後続のブ レードと翼渦干渉が生ずる時の，一対の渦とブレードとの相対位置は，平行渦に限定しても多数のケースが可能である。本研究ではこのうち代表的な 2 つのケースをとりあげて計算 を行った。いづれの場合も一対の渦の渦重心は，初期条件 $\tau=-0.2$ の時フレード面上にあり，一対の渦の芯を結んだ線とブレード面のなす角を $\tau=-0.2$ の時に初期角とし，こ れが 45° の時と 0° の時を計算例に選んだ。初期角 45° の時は図14に示すように翼渦干渉が生ずる地点では，分割 された翼端渦は後続のフレードをちょうど避けるように流れ るため，図13（A）の実線に示すように後続のブレードの $\frac{d C_{\ell}}{d \tau}$ 変動を，破線で表された単独の翼端渦に対するよりも はるかに小さくすることができる。さらに初期角 0° の時 は，図15に示すように最も厳しい翼渦干渉が生ずるが，翼端渦が分割されているため1つ1つの渦の強さが小さくな

り，後続のブレードの $\frac{d C_{\ell}}{d \tau}$ の変動は，図13（B）の実線に
しめるように，破線で表した単独の翼端渦に対するよりも， やはりはるかに小さくなっている。また図15に示すよう に，最初の渦と 2 番目の渦は，多少翼に対する相対位置が異 なるがいづれも芯と翼が接触している。この結果，図13 （B）では 2 つのピークが計算されている。

図14—対の渦の奋渦干渉（初期角45＊）

図15 一対の渦の翼渦干渉（初期角 0° ）

6．まとめ

本研究では多数の渦系を用いて，先行ブレードの翼端渦を解析する簡単な方法を開発し，実験値と比較してその信頼性 を確かめた。また，この解析法を用いて，㽬端形状を工夫す

ることにより先行ブレードの翼端渦が2つの小渦に分割でき ること，その小渦が再び1つの翼端渦に統合されないこと，分割された翼端渦では翼渦干渉音が低減できることを明らか にした。また分割された翼端渦が再び1 つの翼端渦に統合さ れない物理条件を明らかにした。今後の課題としては，回転翼独特の渦の曲率の影響，らせん型渦采のもたらす誘導速度分布の影響等の解明が残されている。

参考文献

1）Scmitz，F．，＇Reduction of Blade－Vortex Interaction（BVI）Noise through X－Force Control＂，J．of AHS，Vol．43，No．1， 1998.
2）Kitaplioglu，C．，et．al．，＂Parallel Blade－Vortex Interactions：An Experimental Study and Comparison with Computations＂，J．of AHS，Vol．42，No．3， 1997.
3）Ahmad，J．and Duque，E．，＂Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Embedded Grids＂，AIAA paper 94－1922， 1994.
4）Johnson，W．，＂A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics，Part I：Analysis Development＂， NASA TM 81182， 1980.

5）Spalart，P．，＂Airplane Trailing Vortices＂，Annu．Rev．Fluid Mech．， Vol．30， 1998.

6）Krasny，R．，＂Computation of Vortex Sheet Roll－up in the Treffty Plane＂，J．of Fluid Mech．Vol．184， 1987.
7）Scully，M．，＂Computations of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Load＂，ASRL TR－178－1，MIT， 1975.

8）McAlister，K．and Takahashi，R．，＂NACA 0015 Wing Pressure and Trailing Vortex Measurements＂，NASA TP 3151， 1991.
9）Azuma，A．and Kawachi，K．，＂Local Momentum Theory and Its Application to the Rotary Wing＂，J．of Aircraft，Vol．16，No．1， 1979. 10）今井功，流体力学，岩波， 1970.
11）Wu，J．，et．al，＂Unsteady Aerodynamics of an Airfoil Encoun－ tering a Passing Vortex＂，AIAA Paper 85－0203， 1985.

ヘリコプタ・ブレードの翼端形状が BVI 騒音の指向性に与える影響

近藤夏树 ${ }^{* 11}$ ，中村英明 ${ }^{* 1}$ ，山川築一＊1，青山剛史 ${ }^{* 22}$ ，齊藤茂 ${ }^{* 2}$

Effect of Blade Tip Geometry on BVI Noise Directivity

by
Natsuki KONDO ${ }^{* 1}$ ，Hideaki NAKAMURA ${ }^{\boldsymbol{1}}$ ，Eiichi YAMAKAWA ${ }^{\text {¹ }}$
Takashi AOYAMA ${ }^{* 2}$ ，and Shigeru SAITO＊2

Abstract

The analytical tool that is able to estimate the BVI noise rebel of a helicopter rotor has been developed under the mutual research cooperation between ATIC and NAL．This tool was applied to the estimation of the BVI noise carpet contour from 5－bladed rotor， this rotor was tested at DNW anechoic large speed wind tunnel．The calculation results show the good correlation of qualitative sound property and directivity between experiment and calculation results．However predicted noise rebel was overestimated． More accurate calculation has to be needed．

1．はじめに

都市部の新しい交通手段としてヘリコプタを普及させ ようとした場合，機体がへリポート等にアプローチする際に発生する衝撃音，即ちBVI（Blade－Vortex Interaction）騒音の低減は，環境問題の面から見ても重要な技術課題である。その為の1つの方法として翼端形状の工夫が挙げられ，著者らはこれまで幾つかの解析的検討を行ってきた。過去の研究では，前進角，下反角， テーパ等の付加が BVI 騒音低減に有効であるとの結論を得ているが，降下飛行条件が異なるケースや，BVI 騒音 の指向性の変化といった点について検討が十分でなかっ た。

本研究では，複数の降下飛行条件に対し，ロータ下面 の等騒音レベル線図の比較により，翼端形状の変化が BVI騒音に与える影響について更に追求したので，その結果 を報告する。

2．風洞試験及び騒音計測

コミュータヘリコプタ先進技術研究所（ATIC）は， 1998年の初期にドイツーオランダ共用（DNW）無響風洞において，風洞試験を実施した。試験では，ロー夕性能，騒音計測，ブレード上の圧力分布計測，LDV及びPIV計測による後流計測また翼端渦の軌跡•構造計測，等を行った。ロータの直径は 2.0 m ，翼弦長 0.1107 mで，ブレード枚数は 4 及び 5 枚である。翼端形状に関 しては，基本ブレードとして矩形，新設計のAT1形状， BERP形状を用いた。特に，低騒音型ロータとして設計されたAT1ブレード等の騒音特性の計測は，我が国

では初めてのケースである。現在は，大量に計測された データの処理の最中であり，総合的な解析結果は近い将来に公表される予定である。本論文では，騒音特性に焦点を絞り，現在航技研との間で進めているBVI解析コ ードの確立のため実験データとの検証を行い，翼端形状 が騒音の指向性の関して及ぼす影響について検討する。図1は，DNW風洞内に設置されたATIC回転翼試験装置を示している。試験装置はスティング式に取り付け られており，装置の下方には騒音を計測するために13本のマイクロホンを 1 列に設置したトラバース装置が配置されている。図2は，この装置の概念図である。ロー夕装置の 2.4 m 下方を矩形（ $8.0 \mathrm{~m} \times 5.4 \mathrm{~m}$ ）の範囲を非常 にゆっくりとした速度で走査し，流れ方向に24点計測 することが可能である。DNW風洞の性能や各種計測装置等の詳細については他の論文に譲る！${ }^{[1]}$

3．解析手法

ATICとNALとの間で現在進めている共同研究「へ リコプタ機外騷音低減技術の研究（その 2）」の中で騒音解析手法の構築を図っている。その解析システムの概要 を示したのが図3である。基本的な構成は，渦理論から なる CAMRAD IIを用いて，ブレードから吐出される翼端渦の軌跡及びブレードの有効迎角の計算，非定常オイ ラー方程式を用いた空力計算，波動方程式 Ffowes Williams－Hawkings（FW－H）方程式による音圧計算の三段階からなる。BVI騒音を規定する主要なパラメータ は，翼端渦のコアの大きさ，渦とブレードとの垂直距離

[^31]（miss－distance），渦とブレードが干渉しあらときの交差角度である。従って，CAMRAD II から求められる翼端渦の軌跡の正確さが，B V I 騒音の大きさを推定する際に非常に重要となる。本解析では，渦理論から求められるブ レードの有効迎角分布が，非定常オイラー解析において ブレードのピッチ角を規定する。このC F D 解析により ブレード上での圧力分布を求め，波動方程式における騒音源としてインプットされる ${ }^{[2]}$ 。FW－H 方程式は，移動 する音源場を記述する波動方程式であり，回転翼上の圧力変動を各計測点において空間積分することによって騒音を求める。

4．解析結果

本解析においては，次のような仮定をしている。渦理論解析においては，ブレードは剛体とし，ブレードのフ ラッピング方向の自由度を許している。ベースとなるロ ータは図4に示すように，回転半径 $2 m$ ，ブレード翼弦長 0.1107 m の 5 枚ブレード・モデルローダ3である。翼型は NACA23012 を一部改造したものである。DNWにおいて得られた騒音のカーペットコンターは，ロータの43回転分を時間平均し周波数解析を行って求めたものである。

図5は，DNW試験で得られたスパン位置 $\mathbf{r} / \mathrm{R}=0.77 \mathrm{~K}$ おけるブレードのコード方向の圧力分布と非定常オイラ一解析結果を各方位角位置で比較したものである。試験条件としては，$\mu=0.16, ~ \alpha{ }_{\text {TPP }}=4.52^{\circ}$ ， $\mathrm{C}_{\mathrm{T}}=6.4 \times 10^{-3}$ ， $\mathrm{M}_{\mathrm{hover}}=0.618$ である。C F D解析結果は風洞試験結果を良 く推定しており，騒音源であるブレード上の圧力分布と して騒音解析に使用された。図 6 には， 5 枚の矩形ブレ ードを持つロータ仮面の騒音カーペットコンターである。実験では，前進側の方位角80度付近にBVIによる騒音のピークが現れている。後退側でも，方位角 300 度付近でBVIによる䭽音のピークが現れる。解析では，前進側でのBVI騒音のピークを良く推定している。し かし，後退側では，B V I 騒音を判別しづらい。騒音レ ベルでは，実験値に比べると最大で 5 dB B差がある。全般的な発生位置や騒音レベルの傾向については，現在開発中のBVI騒音解析コードは良い推定値を示すこと がわかる。

騒音を低减するために，翼端形状を変化させたときの効果を調ごた。図7には矩形の他，上下反角，前進•後退角の翼端形状をもつブレードのロータ下方における騒音カーペットコンターが示されいる。計算条件は，実験時と同じである。
（1）上／下反角を付加した場合
BVI騒音レベルを規定する要因として，ブレードと翼端渦の垂直距離（miss－distance）がある。この距離を変化させる目的で翼端に上ノ下半角をつけ，B V I 騒音へ の影響を調べた。その結果，干渉時のブレードと渦の間

隔が広がる為，騒音は全体的に低减している。
（2）前進／後退角を付加した場合
ブレードと翼端渦との交差角もBVI騒音を規定する 1つのパラメータである。前進／後退角の付与は，交差角の変化を付けるが，かえって干渉を起こす位置が他へ移動するといら結果を招き，このケースでは矩形よりも全般的に騒音が増大する。また，前進角をつけたケース では，騒音が最大となる領域が下流側へ移動する傾向が見られた。

5．結 論

本解析の結果，次のような結論が得られた。
1．ロータから発生する B V I 騒音の指向性に関 しては，ATICとNALの間で構築を進めてい るBVI騒音解析システムの結果は，定性的には実験値の傾向を示すが，全体的には過大評価とな った。
2．ブレード形状に関しては，上／下反角を翼端 に付与することでBVI騒音しベルを下げる可能性が示された。これは，miss－distance が変化した ことによって示された。他方，前進／後退角を付与した場合，翼端付近でのブレード翼端渦の交差角の位置を変化させる結果にはなるが，別の位置 で同様な現象が発生し，結果として騒音しベルの増加となった。

今後はこのような基本形状の計算結果を元に，BVI 騒音 の低減に効果のある翼端形状について検討を進めていく予定である。

6．おわりに

B V I 騒音解析コードの構築は，翼端渦の正確な軌跡 を模擬することが，騒音レベルの推定に重要なポイント である。渦理論と C F D 計算及び騒音解析の組み合わせ た解析システムは，設計に関して簡便な手法として用い ることができるが，今後さらなる改良が必要である。

7．参考文献

［1］Murashige，A．，Kobiki，N．，Tsuchihashi，A．，Nakamura， H．，Inagaki，K．，Yamakawa，E．：ATIC Aeroelastic Model Rotor Test at DNW， $24^{\text {th }}$ European Rotorcraft Forum， 1998.
［2］Aoyama，T．，et al．，Calculation of Rotor Blade－Vortex Interaction Noise using Parallel Super Computer， $\mathbf{2 2}^{\text {nd }}$ European Rotorcraft Forum，No．8， 1996.
［3］Nakamura，H．，et al．，Effect of Blade Geometry on BVI Noise in Various Flight Conditions，AHS International Meeting on Advanced Rotorcraft Technology and Disaster Relief，Paper No．T4－6， 1998.

図1 DNW風洞内に設置されたATIC試験装置

有効迎角分布
空力解析（3次元非定常オイラー）
Flow field around a blade
翼面上圧力分布

任意の観測点におけるBVI騒音

図3 BVI解析フロー
－O：実験値
：解析値

図2 騒音計測トラバース装置の概要

図4 NDW試験で用いたブレード

図5 プレード上の圧力分布の比較

Flow Direction

図6 5枚の矩形ブレードを持つロータの騒音特性の比較

$$
\left(\mu=0.16, ~ \alpha_{\text {TPP }}=4.52^{\circ}, ~ \mathrm{C}_{\mathrm{T}}=0.0064, ~ \mathrm{M}_{\text {hover }}=0.618\right)
$$

（a）矩形

（b） $10{ }^{\circ}$ 下反角

（d） 20° 前進角

（c） 10 采反角 ${ }^{(\mathrm{m})}$

（e） 20° 後退角

図7 翼端形状が B V I 騒音に与える影響

生越博景，稲垣健次郎（川崎重工業）
石田洋治，吉田憲司，野口正芳（航空宇宙技術研究所）

Study on Supersonic Laminar Flow Control on a Warped Delta Wing

Hirokage OGOSHI，Kenjiro INAGAKI（KHI）
Yoji ISHIDA，Kenji YOSHIDA，Masayoshi NOGUCHI（NAL）

Abstract

Since the friction drag of an SST must be reduced to improve the lift－to－drag ratio，we have investigated supersonic Laminar Flow Control on a warped wing from a viewpoint of applying it to real aerodynamic design．Then we experimentally confirmed large reduction due to suction at $\mathrm{M}=1.4$ and numerically analyzed the stability of laminar boundary layer．

1．はじめに

次世代超音速輸送機（SST）の輸送効率を高める揚抗比改善技術としては，圧力抗力を低減させるための Warp や Area－rule が代表的である ${ }^{1)}$ 。これに対し，摩擦抗力低減技術として，自然層流化（NLF）や，境界層制御（LFC）が挙げられ，特に前者に関しては，航空宇宙技術研究所（NAL）で進められている小型超音速実験機計画の機体に適用されている 2．3）。しかし，超音速での遷移機構の複雑さや，風洞の主流乱れ強さ等が原因と なり，超音速機の設計に有用な境界層遷移に関する情報が少な いのか現実で，境界層選移に関するデータベースを構築するこ とが急務と考えられる。

これらを踏まえ，本研究では超音速における境界層遷移に関 するデータベースの構築を目的とし，実機SST を想定した主翼 Warp 形状模型を用いて，風洞試験による超音速境界層遷移の可視化，および超音速層流制御試験を実施した。また，この情報を基に，解析による境界層遗移判定法の構築および精度向上 を目指し，SSTの主翼設計法の確立を目指した。

2．実験的検討

2－1．供試体概要

図1に試験に用いた供試体を示す。供試体の平面形はデルタ翼だが，揚力依存造波抗力を低減する目的で，Warp 設計を施 しており，据じりとキャンバー分布を組み合わせた複雑な 3 次元形状となっている。図中のカセット部は， $\mathrm{x} / \mathrm{c}=0.03 \sim 0.3$ ， $\mathrm{y} / \mathrm{s}=0.2 \sim 0.6(\mathrm{~s}=500 \mathrm{~mm})$ の範囲内で，断熱化を施した可視化用，あるいは表面に約 6 万個の微細な孔（直径 0.1 mm ）を有 する層流制御用の吸い込み用カセット等を装着することが可能となっている。特に，吸い込みカセットの内部は前縁から翼弦方向に3等分割（前緑から\＃1，\＃2，\＃3ブロック）され

ており，真空ポンプと流量調整用のバルブを用いて，それぞれ の部分で独立に吸い込み流量を調整することが可能となって いる。

また，風洞の壁面に発達する境界層（風壁境界層）の影響に より，供試体表面が全面乱流になることも考えられたので，そ のような悪影響を排除する目的で，図 1 に示すような高さ 100 mのの支持台を用いて風壁より離すこととした。

図1 供試体概要

2－2．試験概要

試験は，図2に示すように航空宇宙技術研究所の 3 次元回流式摆音速風洞（ $2 \mathrm{~m} \times 2 \mathrm{~m}$ ）の第3カートを用いて実施した。本試験では，可視化試験と境界層吸い込み試験（層流制御試験）を実施し，可梘化試験では，カセット部表面における境界層の層流から乱流への遷移位置を把握する目的で液晶を用い，

供試体の迎角と風試レイノルズ数の変化に伴う逻移位置移動 の把握を試みた。

境界層吸い込み試験は，可視化試験の結果を基にカセット部表面の層流域が広い条件において，吸い込みカセットを用いて実施した。吸い込みによる層流制御効果は，供試体後縁の後方 190 mm の位置に設置された後流計測装置で，総圧欠損分布か ら断面抗力を推定し，吸い达みの有無による抗力の変化から把握を試みた。

尚，いずれの試験も試験マッハ数の上限である M1．4を主に試験を実施した。

図2 風洞試験状況
（実際はこの図の下方が風洞の側壁になり，供試体上面が風洞の床面を向いている）

2－3 可視化試験結果

層流から乱流へ選移すると，乱流のミキシング効果により層流と乱流とでは表面温度に差が生じる。そこで，その差か顕著 に表れるよう，風洞総温を上下に変動させて感温液晶による遷移の可視化試験を実施した。その結果を図3に示す。

この図は，供試体の表面温度か湾化する現象を捉えた写真を スケッチしたものである。模型表面には意図的に孤立ラフネス を貼付し，その後方に発生する乱流楔の温度と，スケッチした自然遷移位置から後方の温度が同じであることから，この線が遷移位置であることが分かった。

各風試条件における可視化写真に対し，同様の処理を施しま とめた結果，供試体カセット部には層流域が存在することが確認できた。また，この翼の特性として，局所翼弦長基準のレイ ノルズ数 Recが 7×10^{6} 付近で急激に遥移位置が移動することが分かった ${ }^{1)}$ 。その結果を図4に示す。

2－4 雷流制御試験結果

可視化試験の結果，層流域の存在か確認できたので，その試験条件下において吸い込みによる層流制御試験を実施した。

M＝1．4，$\alpha=5^{\circ}$ における層流制御効果をまとめたものか図 5 である。Cqは吸い込み流量係数で，計測した流量を基準量で無次元化したものであり，CD．total は供試体下流で計測した総圧欠損分布（ $\mathrm{P} / \mathrm{P} 0$ ）から推定される断面抗力係数に，吸い込みに要するパワーロスを抗力に換算して加えたものである。（尚，本試験においては，ポンプの能力が小さいことから吸い込み流量が小さく，パワーロスに伴なう抗力は，断面抗力の 1% 程度 であった。）この結果から，P0（風洞総圧）が 60 kPa の時に，断面抗力係数が最大で 0.002 減少することが確認できた。

また，境界層吸い込みを実施しない場合と $\mathrm{Cq}=0.0002$ におけ るCD．total を比較した結果を図6に示す。吸い込みを実施しな い時，Recが 5×10^{6} 以下では抗力は増加し，それ以上では増加 している。一般に，レイノルズ数の増加は選移点の前進に伴う乱流域の増加と，境界層厚さの減少を引き起こす。前者は抗力 を増加させるが，後者は抗力を減少させる。このことから，Rec が 5×10^{6} を境に前者と後者の寄与する割合が逆転したために， このような結果が得られたと考えられる。

次に， $\mathrm{Cq}=0.0002$ の場合では， Rec が 5×10^{6} 以下では吸い込 みによる抗力低減効果が大きく現れ，それ以上のRec ではその効果が小さくなることか確認された。このことから，Rec $55 \times$ 10^{6} では吸い込みにより積極的に選移位置を後退させることが できたと考えられる。

図 3 遷移位置（可視化写真のスケッチ）

図4 可視化試験結果（㯰移位置）

図5 層流制御効果（CD．total $\sim \mathrm{Cq})$

図6 層流制御効果（CD．total～Re．c）

3．解析的検討

3－1．CFD解析結果

先述した風洞試験結果を基に，解析による還移位置予測の考察を行った。手順としては，まず圧力分布を取得し，その圧力分布を用いて圧縮珄3次元層流境界層計算を実施した。その結果得られた層流境界層の速度分布を基に，3次元層流境界層安定解析を実施した。この解析には，海外も実績のあり広く一般 に使われているるSALLY Code ${ }^{5}$ を用いた。尚，この解析コー ドは非圧縮だが，還移現象の定性的な傾向は十分把握できると判断して解析に用いた。

一連の解析に必要な圧力分布は，風洞試験でも取得していた が，層流境界層安定解析に必要な細かい間隔のデータを得るこ とができなかったので，風洞試験で得られた圧力分布を補間す る目的で，KHIで開発したug3 $3^{6)}$ を用いてCFD 解析を実施した。

この解析で用いた総要素数 43 万点の計算格子（Euler 用）を図7に示す。

また，この計算格子を用いて解析した結果を図8に示す。図 8 は $\mathrm{M}=1.4, ~ \alpha=5^{\circ}$ における表面圧力分布と， $\mathrm{y} / \mathrm{s}=0.65$ にお ける空間圧力分布の等高線を示している。

この図より，風壁境界層の影響を排除する目的で設置した支

持台の先端部において生じた圧縮領域が，翼先端近傍の圧力場 に影響を及ほしていることが分かった。更に，支持台の前方か ら生じた膨張波と，支持台の後端近傍から生じた膨張波により，翼表面の圧力場に影響を及ほしていることが分かった。CFD 解析結果と風洞試験結果の比較した結果を図9に示す。
図9より，風洞試験，CFD 解析結果ともに支持台の影響が現 れており定性的傾向は一致している。特に安定解析に必要な x / c $\leqq 0.2$ では定量的にも非常に良い一致を示している。そこで， CFD 解析で得られた圧力分布を用いて安定解析を実施した。

図7計算格子
（半裁，総要素数 43 万点，Euler 用）

図 8 CFD解析結果
（M 1．4，$\alpha=5^{\circ}$ ，表面圧力分布と空間圧力分布）

図9 CFD解析結果と風洞試験結果との比較
（ $\mathrm{M}=1.4, ~ \mathrm{y} / \mathrm{s}=0.65$ ，支持台有 $り) ~$

3－2．安定解析結果（可視化詮験結果との対応）
安定解析では，境界層外縁の主流方向に伝播する擾乱によっ て引き起こされる不安定を T－S 波型不安定，それに対して直角 な方向の不安定を横流れ不安定として，それぞれ独立に解析を実施した。攝乱の周波数は $100 \sim 200,000 \mathrm{~Hz}$ までの範囲とした。 これら各周波数について安定解析を実施した結果得られる摄乱の増幅率（増幅した檪乱の振幅と初期摄乱の振幅との比）を翼弦方向に積分して得られる包絡線を用いて還移特性を調査 した。
先述した可視化試験結果（風洞試験結果）において，供試体 のカセット部で層流域が広く確認された風洞総圧 $\mathrm{P} 0=70 \mathrm{kPa}$ と同じ条件での境界層計算と安定解析を実施した。その結果を図10に示す。この結果，本風試模型は横流れ不安定（図中の実線）が支配的であることが分かった。これは，解析した翼断面の圧力分布が前縁で加速勾配を有しており，その結果主流に対して直角な方向（横流れ方向）に圧力勾配が生じ横流れ方向速度成分が生まれたためである。また，T－S 波型不安定は，圧力分布が加速勾配を有しているため増幅が抑制されているこ とが分かった。
図中の＂No suction＂が吸い込み無しの解析結果であり，これ に対応する風洞試験で得られた摆移位置は，可視化試験結果よ り $\mathrm{y} / \mathrm{s}=0.4$ において前緣から 26% 翼弦長程度であることから，塄移位置における摄乱の増幅率を表わす N －factor は， $\mathrm{N} \doteqdot 14$ で あることが分かった。（ここで N は \ln（増幅した摃乱の振幅 $/$初期喓乱の振幅）を表わしている）

また，先迹の可視化試験結果において，層流域か狭かった風洞総圧 $\mathrm{P} 0=100 \mathrm{kPa}$ と同じ条件での解析を実施した結果を 図 11 に示す。この時の還移位置は可視化試験結果より $\mathrm{y} / \mathrm{s}=0.4$ に おいて前緣から 6% 翼弦長程度であることから，遷移位置にお

ける摄乱の増幅率は $\mathrm{N} \doteqdot 11$ であることが分かった。このような解析を，実際に風洞試験で実施したその他の風洞総圧 P0（80， 90，110，120kPa）においても実施した結果，航空宇宙技術研究所の遷音速風洞の第3カートにおける，本風洞試験模型の逻移位置を表わす閾値Nと風洞総圧P0の関係を取得することが できた（図 12）。この結果，遷移位置におけるNは，各断面で ばらつきはあるものの，風洞総圧 P0 の増加に伴い減少するこ とが分かった。これは，P0の増加に伴い主流の乱れ強さが増加 するためと考えられる。

図 10 安定解析結果
（ $\mathrm{M}=1.4, \mathrm{P} 0=70 \mathrm{kPa}, \mathrm{y} / \mathrm{s}=0.4$ ）

図11 安定解析結果
（ $\mathrm{M}=1.4, \mathrm{P} 0=100 \mathrm{kPa}, \mathrm{y} / \mathrm{s}=0.4$ ）

図 12 遷移位置（ N －factor）

3－3．安定解析結果（境界首吸い込み試験との対応）

図 12 により，安定解析による選移位置推定のための閾値N が分かったので，この値を基に境界層吸い込みについての検討 を行った。解析による吸い込み効果は，境界層計算実施時に境界層速度分布に反映させ，この速度分布を基に安定解析するこ とで調査した。その結果を図10，11に示す。図中の＂Cq＝＂が吸い込み効果の解析結果である。

図 10 より， $\mathrm{P} 0=70 \mathrm{kPa}$ の時は，境界層を微弱に吸い込むこと で横流れ不安定による遷移位置が大きく後退することが分か った。尚，風洞試験で吸い込みを実施したときの最大吸い込み流量係数 Cqは＂0．0002＂であり，解析結果の最小値＂0．0003＂ より小さな値ではあるが，閥値Nが 14 であることから，Cq が ＂ 0.0002 ＂であっても 40% 翼弦長程度までは選移位置が後退す ると推測できる。

これに対し，図11より， $\mathrm{P} 0=100 \mathrm{kPa}$ の時は，吸い込み孔が設 けられた最前方の 3% 翼弦長直前付近で，既にNが 10 程度まで到達していることが分かった。従って，解析した吸い込み流量係数の中で最小の＂ 0.0003 ＂では，還移位置を前縁から 10% 翼弦長付近までしか後退させることができないことが分かった。 このことから，風洞試験で吸い込みを実施したときの最大吸い込み流量係数 Cq が＂ 0.0002 ＂程度では，遷移位置を大きく後退 させることはできないと推測できる。

第2－4項で示した図7の風洞試験結果において，吸い込み効果の大きく現れた Rec＝5 $\times 10^{6}$ に対応するのが風洞総圧 $\mathrm{P} 0=70 \mathrm{kPa}$ であり，効果があまりなかった Rec＝ 7×10^{6} に対応す るのが $\mathrm{P} 0=100 \mathrm{kPa}$ である。このことから，解析で得られた結果 は風洞試験と同様の傾向を示しており，風洞試験で実施した境界層吸い込み試験では吸い込みにより異移位置を後退させる ことができたと考えられる。

また，本試験および本解析で検討している境界層の鳢移は圧縮性流体の逻移現象ではあるが，非圧縮の安定解析コードでも，
位置をある程度推定できることも分かった。

4．最適王力分布の検討

本検討で用いた風洞試験模型は，風壁境界層の影響を排除す るために支持台を用いたが，本来この模型は支持台のない形状 で設計されたものであり，支持台のない形状でも風洞試験を実施している。そこで支持台のない形状と（＇93 model）と，支持台のある形状（＇96 model）の比較解析を行った。更に，Warp形状が遷移特性に与える影響を調査する目的で， 93 model と 96 model 以外に，翼厚分布が同等で Warp していない Flat なデル夕翼（Flat model）の解析も実施した。

還移特性を調查するために必要となる圧力分布を取得する ために，M＝1．4，CL＝0．13におけるCFD 解析（Euler）を実施し た。y／s＝0．4における結果を図13に示す。93modelと 96 model の違いから支持台の影響が見受けられる。また，Flat model と の比較により，Warp 形状（特に93 model）は前縁近傍でサク ション・ピークが抑制されていることから，Warp 設計の妥当性 を確認することができた。

この圧力分布を基に安定解析を行った結果を図14に示す。 この図より， 2% 翼弦長までは 93 model と 96 model の横流れ不安定による摄乱の増幅率はほぽ同等だが，それより下流側では 96 model の摍乱の増幅率が 93 model のものより大きくなること が分かる。これは，2\％翼弦長以降の 93 model の圧力分布は平坦であるのに対し，96 model は支持台の影響により加速勾配を有していることに起因する。このことから，Warp 設計本来の支持台の無い形状は，文持台付きの形状より，遦移特性が優れ ていると推測できる。しかし，今回の可視化試験で得られた遷移位置の閾値は， $\mathrm{P} 0=100 \mathrm{kPa}$ において $\mathrm{N}=11$ であることから， 93 model と 96 model の差はほとんど無く，航空宇宙技術研究所 の遷音速風洞においては，支持台の堙移特性に与える影響は大 きくないと考えられる。

また，Flat modelの解析結果は，Warp 形状（93， 96 model） より横流れ不安定による擾乱の増幅率は小さく，T－S 波型不安定による擾乱の増幅率が大きいことが分かる。T－S 波型不安定 による揠乱の增幅率が大きいのは，圧力分布に減速勾配を有し ていることに起因しており，横流れ不安定による擾乱の増幅率 が小さいのは，前緑近傍における圧力分布の加速勾配が急であ るにもかかわらず，その勾配が急である翼弦方向の領域が狭い ため，擾乱が十分に増幅する前に安定な圧力分布で抑制されて しまうことに起因すると考えられる。

図 15 では，CL＝0． 18 における 3 種類（ 93 model， 96 model， Flat model）の圧力分布を示す。圧力分布の定性的傾向は図 15 と変らないが，この圧力分布を基に安定解析を実施した結果， サクション・ピークを有する圧力分布（Flat model）の減速域に おいて，横流れ不安定による搭乱の増幅率が，Warp 形状の増幅率を上回る結果が得られた。結果を図16に示す。

図13 CFD 解析圧力分布（Euler，M＝1．4，CL＝0．13）

図14 安定解析結果（ $\mathrm{M}=1.4, \mathrm{CL}=0.13$ ）

図 15 CFD 解析圧力分布（Euler，CL＝0．18）

図 16 安定解析結果（ $\mathrm{M}=1.4, \mathrm{CL}=0.18$ ）

これらの考察から，Warp 形状に対して，擾乱の増幅率を抑制するために必要な圧力分布，即ち自然層流化に適した圧力分布を適用するための設計方針を得た。以下にその方針を示す。
（1）上面の圧力分布において，前縁近傍で急激な圧力降下を実現する。（横流れ不安定波の増幅を抑制）
（2）上面の圧力分布において，急激な圧力降下の後，圧力分布 を素早く平坦，もしくは若干の加速勾配を持たせる。（T－S波型不安定を抑制）
（3）下面の圧力分布は，（1），（2）で得られた上面圧力分布と， Warp 設計で得られた圧力差分布を用いて決定する。

これらの方針を適用することで，次世代SST の揚抗比改善に寄与することができると考える。

5．まとめと評題

実機を想定した主翼 Warp 形状の模型において超音速層流制御効果を確認するとともに，解析作業を通じて航空宇宙技術研究所の3次元遷音速風洞（第3カート）における，還移位置に関する聞値＂N＂を得ることができた。

また，主翼形状の解析を通じて，自然層流化を実現するため の主翼設計方針が得られた。

今後は遷移判定手法の更なる精度向上を目指し，3次元 CFD解析を有効に活用 ${ }^{31}$ する予定である。

6．参考文献

1）吉田：航空宇宙学会誌 vol． 42 ，No．486，p．1，1994
2）生越：第 15 回航空機計算空気力学シンポジウム論文集， pp．81－86

3）Yoshida ：AGARD－883
4）野口：可視化情報シンポジウム講演論文集 vol．17，suppl．No．1，pp．225－228
5）AIAA－77－1222
6）䳋：第 11 回航空機計算空気力学シンポジウム論文集， pp．25－29

横流れ擾乱に起因する境界層遷移の予測

野村聡幸 ${ }^{* 1}$

Prediction of Boundary－Layer Transition Caused by Crossflow Disturbances

by
Toshiyuki NOMURA
National Aerospace Laboratory

Abstract

A prediction system for boundary－layer transition is developed which consists of the Navier－Stokes code computing a compressible boundary layer，the linear PSE code computing the spatial growth of a disturbance，and the N －factor code integrating the growth rate．The system is applied to the case that the transition of the compressible boundary layer on a swept cylinder is caused by crossflow disturbances which have the same spanwise wavelength as observed in the experiment of Creel et al．It is predicted by the system that the angular distance from the attachment line for the transition onset is $32^{\circ} \sim 35^{\circ}$ ．

1．はじめに

次世代超音速輸送機の開発における最大の課題 はコンコルドで 7 程度の巡航時の揚抗比を 10 近く に高めることであるが，それには抵抗の大幅な低減 が必要である。翼面上の層流境界層の乱流遷移を遅 らせる層流制御技術が抵抗低減を実現する有力な手段と考えられているが，その技術の確立にあたつ ては，まず境界層のT－S不安定性や横流れ不安定性 の解析を行うツールと，その解析結果に基づいて遷移開始位置の予測を行うツールが不可欠である。

境界層の微小擾乱に対する不安定性を数値的に解析して遷移開始位置を予測する唯一の実用的な方法として，線形安定解析と e^{N} 法が用いられている。境界層中の微小擾乱の空間増幅率を特定の経路に沿って線形安定解析により求め，空間増幅率の積分値が経験的に推定される N 値になったとき，その位置を遷移開始位置と予測する。この方法を用いて，後退翼の前縁を模擬した後退円柱の付着線境界層 の遷移1）や，実機の主翼前縁付近の境界層の遷移 ${ }^{2)}$ が予測されている。

筆者は，2次元翼または後退翼まわりの流れを計算するNavier－Stokesコード，境界層中の微小擾乱の空間増幅を空間進行法により計算する parabolized stability equations（PSE）コード，微小擾乱の空間増幅率を積分する e^{N} 法コードからなる境界層遷移予測 システムを開発した。そして，このシステムを超音速流中に置かれた後退円柱の境界層に適用し，横流 れ擾乱によって起こされる遷移の開始位置を予測

した。

2．境界層遷移予測システム

境界層遷移予測システムは，Navier－Stokesコード による圧縮性境界層の計算，線形PSEコードによる初期微小擾乱とその空間増幅の計算，e^{N} 法コードに よる空間増幅率の積分といった3つのプロセスか らなる。遷移予測システムのフローを図1に示す。 このシステムは全て一般化曲線座標で定式化され ており，2次元翼または後退翼の境界層に容易に適用できる。

2．1 Navier－Stokesシミュレーション

マッハ数3．5，円柱直径Dを代表長さとするレイノ ルズ数 1.05×10^{6} の一様流中に後退角 60 度の無限円柱 が置かれている（図2）。この円柱のまわりに Takanashiの方法 ${ }^{3}$ に基づくコードを用いて 448×361点のC型格子（図 3）を生成し，このC型格子 9 つで 3次元格子を構成する。

Navier－Stokesコードの支配方程式は以下の保存型 の薄層近似Navier－Stokes方程式である。

$$
\frac{\partial \hat{Q}}{\partial \tau}+\frac{\partial \hat{E}}{\partial \xi}+\frac{\partial \hat{F}}{\partial \eta}+\frac{\partial \hat{G}}{\partial \zeta}=\frac{1}{R e} \frac{\partial \hat{F}_{v}}{\partial \eta}
$$

上式を有限体積法で数値的に解く。非粘性流束は Chakravarthy－OsherのTVDスキーム）を用いて空間 3次精度で，粘性流束はGaussの定理に基づく中心差分に相当する方法を用いて空間2次精度で計算す る。時間進行法にはPulliam－Chausseeの対角化ADI法りを用いる。計算時間の節約と正確な境界層計算

[^32]のため，非粘性流をローカル・タイムステップで収束させた後，それを初期流れとして粘性流をタイ ム・アキュリットで計算する。

流入境界と流出境界は一様流で固定する。円柱の スパン方向の境界には周期条件を課す。円柱表面は断熱で滑りなしとする。

2.2 線形安定解析

方向に非平行な境界層中の微小擾乱は次式で表 される。
$\tilde{q}(\xi, \eta, \zeta, \tau)=\tilde{q}(\xi, \eta) \exp \left[i\left\{\int_{\xi_{0}}^{\xi} d(\bar{\xi}) d \bar{\xi}+\beta \zeta-\omega \tau\right\}\right]$ ここで $q=(u, v, \rho, T, w)^{T}$ で，複素数である。 α も複素数で，α_{r} が ξ 方向の波数，$-\alpha_{i}$ が ξ 方向の空間増偪率 である。 β は実数の ζ 方向の波数，ω は実数の振動数 である。この微小擾乱を薄層近似Navier－Stokes方程式に代入し，擾乱の 2 次以上の項を落とすことで以下の線形PSEを得る。

$$
D \hat{q}+A \frac{\partial \hat{q}}{\partial \xi}+B \frac{\partial \hat{q}}{\partial \eta}=V \frac{\partial^{2} \hat{q}}{\partial \eta^{2}}
$$

ここで $D, A, B, V は 5 \times 5$ 行列である。 ξ 方向の微分は 1 次精度の後退差分で，η 方向の微分は 2 次精度の中心差分で近似する。
初期擾乱を計算する場合，$\hat{q} \not)^{\prime} \eta$ のみに依存する関数であると仮定する。円柱表面と一様流中で $\hat{q}=0$ の境界条件を課すと，PSEは 5×5 ブロックの 3重対角行列となる。この行列は α を固有値とする固有値問題に変形され，これにQR法を適用すること で α とそれに対応する固有ベクトル \hat{q} が求まる。こ の初期擾乱の計算法はMalikのグローバル法6）を空間安定解析用に拡張したものである。

初期擾乱をPSEの放物型の特性を利用してほ方向 に空間進行させる。 α は前の位置での α と \hat{q} を正規化することで得られる $\Delta \alpha$ の和として求まる。この空間進行法はBertolottiらの方法 ${ }^{7}$ に基づいている。

$2.3 e^{N}$ 法

PSEコードで計算された $-\alpha_{i}$ を ξ 方向に積分する ことで N 値が求まる。 β と ω を固定した方法で横流れ不安定性を解析する場合，遷移開始位置の N 値は $6 \sim 7$ と考えられる8）。

3．計算結果

境界層遷移予測システムを後退円柱のコード方向の境界層に適用し，横流れ擾乱によって起こされ る遷移の開始位置を予測する。

3.1 速度分布と温度分布

Navier－Stokesシミュレーションにより得られた $\theta=23.3^{\circ}$ での速度分布と温度分布を図 4 に示す。 U

はコード方向の速度，Wはスパン方向の速度である。順圧力勾配によりUは円柱表面近くで加速されてい る。次節で示される横流れ擾乱は，グローバル法で計算された空間増幅率がこの位置で最大となる。

3.2 横流れ䍚乱の空間増幅

Creelらの実験9で観察された定在波を参考にして， $\beta=-1.024535, ~ \omega=0$ とした。 α, β は円柱表面を構成 する正方形格子 1 辺の長さ（ $0.0127 D$ ）で無次元化さ れている。

グローバル法のみで計算された α_{r} と初期擾乱を空間進行させて得られた α ，を図 5 に示す。不安定性 の開始位置である $\theta=11.7^{\circ}$ から解析の終了位置で ある $\theta=90.4^{\circ}$ までで，両 α ，にほとんど違いはない。 グローバル法で計算された α ，を用いると，波数べク トル $\left(\alpha_{r}, \beta\right)$ と外部流線方向がなす角度 ψ は， $\theta=11.7^{\circ}$ で $\psi=91.2^{\circ}$ ，$\theta=30.6^{\circ}$ で $\psi=93.9^{\circ}$ ， $\theta=90.4^{\circ}$ で $\psi=96.2^{\circ}$ である。この結果は横流れ渦が外部流線方向に整列するという実験的事実と一致 し，計算の正しいことを示している。
$-\alpha_{i}$ を図 6 に示す。空間進行法による $-\alpha_{i}$ はグロ ーバル法による $-\alpha_{i}$ よりも小さくなっている。不安定性の開始位置あたりではコード方向の格子間隔 が波長よりも大きい。それが空間進行法による $-\alpha_{i}$ の急な変化を引き起こし，結果として $-\alpha_{i}$ のピーク を下ぼてしまったと考えられる。

空間進行法による $-\alpha_{i}$ が下流で振動を起こしてい る。グローバル法による $-\alpha_{i}$ には振動が見られない ことから，境界層流れやメートリックに問題はない。初期擾乱を計算する位置を変えても同様の振動が起こることから，空間進行法そのものに振動の原因 があると推測される。Changら10 はPSEが持つ楕円型 の特性（音波の上流への伝播）が振動の原因としてい る。

グローバル法の全計算時間はNWTのプロセッサ 1 台によるスカラー計算で約 3 時間半であり，さら に各位置で得られた多くの解の中から妥当な解を抽出する作業が必要である。一方，空間進行法の全計算時間はNWTのプロセッサ 1 台によるスカラー計算で約1時間であり，解は初期擾乱から連続して求まる。設計ツールとしては空間進行法の方が適し ている。

3.3 遷移開始位置の予測

$-\alpha_{i}$ を積分して得た N 値を図 7 に示す。グローバ ル法では $\xi=14\left(\theta=32.1^{\circ}\right)$ で $N=6.27$ ，空間進行法 では $\xi=16\left(\theta=35.0^{\circ}\right)$ で $N=6.17$ であり，このあた りで定在波による遷移が始まると予測される。 Creelらの実験 ${ }^{9}$ では付着線で定在波以外の擾乱によ

る遷移が観察されており，このことが遷移開始位置 の検証を不可能にしている。

4．まとめ

Navier－Stokesコード，線形PSEコード，e^{N} 法コー ドからなる境界層遷移予測システムを超音速流中 に置かれた後退円柱の境界層に適用し，定在波によ る遷移の開始位置を予測した。定在波の計算法によ り少しの違いがあるが，遷移開始のN値を6とする と，付着線からの角度 $32^{\circ} \sim 35^{\circ}$ で遷移が始まると予測された。

グローバル法は安定して解が求まるが，多くの計算時間と各位置での解の判別を必要とする。空間進行法は初期擾乱から連続して解が求まるので，計算時間が少なく，解の判別も不要である。しかし，適切な格子間隔の設定や音波の上流への伝播の抑制 といった課題を残している。これらの課題が解決さ れれば，空間進行法を組み込んだ遷移予測システム は層流制御技術にとって不可欠の設計ツールにな るだろう。

参考文献

1）Malik，M．R．and Beckwith，I．E．，＂Stability of a Supersonic Boundary Layer along a Swept Leading Edge，＂AGARD－CP－438，pp．3－1 to 3－9， 1989.
2）Woan，C．J．，Gingrich，P．B．and George，M．W．， ＂CFD Validation of a Supersonic Laminar Flow Control Concept，＂AIAA Paper 91－0188，January 1991.

3）Takanashi，S．and Takemoto，M．，＂A Method of Generating Structured－Grids for Complex Geometries and Its Application to the Navier－Stokes Simulation，＂CFD J．，Vol．2，No．2，pp．209－218， 1993.

4）Chakravarthy，S．R．，＇Development of Upwind Schemes for the Euler Equations，＂NASA－CR－4043， 1987.

5）Pulliam，T．H．and Chaussee，D．S．，＂A Diagonal Form of an Implicit Approximate－Factorization Algorithm，＂J．Comput．Phys．，Vol．39，pp．347－363， 1981.

6）Malik，M．R．，＂Finite－Difference Solution of the Compressible Stability Eigenvalue Problem，＂ NASA－CR－3584， 1982.

7）Bertolotti，F．P．，Herbert，Th．and Spalart，P．R．， ＂Linear and Nonlinear Stability of the Blasius Boundary Layer，＂J．Fluid Mech．，Vol．242，pp． 441－474， 1992.

8）Arnal，D．，＂Boundary Layer Transition：Predictions Based on Linear Theory，＂AGARD－R－793，pp．2－1 to 2－63， 1994.
9）Creel，T．R．，Beckwith，I．E．and Chen，F．－J．，＂Effects of Wind－Tunnel Noise on Swept Cylinder Transition at Mach 3．5，＂AIAA Paper 86－1085，May 1986.
10）Chang，C．－L．and Malik，M．R．，＂Oblique－Mode Breakdown and Secondary Instability in Supersonic Boundary Layers，＂J．Fluid Mech．，Vol．273，pp． 323－360， 1994.

図1 境界層遷移予測システム

図3 計算格子

図2 無限後退円柱

図4 $\theta=23.3^{\circ}$ での速度分布と温度分布

図5 छ方向の波数

図6 $\begin{gathered}\text { 方向の空間増幅率 }\end{gathered}$

図 $7 \quad N$ 値

e^{N} 法による境界層遷移の数値予測について

跡部 隆 ${ }^{1}$ ，山本 稀義 ${ }^{1}$

Numerical prediction of transition location using the e^{N} method by
 Takashi Atobe ${ }^{1}$ ，Kiyoshi Yamamoto ${ }^{1}$

Abstract

In order to develop a prediction system of laminar－turbulent transition based on e^{N} method，the Sally code，which was developed by NASA，is investigated in detail．It is found that，although this code can be used for the objects with variety shapes，the accuracy of numerical results are unfavorable．

1 はじめに

当所の重点プロジェクトである次世代小型超音速機 の開発においては，その翼上に形成される境界層の乱流遷移の予測が重要な研究課題の一つとなっている。こ れは，この遷移点を正確に予想することにより翼の性能を知ることが できるとともに，その設計段階におけ るコストの大幅な低減が期待できるからである。この意味で境界層の遷移点予測は，航空機のあらゆる開発現場において大変重要な問題として取り上げられてお り，研究が進められている。しかしながらこれらの研究は，様々な状況で常に納得のいくような結果を出す には至っていない。これは境界層遷移のメカニズムの複雑さもさることながら，遷移を引き起こす微少な擋乱の取り扱いの困難性にも問題がある。これは今回の よらに数值シミュレーションを行ら場合にも重大な問題となるが，実験や理論的研究分野においても慎重に取り扱わなければならない問題である。

そこで当所では，実験，理論，数値計算の各方面か らそれぞれの視点で研究を行い，また相互に密接な情報の交換を行らことで，より高精度でかつ現実的な遷移予測システムの開発を目指している。本研究はこの中で数値計算面からのアプローチに属するもので，最終的には当所独自の汎用的な遷移予測コードの確立を目指す。そして今回はこの第一段階として，現在汎用 プログラムとして市販されているSallyコード1）を用 いて実際問題への応用面や理論との比較を行い，その適応範囲を明確に示すとともに我々が開発する遷移予測システムの基礎情報を構築する。

[^33]
2 計算概要

今回行われた計算は，「境界層流れの計算」と「与え られた流れ場における線形安定性解析」とに大きく分 けることができる。境界層流れの計算では，3次元圧縮性流れを対象に境界層近似などのいくつかの仮定の もとで流れ場を求める。そしてここで求めた流れ場か ら，次の安定性解析で必要となる様々なデータを計算 する。この安定性解析コードがいわゆるSallyである。

この一連の計算を，現在当所で開発が進められてい る小型超音速機の翼断面に適応し，境界層の遷移を予測する。次により単純な平板について計算し，これを実験結果と比較，検討する。さらに斜め円柱について行った計算結果と，理論的に計算されたものとの比較 を行うことで，このコードの精度を検討する。

3 境界層流れ

安定性解析を行ら境界層流れは，境界層近似を用い た 3 次元圧縮性流れの相似解を求め，数値的にこの相似解を解くとこにより境界層の速度分布を得る。

3.1 基礎方程式

上述のようにここで対象にする流れは3次元圧縮性流れであり，これを記述する基䂛方程式は以下の連続 の式，Navier－Stokes 方程式，そしてエネルギー方程式を用いる。

$$
\begin{gather*}
\nabla \cdot(\rho \boldsymbol{u})=0 . \tag{1}\\
\frac{D u}{D t}=-\frac{1}{\rho} \nabla p+\nu \Delta u . \tag{2}\\
\frac{D H}{D t}=-\frac{\nu}{P_{r}} \nabla H+\nu \Phi . \tag{3}
\end{gather*}
$$

ただし，

$$
\begin{equation*}
\Phi=-2 / 3\left(\partial_{i} u_{i}\right)^{2}+\left(\partial_{i} u_{j}\right)^{2}+\left(\partial_{i} u_{j}\right)\left(\partial_{j} u_{i}\right) \tag{4}
\end{equation*}
$$

ここで u, p, H, ρ, ν, そして P_{r} はそれぞれ速度，圧力， エンタルピー，密度，動粘性係数，そしてプラントル数を表す。座標系は円柱座標を用いる。

3.2 近似

物体表面近傍の流れに着目し，境界層近似，$(\partial / \partial t=$ $0, v / u \approx v / w \approx \Delta y / \Delta x \approx \Delta y / \Delta z / \approx \delta / L \ll$ 1 ：L は代表長さ，δ は境界層厚さ）と，円錐流近似 $(\partial p / \partial x=0)$ を用いることで，図 1 に示すような円柱座標系 (x, θ, y) での基礎方程式は以下のように表され る。ここで (u, w, v) はそれぞれの座標成分に対する速度を表す。

連続の方程式，

$$
\begin{equation*}
\frac{\partial}{\partial x}(\rho x u)+\frac{\partial}{\partial \theta}(\rho w)+\frac{\partial}{\partial y}(\rho x v)=0 \tag{5}
\end{equation*}
$$

運動方程式，

$$
\begin{align*}
& u \frac{\partial u}{\partial x}+\frac{w}{x} \frac{\partial u}{\partial \theta}+v \frac{\partial u}{\partial y}-\frac{w^{2}}{x}=\frac{\partial}{\partial y}\left(\nu \frac{\partial u}{\partial y}\right) . \tag{6}\\
& \begin{aligned}
u \frac{\partial w}{\partial x}+\rho \frac{w}{x} \frac{\partial w}{\partial \theta} & +\rho v \frac{\partial w}{\partial y}+\rho \frac{u w}{x} \\
& =-\frac{1}{x} \frac{d p}{d \theta}+\frac{\partial}{\partial y}\left(\nu \frac{\partial w}{\partial y}\right) .
\end{aligned}
\end{align*}
$$

エネルギー方程式，

$$
\begin{align*}
& \rho u \frac{\partial H}{\partial x}+\rho \frac{w}{x} \frac{\partial H}{\partial \theta}+\rho v \frac{\partial H}{\partial y} \tag{8}\\
& \quad=\frac{\partial}{\partial y}\left[\frac{u}{P r} \frac{\partial H}{\partial y}+\nu\left(1-\frac{1}{P r}\right) \frac{\partial}{\partial y}\left(\frac{u^{2}+w^{2}}{2}\right)\right] . \tag{9}
\end{align*}
$$

図1．円柱座標系 (x, θ, y) ．

3.3 相似方程式

これらの基礎方程式系は相似解を持つ，数値計算で は適当な境界条件の下でこの相似解を解くことにより，境界層の速度分布を得る。この相似解は，

$$
\begin{gather*}
\psi=x^{3 / 2} \sqrt{\rho_{e} \mu_{e} \bar{u}_{e}} f(\eta, \theta), \tag{10}\\
\phi=x^{3 / 2} \sqrt{\rho_{e} \mu_{e} \bar{u}_{e}} \frac{w_{e}}{\bar{u}_{e}} g(\eta, \theta), \tag{11}
\end{gather*}
$$

とすれぼ，

$$
\begin{align*}
{\left[C f^{\prime \prime}\right]^{\prime}+m_{1} f^{\prime \prime} f+m_{2} g f^{\prime \prime} } & -m_{3}^{2}\left[\left(g^{\prime}\right)^{2}-f^{\prime} g^{\prime}\right]+m_{4} f^{\prime \prime} \\
& =m_{3}\left(g^{\prime} \frac{\partial f^{\prime}}{\partial \theta}-f^{\prime} \frac{\partial g}{\partial \theta}\right), \tag{12}
\end{align*}
$$

$\left[C g^{\prime \prime}\right]^{\prime}+m_{1} g^{\prime \prime} f+m_{2} g g^{\prime \prime}+m_{5}\left[c-\left(g^{\prime}\right)^{2}\right]-\left[c-f^{\prime} g^{\prime}\right]+m_{4} g^{\prime \prime}$

$$
\begin{equation*}
=m_{3}\left(g^{\prime} \frac{\partial g^{\prime}}{\partial \theta}-g^{\prime \prime} \frac{\partial g}{\partial \theta}\right), \tag{13}
\end{equation*}
$$

$\left[\frac{C E^{\prime}}{P r}+\frac{C \bar{u}_{e}^{2}}{H_{e}}\left(1-\frac{1}{P r}\right)\left(f^{\prime} f^{\prime \prime}+m_{3}^{2} g^{\prime} g^{\prime \prime}\right)\right]^{\prime}$
$+m_{1} E^{\prime} f+m_{2} E^{\prime} g+m_{4} E^{\prime}=m_{3}\left(g^{\prime} \frac{\partial E}{\partial \theta}-E^{\prime} \frac{\partial g}{\partial \theta}\right)$,
となる．ただし，

$$
\begin{equation*}
\eta=\sqrt{\frac{\bar{u}_{e}}{\rho_{e} \mu_{e} x}} \rho y, \tag{15}
\end{equation*}
$$

である。また＇は η に関する微分を表し，E, C, c, m_{1} ，等はそれぞれ，

$$
\begin{gathered}
E \equiv H / H_{e}, \quad C \equiv \rho \mu / \rho_{e} \mu_{e}, \quad c \equiv \rho_{e} / \rho \\
m_{1} \equiv-3 / 2, \quad m_{2} \equiv m_{5}+\frac{1}{2} m_{3}^{2}+\frac{p_{e}}{2(\rho \mu)_{e}} \frac{\mathrm{~d}(\rho \mu)_{e}}{\mathrm{~d} \theta}, \\
m_{3} \equiv \frac{w_{e}}{\bar{u}_{e}}, \quad m_{4} \equiv \frac{(\rho v)_{W}}{(\rho \bar{u})_{e}} \quad m_{5} \equiv \frac{1}{\bar{u}_{e}} \frac{\mathrm{~d} w_{e}}{\mathrm{~d} \theta} \\
R_{x} \equiv \frac{\bar{u}_{e} x}{v_{e}}
\end{gathered}
$$

であり，境界条件は，

$$
\begin{array}{ll}
\eta=0 & : \quad f=g=f^{\prime}=g^{\prime}=0, \quad E^{\prime}=0 \\
\eta=\eta_{\infty} & : \quad f^{\prime}=g^{\prime}=E=1 \tag{17}
\end{array}
$$

である。ここで添字eは境界層外縁における量を表す。 また \bar{u}_{e} は $-u_{e}$ である。

3.4 主流の取り扱い

この問題の境界条件は物体表面上では滑り無しであ るが，境界層の外側はポテンシャル流として求まる主流に合わせる。この外部境界条件は，以下の方程式を前縁から積分することによって得られる。

$$
\begin{gather*}
\frac{\mathrm{d} \bar{u}_{e}}{\mathrm{~d} \theta}=-w_{e}=-\sqrt{u_{s}^{2}-\bar{u}_{e}^{2}} \tag{18}\\
p+\frac{1}{2} \rho u_{s}^{2}=\text { const } \tag{19}
\end{gather*}
$$

ここで u_{s} は主流方向の速度の大きさを表す。

3.5 数値計算

以上の方程式系は，Keller の Box Method を用いて計算される。詳細については，文献2を参照されたい。

4 線形安定性解析

次に，上の手法により求まる流れ場のデータを用い てその流れ場の線形安定性解析を行ら，これは汎用コー ドとして有名なNASA のSallyコードを用いて行われ た。このコードは与えられた流れ場を平行流近似のも とで擋乱の安定性を解析するもので，擋乱波の増幅率等が得られる。以下にその概要を示す。

4.1 撹乱方程式

平行流近似のもとで擋乱波の発展の様子を調べるた め，主流成分（ U, V, W, P ）に対する擋乱波をそれそれ以下のように仮定する。

$$
\begin{aligned}
u & =\phi_{1}(\alpha, \beta, y, \omega) \exp [i(\alpha x+\beta z-\omega t)] \\
v & =\phi_{2}(\alpha, \beta, y, \omega) \exp [i(\alpha x+\beta z-\omega t)] \\
w & =\phi_{3}(\alpha, \beta, y, \omega) \exp [i(\alpha x+\beta z-\omega t)] \\
p & =\phi_{4}(\alpha, \beta, y, \omega) \exp [i(\alpha x+\beta z-\omega t)]
\end{aligned}
$$

これらの方程式を基礎方程式に代入し， 2 次以降の項 を無視すると以下のような方程式が得られる。

$$
\begin{align*}
& \left(\bar{U}-\frac{\omega}{\alpha}\right)\left(\phi_{2}^{\prime \prime}-\Theta^{2} \phi_{2}\right)-\bar{U}^{\prime \prime} \phi_{2} \\
& \quad=\frac{-i}{\alpha R}\left(\phi_{2}^{I V}-2 \Theta^{2} \phi_{2}^{\prime \prime}+\Theta^{4} \phi_{2}\right) \tag{20}
\end{align*}
$$

ここで $\Theta^{2}=\alpha^{2}+\beta^{2}, \Theta \bar{U}=\alpha U+\beta W$ である。この方程式は Orr－Sommerfelt 方程式と呼ばれるもので，与 えられたパラメータに対し束縛条件を満足する解を得 るという，単純な固有値問題に帰着する。

$4.2 e^{N}$ 法

一般にある与えられた撹乱に対し流れが不安定であ れぼ，撹乱波はその流れとともに振幅が増幅し，ある一定の振幅に達したところで層流一乱流遷移が発生す ると考えられている。つまり初期時刻 $t=t_{0}$ に A_{0} とい ら振幅を持つ撹乱が，流れが乱流に遷移する時刻 $t=t_{c}$ で A_{c} といら振幅を持つならば，以下のような方程式が成立する。

$$
\begin{equation*}
\ln \left(A_{c} / A_{0}\right)=\int_{t_{0}}^{t_{c}}-\omega_{i} \mathrm{~d} t \tag{21}
\end{equation*}
$$

ここで ω_{i} は，上の擋乱方程式から求まる固有値の虚部 である。また（21）式の $\ln \left(A_{c} / A_{0}\right)$ は N 値と呼ほれるも

ので，乱流迼移発生の指標とされる。これは航空機の翼の設計時などにおいては大変重要なものであり，こ の N 値が低いほど遷移が起こりにくいとされる。

5 計算結果

以下に本研究で行った数値計算の結果を示す。現実問題への応用，実験，理論との比較を行い，Sallyコー ドの適応範囲を明確化するとともに，計算結果の精度 を評価する。

5.1 小型超音速実験機

計算対象として，本所で現在開発が進められている小型超音速機の翼形状を用いた。 2 種類の翼断面を用 い，それぞれについて横流れ不安定の発達状況を調心゙ た（図2）。この時の主流のマッハ数は 2 であり，これ は小型超音速機の実際の飛行状況を想定している。図 は a，b とも翼断面とその上の圧力分布，そして前縁か ら N 値がどのように変化していくかを示したものであ る。これを見ると，a の形状よりbの形状の方が撹乱 の振幅は低く押さえられることがわかった。これらの計算を繰り返すことにより，小型超音速機の翼形状と して最も適した断面形状を探ることができる。またこ の図より乱流遷移が発生する位置をある程度知ること ができるが，正確な値を得ることは難しい。

5.2 平板

次により単純な形状として平板を選び，その結果は実験によるものと比較した。これは平板の上に適当な物体を置くことにより，平板上でコード方向に向かっ て圧力勾配を持つ系を考える。実験3）では図3に示すよ うなシステムを用い，このときの圧力勾配の形状は図 4のようになる。ここでの数値計算ではこの圧力勾配 のデータを用いて行ら，後退角は 45° で，主流，平板長に基づくレイノルズ数は約 $2.4 * 10^{5}$ である。その結果，図5に示すように撹乱波は各振動数ともに前縁か ら単調に N 値を増しでいき，最も大きな N 値を与え る振動数は約 180 であることがわかった。実験結果と比較すると，最大増幅を与える擋乱の振動数について は本計算とほぼ同程度の値を示すが，そのときの N 値 は大きくずれることがわかった。このことはSally コー ドによって計算される N 値がやや大きめに算出される ことを示している。また実験におけるN値の算出過程 に少なからぬ誤差が存在することにも起因すると考え られる。

a
図2．翼断面上の圧力分布と N 値．
b

Perspective view

（1）wind tunnel contraction nozzle
（3）extended nozzle
（4）side plate
（5）pressure taps
（6）flat plate
（7）displacement body（8）separation preventing plate
図3．平板の実験装置（文献3から）。

図4．平板上の圧力分布（文献3から）。

図5．コード位置の変化に対する N 値の変化。

5.3 円柱

ここで行わえた計算結果の精度をより詳細に評価す るため，図 6 に示すような無限の長さを持つ斜め円柱 を用い，理論による予測値と比較した。ここでの理論 は Itoh^{4} ）により解析されたもので， N 値の評価に擋乱伝播理論を取り入れることでより高い精度の値を得て いる。図7はIthoによる結果で，$x / c=0.3$ における データを，横軸がスパン方向，縦軸が N 値を表すグラ フに示している。図8が本計算での結果で，横軸にコー ド方向，縦軸にその位置での N 値を示してある。理論 によると，$x / c=0.3$ で N 値は約 2.7 ，その時の振動数は 0.09 を与えるのに対し，計算では N 値が 4.2 ，振動数 0.07 と，これらの間には大きな差があることがわ かった。これはSallyコードが平行流近似に基づくもの であるということと，流線や壁面の曲率を全く考慮し ていないことに因る。

図6．流れ場の概念図。

図8．コード位置の変化に対する N 値の変化。

6 まとめ

以上の結果からわかるように，Sallyコードを実際問題への適応，実験との比較，理論との比較，といら観点 から調べたところ，このコードは様々な問題に対し比較的簡単に結果を出すことができる反面，その精度は あまり保証していないことがわかった。以上の結果を踏まえ，今後は撹乱伝播理論や曲率の効果を考慮した，当所独自の遷移予測コードの開発を進めていきたい。

参考文献

1）A．Srokowski and S．Orszag，AIAA Paper 77－1222 （1977）
2）T．Cebeci and P．Bradshaw，Momentum Transfer in Bonddary Layers（1977），Hemisphere，pp．213－234
3）江上康広，東北大学大学院工学研究科博士論文（1996）
4）N．Itoh，Fluid Dyn．Res． 18 （1996），pp． 337

チャンネル流遷移の直接シミュレーション

山本稀義 ${ }^{1}$ ，高橋直也 ${ }^{2}$ ，神部勉 ${ }^{3}$

Direct Nnmerical Simulation of Channel Flow Transition
Kiyoshi YAMAMOTO ${ }^{1}$ ，Naoya TAKAHASHI ${ }^{2}$ and Tsutomu KAMBE ${ }^{3}$

Abstract

Direct numerical simulation of channel flow transition is conducted on the Numerical Wind Tunnel．A Chebyshev－collocation method is applied for the calcula－ tion of the Navier Stokes equation．For the super－critical transition，the simu－ lation starts with an initial velocity given as the basic flow plus small distur－ bances，and the evolution of the these disturbances is pursued until the flow breaks down to turbulence．On the other hand，the secondary instability induced by a flow given as the basic flow plus a Tollmien－Schlichting wave with an large assigned amplitude is simulated for the sub－critical transition．Numerical results obtained by the simulation agree well with ones obtained by the linear stability theory and experiments．

1．はじめに

次世代航空機の重要な基盤技術である層流制御は航空機周りの境界層を出来るだけ層流に保つことに よって航空機の抵抗を削減し，然料効率の高い航空機を開発する技術である。航空機の巡航時の全抵抗 の約 60% は摩擦抵抗であると言われているが，航空機周りの境界層は殆ど乱流であるので，これは殆 ど乱流摩擦抵抗である。一般に，乱流摩擦抵抗は層流に比べて著しく大きいので，航空機周りの乱流境界層を少しでも層流に変えることが出来れば，摩擦抵抗は大幅に削減できる。しかし，この技術を航空機設計に応用するためには，設計段階において予め境界層の遷移を精密に予測することが必要となるが，遷移位置を精密に算定出来る方法はまだ開発されて いない。これには乱流遷移の基礎的な力学機構がま だ十分解明さえていないことが大きな要因となって いる。

境界層が層流から乱流へ遷移する力学機構は理論的 には線形安定性理論によって研究されてきた。しか し，乱流遷移は最終的には3次元擋乱の非線形增幅 によって実現するので，線形理論のみで遷移位置を予測出来る流れは多くはない。一方，応用分野の航空機設計等で翼面境界層の遷移位置予測法として使

[^34]3）東京大学理学部

用されている e^{N} 法は線形安定理論に基づく計算法で あるので，種々の遷移過程における線形増幅領域を明確に把握することは $\mathrm{e}^{\mathrm{N} \text { 法の適用限界を明らかにす }}$ る上でも重要である ${ }^{11}$ 。本研究は翼面境界層の遷移で重要な役割を果たしているTS波不安定による遷移 の力学機構を明かにする目的で，同じTS波型遷移機構を持つ基本的なチャンネル流の遷移過程の直接 シミュレーションを行い，その力学機構を調べた。

2．計算方法の説明

座標系を図1の様に平均流Uの方向にx，壁に垂直に z ，これらに垂直方向に y をとり，流れを U $\left(=1-z^{2}\right)$ と変動成分 \mathbf{u} の和として $U+\mathbf{u}(\mathbf{x}, t)$ と表す。

関1 チャンネル流
\mathbf{u} は $x, ~ y$ 方向に周期性を仮定し

$$
\begin{equation*}
\mathbf{u}(\mathbf{x}, t)=\sum_{k x} \sum_{k y} \mathbf{u}\left(k_{x}, k_{y}, z, t\right) \exp \left(i k_{x} x+i k_{y} y\right) \tag{1}
\end{equation*}
$$

とフーリェ級数展開して表す。ナビェ・ストークス方程式

$$
\begin{equation*}
\frac{\partial \mathbf{u}}{\partial t}=-\varpi \times \mathbf{u}-\nabla P+\frac{1}{R} \Delta \mathbf{u} \tag{2}
\end{equation*}
$$

の計算は，$x, ~ y$ 方向にフーリェ・スペクトル法，壁に垂直方向（ z ）にチェビシェフ・コロケーション法を適用し，時間積分にはAdams－Bashforth－Crank－ Nicolson法が使用された ${ }^{2)}$ 。（2）式で ϖ は渦度，R はレイノルズ数で，チャンネルの半幅と U の中心 （最大）速度で定義される。 計算には航技研の並列計算機数値風洞が使用された。

チャンネル流の臨界レイノルズ数 R_{c} は線形安定理論 から5772と導かれている3）。レイノルズ数が R_{c} より大 きい場合は微小擋乱の線形増幅から遷移が実現する。一方，レイノルズ数が R_{c} より小さい場合は微小撹乱の線形増幅は実現しないので，初期速度場にあらかじめ有限振幅（ $\left(10^{-2}\right.$ ）のTS波を加えたバイパス遷移のDN Sを行ら4）。これは実験における振動リボンによる強制的遷移をシミュレーションしている5）。

3．超臨界（ $R>R_{c}$ ）遷移の DNS

超臨界遷移のシミュレーションとして，$R=$ 10000 のDNSを実施した。図2は遷移過程におけ る撹乱の種々のモードの発達過程を示す。横軸は無次元時間で，縦軸 E は乱れのフーリエ成分 $\left(k_{x}, k_{y}\right)$ のエネルギー（の 2 倍）

$$
\begin{equation*}
E\left(k_{x}, k_{y}\right)=\int\left|\mathbf{u}\left(k_{x}, k_{y}, z\right)\right|^{2} d z \tag{3}
\end{equation*}
$$

を表す。図中の実線は 2 次元撹乱 $E\left(k_{x}, 0\right)$ ，破線は 3 次元撹乱 $E\left(k_{x}, k_{y}\right)$ を示し， $0 \leq k x, k y \leq 7$ のモー ドの発達過程が描かれている。擋乱の初期条件は

$$
\begin{array}{rlrl}
E\left(k_{x}, k_{y}\right) & =10^{-10} & \text { for } & \\
& 0 \leq\left|k_{x}\right|,\left|k_{y}\right| \leq 7 \\
& & & \text { otherwise }
\end{array}
$$

と与えられた。
時間と共に2次元のTS波 $E(1,0)$ が指数関数的に増幅する結果が得られているが，これは線形増幅の特徴で，その勾配は線形安定理論の増幅率とよく一致している。さらに，このTS波のE $(1,0)$ の値がほ ぼ 10^{-4} に到達すると 3 次元撹乱（図中の破線）が急激に成長してきて，流れは直ちに乱流に遷移するこ とがわかる。この様な 3 次元擋乱の増幅は，TS波 の振幅が 10^{-2}（ E では 10^{-4} ）を超えた場合に発生す

（1）受容期（Receptivity Period）
（2）線形增幅期（Linear Growth Period）
（3）非線形増幅期（Nonlinear Growth Period）
（4）乱流（Turbulence）
図2 超臨界遷移（ $R=10000$ ）のシミュレーション実線は2次元モード $E\left(k_{x}, 0\right)$ ，破線は 3 次元 モード $E\left(k_{x}, k_{y}\right)$ を示す。

る2次的（非線形）不安定性から誘起された現象で，実験的観測ともよく一致している。

チャンネル流の遷移過程は図2の様に（1）～（4）の4つ の期間に分類することが出来る。まず期間（1）は，初期にランダムに与えられた撹乱の各モードが線形安定性に従って最も減衰率の小さい固有の分布に変形 する期間で，受容期と呼ばれている。この時期にお いては不安定となるTS波成分があっても（図中の $E(1,0)$ ），その分布がTS波固有の分布でない場合 は，余分な部分が減衰するまで，TS波の全エネル ギーも減衰する。この受容期は図2では $t \approx 100$ まで と考えられる。

TS波の固有の分布が形成されると，そのエネルギ一ほ線形安定理論で予測されている指数関数的成長 を始める。この時，安定なその他のモードもそえぞ れに固有の分布が形成されていて，各個に線形安定性に従って減衰していく。この様な線形増幅期（2）の期間は $t \cong 100 ~ 1800$ である。その後は 3 次元モー ドの非線形増幅期（3）となり，各モード間の相互作用 が強くなっている。この期間はだいたい $t=1800 ~$ 2000 である。最後に $t \cong 2000$ 以後は発達した乱流 （4）である。ここでは，各モード間の相互作用は緊密

で，それらのエネルギーレベルもほぼ同程度とな口 ている。図2の結果を見ると（3）の変化は急激である が，これは時間スケールが大きいせいで，局所的に拡大して見れば（3）のなかでも様々な非線形力学過程 が観測出来る。本計算で各モードに与えられた初期 エ文ルギーの値 10^{-10} は風洞実験と比較した場合に極 めて小さい値である。この様な小さい撹乱の流れを実験的に観測することは難しい。

本シミュレーションの（1）～（3）の期間を遷移期間と考 えると，そのらちTS波の線形増幅期間は 80% 以上にもなっている。従つて，線形増幅期間から全遷移期間を推定しても良い近似値が得られると考えら れるので，前記の e^{N} 法による遷移位置予測は初期擋乱のレベルが非常に小さい場合はよい近似となると言える。反対に，初期撹乱の大きい場合は線形増幅期間は相対的に短くなるので，$e^{\text {N法の精度はよくな }}$ いと言える。また，本計算は撹乱の時間的増幅を計算した結果であるが，空間的増幅の場合についても座標変換すれぼ同様に考ることが出来る。

4．亜臨界遷移のDNS

実験的にはレイノルズ数が R_{c} 以下でも乱流に遷移 することが知られているが，この様な遷移過程をシ ミュレーションするためには初期に大きな擋乱また は大振幅のTS波を加えておくことが普通である。 これは実験で振動リボンによって大振幅擋乱を加え て遷移を誘起することに対応している「）図3は $R=5000$ で初期に T S 波のエネルギーを $E(1,0)=$ 1.4×10^{-4} と与えた場合の遷移過程の計算結果を示す。 TS 波 $E(1,0)$ 以外の撹乱成分は $E\left(k_{x}, k_{y}\right)=10^{-12}$ と与えられた。これは丁度図2（ $R=10000$ ）の時刻 $t=1800$ 頃のTS波の状態を与えた場合とも考え ることが出来て，TS波による 2 次不安定性によっ て3次元擋乱が増幅される場合のシミュレーション である。

5．T S 波による遷移の制御

次世代航空機開発の基盤技術である層流制御は乱流境界層への遷移を抑制して層流領域を多くするこ とによって摩摖抵抗の削減を図ることを目指す技術 である。そのためには遷移のメカニズムを解明する と共に遷移過程を効率的に制御するための種々のパ ラメータの特性を明らかにすることが重要である。 3 節で述べたよらに，TS波型遷移においては初期

図3 亜臨界遷移（ $R=5000$ ）のシミュレーション実線は 2 次元モード $E\left(k_{x}, 0\right)$ ，破線は 3 次元モード $E\left(k_{x}, k_{y}\right)$ を示す。

撹乱の中からまずTS波が不安定となり，それが成長して大振幅を持つと 3 次元擋乱が不安定となり， その結果乱流に遷移する。これらの過程で，TS波 の不安定性はレイノルズ数に依存して基本流が保有 している必然的性質である。一方， 3 次元摬乱の不安定化はTS波の発達に伴って発生する2次的な現象であるので，TS波の成長を抑制することが出来 れば不安定化を抑制することが出来る。そこで，前述の $R=10000$ の遷移過程の発達途中の段階におい て，それまで成長してきたTS波のエネルギーを減少させた場合の遷移過程をシミュレーションしてみ る。図 4 は図 2 のシミュレーションの $t \approx 1400$ にお いて $E(1,0) \cong 10^{-6}$ まで発達したTS波のエネルギー を $E(1,0) \cong 10^{-8}$ まで下げた場合（ $t \approx 800$ の値）の遷移過程のシミュレーション結果を示す。TS波 $E(1,0)$ の減少と共に $E(2,0)$ や $E(3,0)$ 等の 2 次元擋乱（実線）は直ちに反応して，E（ 1,0 ）が丁度 2 桁少 なかった時刻（ $t \approx 800$ ）の頃の値にたち戻る。一方 3 次元撹乱（破線）には反応するものと反応しない ものが存在する。＂まず，$t \approx 1400$ において 10^{-11} より大きくて，かつ，反応を示さない破線が 6 本見られ るが，これらは全て $k_{x}=0$ のモード $E\left(0, k_{y}\right)$ である が，これらは後の遷移には大きく寄与しないことが知られている。一方これら以外の3次元成分（破

線）はTS 波の減少に直ちに反応して減少している。結局，$E\left(0, k_{y}\right)$ の成分を除いて，その他のモードの状態はTS波と共にほぼ $t \approx 800$ の状態に戻っている。 その結果，乱流への遷移時刻は図2の $t \approx 2000$ から $t \approx 2600$ と遅くなり，遷移の制御が可能であること が示された。しかし，現実の流えの中でこの様なT S波のエネルギーの削減を如何に実現するかは難し い問題である。唯，ここではTS波 $E(1,0)$ のみを制御することによって，その制御に使用した運動量は極めて小さい量であるにも関わらず，流れ全体の遷移の抑制が出来ることを報告する。

6．むすすび

翼境界層の遷移で重要なTS波型遷移の力学機構を解明するため，同じ遷移機構を持つチャンネル流遷移のD N S を実施した。超臨界遷移としてレイノル ズ数が 10000 ，覀臨界遷移として 5000 の遷移過程 がシミュレーションされた。計算結果は線形安定理論及び従来の実験結果とよく一致し，本シミュレー ションの精度が検証された。また，遷移過程の途中 でTS波の振幅を減少させることによって，流れ全体の遷移を効率的に制御出来ることを示した。

参 考 文 献

1）Srokowski，A．J．\＆Orszag，S．A．：AIAA Paper 77－1222（1977）．
2）Canuto，C．et al：Spectral Methods in Fluid Dynamics，Springer Verlag， 1988.
3）Orszag，S．A．：J．F．M．，Vol． 50 （1971） 689.
4）Yamamoto，K．：Numerical Simulation on Lami－ nar－Turbulent Transition of Channel Flow with Simulated Wall Roughness，in Laminar Turbulent Transition（ ed．Kobayashi，R．， Spriger，1995） 245.
5）Nishioka，M．et al：J．Fluid Mech．Vol． 72 （1975）731－751．

（1）受容期（Receptivity Period）
（2）線形增幅期（Linear Growth Period）
（3）非線形増幅期（Nonlinear Growth Period）
（4）乱流（Turbulence）
図4 TS 波による遷移過程制御のシミュレー ション（ $R=10000$ ）
実線は2次元モード $E\left(k_{x}, 0\right)$ ，破線は 3 次元モード $E\left(k_{x}, k_{y}\right)$ を示す。

回転翼部門企画

パネルディスカッション「日本における回転翼騒音研究の現状と将来」

Panel Discussion
「On the Present and Future Aeroacoustic Research Activity for Rotorcraft in Japan」 by
Rotorcraft Technical Committee

概 要
日本における回転翼機の空力騒音研究についてパネルディスカッションの形式で討論が行わ れた。パネリストは東京大学，航空宇宙技術研究所，コミュータヘリコプタ先進技術研究所 （ATIC），石川島播磨重工業，川崎重工業，三菱重工業，富士重工業の主な代表者である。識論された内容は，各機関•各社における回転翼騒音研究の概要（機内，機外），ヘリコプタ騒音の計測技術と対策，CFDを含む騒音解析の現状と設計への反映，航技啡での回枟翼騒音研究の役割と航技研への要望，国内•国外との研究協力及び体制である。本報告は，パネルディ スカッションでの討論内容を要約したものである。

Abstract
The aeroacoustic research activity of rotorcraft in Japan has been discussed．The main institutes， universities and companies have participated in the panel discussion，namely Tokyo University，National Aerospace Laboratory，Advanced technology institute of commuter helicopter（ATIC），Ishikawajima－Harima， Kawasaki，Mitsubishi and Fuji heavy industries．The topics to discuss are as follows：the brief talk with the aeroacoutic research activity in each institutes and companies，the measurement technology and its application in each institutes and companies，the present status of aeroacoutic analysis including CFD techniques and its application into design，the research activity for rotorcraft aeroacoutics in NAL and its role for other institutes and companies and the research cooperation and its organization with foreign research institutes．This report describes the brief summary of the panel discussion．

1．はじめに

将来型ヘリコプタの設計を考えると，最も重要な課䞡は，環境対䉒としての蜚音である。各国の研究は，米国を始めフランス，ドイツ，イ ギリス，イタリア，その他のヨーロッパのヘリ ニブタ生産メーカ，各䂪究機明及び主贸な大学 が堸を削っている状沇である。米国では，N E S Ames 及び Langley 研究呵を中心に，Maryland， MIT，Georgia 工科，Pennsylvania state など 0各大学がシニルスキー，ベルーボーイング，マ クダネル・ダグラスなどの备ヘリッグタ生扉メ ークーと劦力を行いながら砋究を進めている。他方，ョーロッパでは，ニーロコグタとクシン

ている。また狊国ではウェストランド社がDERA とまたイタリアではアグスタが砵究を進めてい る。これら各研宪機闕は，各国が其同でプロジ ェクトを進め，総合的な研究体制を細しでいる。
 い，それぞれ独自で牏発した所忻こードの現状

 ンターणもとに，川峰亜コ業（梀）なみ心とし たコミニータヘリコプタ先進技術侢究可（NTIC） が発足し，ヘリープタの䤀音低娍化技術の閒発及び航空安全段術の閒発を中心に何究が進めら れている。航技研で外，へ「1 C発足以来，機外験音発生機糗の解明と低㫌化技術について其同仾究を夷施し，特にはータの空気力推筧にく

FD技術を用いることで，騒音発生機構の解明技術及び低減化技術の確立に貢献してきている。 また，DNWで行うための低騒音ロータの開発 にも寄与してきている。その間，三菱重工業（株） では，日本初の国産へリコプタ MH2000の開発 をすすめ，富士重工（株）では，低騒音ベアリ ングレスブレードを開発しBell412 のロータに採用するなど，低騒音化を中心とした我が国独自の技術の向上を目指した研究が進められてき た。

このような状況におらいて，航技研が主催して いる航空宇宙数値シミュレーション技術シンポ ジウムにおいて，ともすえしば各社独自に進めが ちな騒音研究に焦点を絞つて，各研究機関と各 メーカーとの研究協力などの共通の認譏を得る べくまた国研である航技研の役割などを議論す べく現在活躍している代表者に出席を仰ぎパネ ルディスカッションの形で討論を行った。この種の合同討論会は，今まであまり例はなく，今回の討論が議題にもあるような国内外の研究協力の第一歩となれば今回の目標は達成されたこ ととなる。

2．パネラー

以下の方んに，当日の司会及びパネラーをお殿いした。
司会：山川榮一，ATIC 便究部压
（1）河内啓二，東大先䇛科学技術研究センタ
— 教授
（2）青山腩电，航技研流体科学総合研究グ
ループ 主任研究官
技術開発部 耍素技術部罧滰技術がかプ 誰长

製作円ヘリコプタ技術部次钅
技術部 空力技㮅グルーブ参事

符1技㮅部ヘリニプタ3課
（中角正㜟課辰の代理）

3．討論

討論は，山川部長の司会で始められた。以下 はその要約である。
＜回転翼騒音研究の概要〉
（1）河内氏
氏からは各国で行われているヘリコプタ騒音 の研究についての解説があった。もともとヘリ コプタ騒音は，軍事目的で硏究が始まったこと， ずなわち陸軍で使用しているへリコプタが機体前方で音の伝搬が激しく，戦闘に際して敵に発見されしやすくなってしまうことであった。理論的な解析にはイギリスの Lighthill 教授の貢献が大きく，その理論を Ffowcs Williams 教授がへ リコプタ・ロータに適応して成功を収めたこと。続いて，米国でFarassatが理論的に発展させそ の理論が現在広く伝えられている。日本では，中村氏（IHI）がこの理論をアプリクーションし て計算機で解けるようにした。米国では， Farassat の理論を用いて作ったコードが WOPWOP として市眅されている。CFDコー ドを用いた航技研の解析方法は，諸外国に遅え ること数年であったが，今日では肩を並べるま でになっていること，また見在ではこの手法は，高速衝撃（High Speed Impulsive）䖪音に有効で あり，渦とブレードとの干渉（Blade－Vortex Interaction）による騒音には，まだ研究の余地が あることが挙げられた。騒音の低減法について は，﨡蝡形状を変えて翼端渦の性質などを変え るパッシブな方法や高毘波制御（Higher Harmonic Control）やスマートマデリアルなど を川いてブレードにアクティブ・フラップをつ
 どを変化させ結果として䖵音を下げあう法など が盛んに砰忩さむている。あたテイル・ロー・タ は全くなくしてしますぁの（NO＇IAR）やダクト
愛されており，一的では奏川化されている。デ イル・ロータリブレードを不均一にしたツ，メ イン・ロータの回忶数を飛行ます場际行に変化 させることで閩尞を低減化しようとする新たな試みも日本では行すねしている。
（2）中村氏
国際民間航空機構（ICAO）の日本代表委員と して，国際的な騒音規制の動向を解説した。固定翼機の場合と同様，回転翼機も今後の動向は個々の機種の騒音低減化詁避けらえず，早俛将来型ヘリコプタの規格として低騒音化が図られ ることになると予測。航空機の販売は，奇数の増加によって騒音が増加し，それによって騒音規制がまた厳しくなる。このことは，航空機製造メーカに跳ね返ってきて低騒音化が図られる というトライアングルな関係を繰り返すのが通常のサイクルであると解説した。

（3）小林氏

三菱重工では，低騒音，高性能エンジン，低 コストを目標とした MH2000～リコプタを我が国独自で開発した。これは我が国でICAO の基準値以下でないと眅売ができないといら法律の改正後初めての機体である。また 2 年少しとい らきわめて短期問に開発したまれな機体でもあ ることを解説した。その間，とられた騒音対策 として，回転数制御またテイル・ロータにダク テッド・ファンを用いて騒音低減を図っている。 またブレードの翼端形状を変えて低滅化を図っ ている。回転数制御で問題となる共振は，FADEC を用いてエンジンコントロールし，複合材の多用化によって共振点を咕けるようにしているこ とや翼型の設計には失速迎角の大きい翼型また翼端に後退角をつけ高性能化と同時に騒音低減化を図っていることを睟説した。

（4）中野氏

川崎重工では，先に説时した ATIC 参杊企業 の主要会社ということもあって，ATIC で行わ れている蝜音低減研究の説明があった。主な砰究デーマは，各要素找術を統合化した低琋爻•高性能はータ・システムの概念設計，高竍能•

 ニズムの解明と低減化技術，低単音モデル・ロ一タの試作•謰侕，低戥音実物大ロータ・シス テムの試作評偷，BVI 験音予測コードの開発，非音空力补湖技術特にPIVやLDV などの風洞

試験法の研究である。これらのテーマに則った研究成果の紹介と，世界でも一流な新翼型の開発を行ったことを紹介した。

（5）青山氏

航技研での，騒音低減化研究は特別企画の中 で講演済みであるので省略。

（6）小生方氏

富士重工において進められている騒音低減化研究の説明があった。1990年より騒音解析，騒音予測技術，回転騒音解析技術等の研究を開始 し，現在までに騒音解析コード（FW－H 方程式）， ロータNSコードの開発を終えた。低虰音翼型，低騒音BVIロータ，ベアリングレスブレードの開発を行い，BELLA12 の機体に搭載し飛行試験を実施した結果，かなりよい結果を得ている。 また，Parabolic and Anhedral Tipを採用した低騒音ロータの試作研究を行い良い結果を得て いること，また機内騒音の低減化の手段として アクティブ・ノイズ・コントロール（ANC）を用 いた研究を行ったことなどを解説した。 BELL412 の飛行試験ではICAO の基準値に比 べて3つのパターンとも低蝵音化が図られてい ることを確認していることを解説した。

＜䂛音計測技術＞

MHI は MH2000において実施した騒音計測 では次のような堣題を提起している。日本にお いて実機を用いた騒音計測を行う場合，適当な場所が無いこと，ICAO の基淮にあった飛行試験を雪施することは大変難しいこと。天侯や計测制度の閏起が多く，PAPIを用いた手入向度 の精度，また横風や湿度などの気候による条件 を沙たすケーースがあまりなく，実際に試鈤した ケースは当而0約1．16にすぎなかったことが述 へられた。
 れた。あた，進入解度の謂测では，レーザーを用い，高度•位置計測ではDGPSによる計測を行った。

KHI においては，主に計算結果と風洞試験の話があり BVI 解析に重要な翼端渦の計測法に PIV やLDVを用いたことなどが述べられた。

河内氏からは，騒音計測は計測の仕方で結果 が変わってしまうこと，民間ヘリコプタでは前方だけでなく機体まわりの騒音，離着陸時の騒音低減が需要であることが述べられた。
＜航技研への要望〉
要望については，各パネリストの意見を羅列 するにとどめる。

航技研のような国研では，メーカではなかな か手の着けられない研究テーマまた実際には実用化は難しいけれども有用な騒音低減手法であ る高調波制御やアクティブ・コントロールなど の先行的な研究を行うべきである。

我が国においては，大型の風洞試験設備がな く特に騒音試験のできる設備が少ない。このこ とは，外国に出かけていつて試験をするという結果にもなっており，実際問題としてなかなか実行しがたくなっているのが現状。したがつて，国として騒音研究を進めるに当たつて，大型の低虽音風洞を作っていただきたい。そうずれしは， メーカとしてもよりいっそう騷皁研究に有縕な データベースの構築や低騒音砸究のために非常 に有用であること。また，航技研にある計算機餈源をメーカにも解放していただきたい。特に其同研究において丰施ずる計算は，今後前く必
 てはよりよいう问に進をものと期待される。

飛行試験の一部を，計笽機シミュレーション でおき替えねしたよにしていただきたい。
 られるような日論な権筑してもらいたい。その
 らいたい。現在進めている風洞設傦の整体にお いて，可䘽化教術や物理现象拜明の移析ツール 0阴発をすすめ，将来的にはヘリーグタの導入

を図っていただきたい。

官の立場として，メーカ間の垣根を低くして もらいたい。実質的な情報交換の場を作りいろ いろ自由に話せる環境が作り出せると良い。逆 に，官の方ではこのままでは日本に学生などは とどまらず，またメーカとしても航技研ではな く外国の研究機関に研究の相手として流えてし まらことも予想され，我々も相当覚悟しなけれ ばならない。

4．所感

今回初めて，日本のヘリコプタ関連の機関メ ーカが集まり率直な意見をうかがら機会を得た。時間の関係もあり十分に意見を述べあうことは できなかつたが，今後の我が国におけるへリコ プタ研究の方向性が多少なりともかいま見られ たことは大変喜ばしいことである。国内外の不尼究協力のあり方や，国研としての今後の取り組 み方，メーカとのニーズなどの情報交換の場の必要性，大型設俈の必要性，有用な計算解析コ ードの解放，試験技術の向上などの課題が多く出され，どの技術をとつても弾独で行うにはコ スト面や人の面などで非常に難しい問題を抱え ているため今後の協力がより一層重要性を増し ていることが実感される。

数値シミュレーション技術等シンポジウムと いういわば目論的析や計算機関係0）発表の場で あるにもかつかわらず，（飛行，風洞）奏験という コ学の砸案に欠かせない分野を融合させること でより一冨䊅度の良い䑨析コードの開発や現奚解明が促進されるという碓信のもとで，今回日本におけるヘリコプタ研究の代表的な力水に討論に参加していただいた。航技研としての砸究
 を墹し，将来0ヘリコプタ俳公の発辰を期待 することを目指したパネルディスサッションを
 がある。

御忙しいゆ本討論会に参かして下さつたう心 に，本誌を皘りて感謝すると共に，今後さらな

On the open boundary conditions for incompressive unbounded flows

by
Shigeki HATAYAMA
National Aerospace Laboratory, 7-44-1 Jindaijihigashi-machi Chofu-shi Tokyo, Japan 182

Abstract

Four open boundary conditions for incompressible unbounded flows are evaluated in the framework of the Leith type third-order upwind scheme(QUICKEST scheme), and each effectiveness is compared by two means of difference of flows among open boundary conditions and between short and long open boundaries. Three test problems used for the open boundary condition evaluation are the backward-facing step flow, the blunt based body flow and the rectangular cylinder obstacle flow in a channel. The investigated open boundary conditions are four. The author proposes to take the uniform inlet velocity as the phase speed in the Sommerfeld radiation condition. As the conclusion, we show that this is the most excellent open boundary condition within four open boundary conditions.

1. Introducing remarks

In many computational problems, we are faced with infinite domains, which for computational reasons must be made finite. One possibility is to introduce an artificial boundary in order to reduce the infinite computational domain to a finite one. Then, the introduction of the artificial boundary makes it necessary to formulate appropriate artificial boundary conditions. However, mathematics does not tell us how to select artificial boundary conditions.
2. Some qualities that candidates as open boundary conditions should display

They should permit the flow to exit the domain gracefully and passively, and not have any effect on the behaviour of the solution in the domain near the open boundary, especially far from it. They should be transparent, and lead to the same solution inside the common domain no matter where truncation occurred.

3. Boundary conditions

Figure 1 shows geometry definition of three test problems. In (A), B1, B2, B3 and B5 are the no-slipe solid walls, B4 the inlet and B6 an open boundary. Coordinates of points 1 and 2 are ($2 \mathrm{JH}, \mathrm{JH}$) and ($\mathrm{IN}, 2 \mathrm{JH}$), respectly. We take $\mathrm{IN}=14 \mathrm{JH}$ as the short open boundary and $\mathrm{IN}=20 \mathrm{JH}$ as the long open boundary. In (B), B1, B2, B3, B4 and B6 are the no-slipe solid walls, B 5 the inlet and B 7 an open boundary. Coordinates of points 1,2 and 3 are ($0, \mathrm{JH}$), ($2 \mathrm{JH}, 2 \mathrm{JH}$) and ($\mathrm{IN}, 3 \mathrm{JH}$), respectly. We take $\mathrm{IN}=14 \mathrm{JH}$ as the short open boundary and $\mathrm{IN}=20 \mathrm{JH}$ as the long open boundary. In (C), B1, B2, $\mathrm{B} 3, \mathrm{~B} 4, \mathrm{~B} 6$ and B 7 are the no-slipe solid walls, B 5 the inlet and $B 8$ an open boundary. Coordinates of points 1,2 and 3 are $(8 \mathrm{JH}, 2 \mathrm{JH}),(9 \mathrm{JH}, 3 \mathrm{JH})$ and $(\mathrm{IN}, 5 \mathrm{JH})$, respectly. We take $\mathrm{IN}=30 \mathrm{JH}$ as the short open boundary and $\mathrm{IN}=35 \mathrm{JH}$ as the long open boundary.

In all the numerical computations, grid size is decided based on $\mathrm{JH}=40$. At the inlet, a uniform inlet u-velocity profile

$$
\begin{equation*}
u(y)=1 \tag{1}
\end{equation*}
$$

is chosen. We note that truncation occures at $x=I N$.

4. Four candidates of open boundary conditions(OBC)

OBC:no. 1

The following open boundary condition was firstly used by Thoman and Szewczyk(1966):

$$
\begin{equation*}
\left.\frac{\partial v}{\partial x}\right|_{O B}=-\left.\frac{\partial^{2} \psi}{\partial x^{2}}\right|_{O B}=0,\left.\frac{\partial \zeta}{\partial x}\right|_{O B}=0 \tag{2}
\end{equation*}
$$

OBC:no. 2

The following open boundary condition was proposed by Mehta and Lavan(1975):

$$
\begin{align*}
\frac{\partial \zeta}{\partial t} & =-\frac{\partial(u \zeta)}{\partial x}-\frac{\partial(v \zeta)}{\partial y}, \frac{\partial \psi}{\partial x}=-v, \frac{\partial v}{\partial t}=-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y} \\
& =-\left(u \zeta+\frac{1}{2} \frac{\partial\left(u^{2}+v^{2}\right)}{\partial y}\right) \text { at } O B \tag{3}
\end{align*}
$$

in case that at the open boundary the inertia terms are dominant.
OBC:no. 3
The following open boundary condition is the Sommerfeld radiation condition firstly used by $\operatorname{Orlanski}(1976)$:

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+c \frac{\partial \phi}{\partial x}=0 \text { at } O B \tag{4}
\end{equation*}
$$

where ϕ is any variable, and c is the phase velocity of the waves. Orlanski proposed the following method which numerically evaluates the phase speed at the closet interior points every time: Using a leapfrog finite-difference representation, we have

$$
\begin{equation*}
\frac{\phi_{O B}^{n+1}--\phi_{O B}^{n-1}}{2 \Delta t}=-\frac{c}{2 \Delta x}\left(\phi_{O B}^{n+1}+\phi_{O B}^{n-1}-2 \phi_{O B-1}^{n}\right) \tag{5}
\end{equation*}
$$

Hence the phase speed is numerically evaluated at the closet interior points from the above equation as follows:

$$
\begin{equation*}
c=-\frac{\Delta x}{\Delta t} \frac{\phi_{O B-1}^{n}-\phi_{O B-1}^{n-2}}{\phi_{O B-1}^{n}+\phi_{O B-1}^{n-2}-2 \phi_{O B-2}^{n-1}} . \tag{6}
\end{equation*}
$$

From the above two equations，we can also obtain the bound－ ary conditions $\left\{\phi_{O B}^{n+1}\right\}$ as follows：

$$
\begin{equation*}
\phi_{O B}^{n+2}=\frac{1-c \Delta t / \Delta x}{1+c \Delta t / \Delta x} \phi_{O B}^{n-1}+\frac{2 c \Delta t / \Delta x}{1+c \Delta t / \Delta x} \phi_{O B-1}^{n} . \tag{7}
\end{equation*}
$$

OBC：no． 4

The following open boundary condition is the Sommerfeld radiation condition used by Bottaro（1990）and Kobayashi， Pereira and Sousa（1993）：

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+c \frac{\partial \phi}{\partial x}=0 \text { at } O B \tag{8}
\end{equation*}
$$

where ϕ is any variable，and c is the phase velocity of the waves．Bottaro took the average streamwise speed in the channel as c ，and Kobayashi et al．the mean channel velocity as c ．The author proposes to take the uniform inlet velocity as c ．Therefore， $\mathrm{c}=1$ ．

5．Results on the backward－facing step flows

In this problem，we show results for $\mathrm{Re}=1,000$ ．Firstly we compare difference of flows among four OBCs in case of $\mathrm{IN}=20 \mathrm{JH}=800$ ．From results，we can see that variation of flow does not yet arrive at the open boundary at $t=30$ ，find that variation of flow already arrives at the open boundary at $t=35$ ，and hence it is the same as well at $t=40$ ．As seen from these results，there is severe difference among four OBCs in flows in the domain near the open boundary．Hence we can not at all conclude which of four OBCs gives the most excellent solution．While it is surely true in the domain near the open boundary，we can also show complete coincidence in flows among four OBCs in the domain within $\mathrm{x}=14 \mathrm{JH}=560$ ． That is，there is no difference of flows among four OBCs．This fact promotes us next step．（We here note that computation of flow by OBC：no． 2 was breaked off due to occure overflow in computation of ζ at $t>35.1$ ．）

Secondly we compare difference of flows between short and long open boundaries by each OBC．Clearly from re－ sults，there is severe difference of flows by OBC：no． 1 in the domain near the open boundary of $\mathrm{IN}=560$ ．Hence OBC：no． 1 can not at all say as a good OBC．Next we examine the case of OBC：no．2．As seen from results，OBC：no． 2 shows com－ paratively good coincedence of flows in the domain near the open boundary of $\mathrm{IN}=560$ ．Regretably this OBC can not bear practically due to occure overflow at $t>35.1$ ．Next we look into the case of OBC：no．3．Clearly from results，there is severe difference of flows by OBC：no．3，especially at the open boundary of $\mathrm{IN}=560$ ．Hence $\mathrm{OBC}: n o .3$ is better than OBC：no．1，but we can not yet say that it is a good OBC．

Finally we examine the case of OBC：no．4．Figure 2 shows its difference of flows between short and long open bound－ aries．As seen from（C）which is drawed in piles the streamfunct profile and the vorticity－profile of flow by each OBC on sev－ eral vertical internal points，OBC：no． 4 shows tolerable good coincedence of flows even at the open boundary of $\mathrm{IN}=560$ ．

Hence we can conclude that OBC：no． 4 is the best OBC among four OBCs，and is the excellent OBC．

6．Results on the blunt based body flows

This problem is more complicated than the previous one， and hence OBC：no． 2 could not bear practically for this prob－ lem due to this complexity．We discuss about OBCs for this problem similarly to the previous problem．We show here results for $R e=1,000$ ．Firstly we compare difference of flows among three OBCs in case of $\mathrm{IN}=20 \mathrm{JH}=800$ ．From results， we can see that variation of flow does not yet arrive at the open boundary at $t=30$ ，find that variation of flow already arrives at the open boundary at $t=35$ ，and hence it is the same as well at $t=40$ ．As seen from results，there is severe difference among three OBCs in flows in the domain near the open boundary．Hence we can not at all conclude which of three OBCs gives the most excellent solution．While it is surely true in the domain near the open boundary，we can also show complete coincidence in flows among three OBCs in the domain within $\mathrm{x}=14 \mathrm{JH}=560$ ．That is，there is no dif－ ference of flows among three OBCs．This fact promotes us next step．

Secondly we compare difference of flows between short and long open boundaries by each OBC．Clearly from resuluts， there is severe difference of flows by OBC：no． 1 in the domain near the open boundary of $\mathrm{IN}=560$ ．Hence OBC ：no． 1 can not at all say as a good OBC．Next we look into the case of OBC：no．3．Clearly from results，there is severe difference of flows by OBC：no．3，especially at the open boundary of $\mathrm{IN}=560$ ．Hence $\mathrm{OBC}: n o .3$ is better than OBC：no．l，but we can not yet say that it is a good OBC．

Finally we examine the case of $\mathrm{OBC}: n o .4$ ．Figure 3 shows its difference of flows between short and long open bound－ aries．As seen from（C），OBC：no． 4 shows tolerable coince－ dence of flows even at the open boundary of $\mathrm{IN}=560$ ．Hence we can conclude that OBC：no． 4 is the best OBC among three OBCs，and is the comparatively good OBC for this problem． 7．Results on the rectangular cylinder obstacle flows

This problem is the most complicated among three prob－ lem，and hence even OBC：no． 1 could not bear practically for this problem due to this complexity．We discuss about OBCs for this problem similarly to the previous problem．We show here results for $\operatorname{Re}=1,000$ ．Firstly we compare difference of flows between two OBCs in case of $\mathrm{IN}=35 \mathrm{JH}=1400$ ．From results，we can see that variation of flow does not yet arrive at the open boundary at $t=45$ ，find that variation of flow al－ ready arrives at the open boundary at $t=55$ ，and hence it is the same as well at $t=65$ ．As seen from results，there is severe difference between two OBCs in flows in the domain near the open boundary．Hence we can not at all conclude which of two OBCs gives the most excellent solution．While it is surely true in the domain near the open boundary，we can also show comparatively good coincidence in flows between two OBCs in the domain within $\mathrm{x}=30 \mathrm{JH}=1200$ ．That is，there is a lit－ tle small difference of flows between two OBCs．This fact promotes us next step．

Secondly we compare difference of flows between short and long open boundaries by each OBC．Clearly from results， there is severe difference of flows by OBC：no．3，especially at the open boundary of $\mathrm{IN}=1200$ ．Hence we can not yet say
that OBC：no． 3 is a good OBC．
Finally we examine the case of OBC：no．4．Figure 4 shows its difference of flows between short and long open bound－ aries．As seen from（C），OBC：no． 4 shows considerably smaller difference of flows than OBC：no． 3 at the open boundary of $\mathrm{IN}=1200$ ．Hence we can conclude that OBC：no． 4 is better than OBC：no．3，and bears more well practically for this prob－ lem．

8．Discussion

On the backward－facing step flows

（1）We also examined difference of flows between short and long open boundaries computed under the condition of $\operatorname{Re}=800$ and OBC：no．1．We computed this flows in the frame－ work of the first order upwind scheme．As seen from results， OBC：no．l can bear well practically for such the problem as $R e \leq 800$ ．
（2）We examined the case of $\mathrm{IN}=400$ where truncation occures．As seen from this，there is a little difference of flows， especially at the open boundary of $\mathrm{IN}=400$ ．Hence we had better not shorten location of truncation to $\mathrm{IN}=400$ ．

On the blunt based body flows

（1）As we compare results，we clearly see that the com－ plete coincidence of flows between short and long open bound－ aries as Figure 2 can not obtain when the problem becomes more complicated．
（2）This fact suggests that OBC：no． 4 no longer is the com－ plete OBC for this problem，although it is the excellent OBC for the backward－facing step problem．Hence we must be studying to search for a better OBC．

On the rectangular cylinder obstacle flows

（1）Firstly we note that numerical solution of flows for IN ≤ 1000 can not give the right solutions even by OBC：no．4． Because reflection occures at the open boundary，its effect is changed the behaviour of the solution in the domain far from the open boundary，and at last its accumulation leads the wrong solution．
（2）In this paper，the author proposes to take $c=1$ as the phase speed of the Sommerfeld radiation condition．When we compare each results of $c=0.7,1$ and $1.3, c=1.3$ seems to be the best among three phase speeds．

On the open boundary conditions

（1）Such the OBCs as OBC：no． 1 and 2 force to prescribe any condition at the open boundary．Hence they seem to oppose some qualities that a ideal OBC would display．As its poofs，flows by these OBCs are necessarily influenced heavily whenever variation of flow arrives at the open boundary，as seen in Figure 4， 5 and 10.
（2）Such the OBCs as OBC：no． 3 and 4（that is，the Som－ merfeld radiation condition）do not force to prescribe any condition at the open boundary，but seem to aid to permit the the flow to exit the domain gracefully and passively．Such phenomenon is one of qualities that a ideal OBC would dis－ play
（3）The Sommerfled radiation condition is used by some researchers，but the method of deciding its phase speed is dif－
ferent by each researcher．However there is not a firm ground why the phase speed would be decided by their methods． Then the author proposes to take a constant as the phase speed，despite of being not able to state a firm ground．
（4）Clearly from comparison of results，OBC：no． 4 is more excellent than OBC：no． 3 for all the problems．Moreover clearly from comparison of results，the case of $c=1.3$ seems to show the best result．
（5）Hence we will say that to take a constant as the phase speed is also better than to take a mean channel velocity every time as the phase speed．Because a mean value necessarily becomes to $c<1$ ．From its reason，we can say that a larger value of c is profitable to premit the flow to exit the domain gracefully and passively．

9．Concluding remarks

In this paper we studied about the open boundary condi－ tions for incompressible unbounded flows，reported numerical solutions of flows by four OBCs for the backward－facing step problem，the blunt based body problem and the rectangu－ lar cylinder obstacle problem，and evaluated these results by means of difference of flows among four OBCs and between short and long open boundaries．

As the conclusion in all the cases，we showed that the OBC proposed by the author is the most excellent among the investigated OBCs．It is a very simple method which uses the Sommerfeld radiation condition as the OBC，and take a constant as its phase speed．This OBC showed to be the ex－ cellent OBC for the backward－facing step problem．However for the blunt based body problem and the rectangular cylin－ der obstacle problem，that is，as the problem becomes more complicated，this OBC no longer is the complete OBC．Hence we must be studying to search for a better OBC．

（A）Backward－facing step problem

（B）Blunt based bady problem

（C）Reclangular cylinder obstacle problem

Fig ：Geometry definition of three test problam：

（1）$I=20.0$
（C）Difference of flows between $I N=560$ and $I N=800$ which is drawed in piles ψ－profile and ζ－profile on several vertical internal points each t

1．35．0：tKRX－1．139114．tHIN＝－0．346252；OIHP＝0．0285．0THN＝0．0693

$1=10.0 ;$ MAX：1．127959．M1N．－0．320735：0THP：0．0282．01HN． 0.064

（A）Aspects of flow every $t=5(I N=560)$

（B）Aspects of flow every $\mathrm{t}=5(\mathrm{IN}=800)$

Fig． 2 Difference of flows between short and long open boundaries（ $\operatorname{Re}=1,000, \mathrm{OBC}:$ no． 4 ）

（C）Difference of flows between $I N=560$ and $I N=800$ which is drawed in piles ψ－profile and ζ－profile on several vertical internal points each t

Fig． 3 Difference of flows between short and long open boundaries（ $\operatorname{Re}=1,000, \mathrm{OBC}: n o .4$ ）

（C）Difference of flows between $\mathrm{IN}=1200$ and $\mathrm{IN}=1400$ which is drawed in piles ψ－profile and ζ－profile on several vertical internal points each t

（A）Aspects of flow every $t=5(I N=1200)$

（B）Aspects of flow every $t=5(I N=1400)$
Fig． 4 Difference of flows between short and long open boundaries（ $\mathrm{Re}=1,000$ ， OBC （no． 4 ）

アドバンシング・フロント法とデローニー分割法を併用した 3 次元非構造格子生成法について

増田 糧＊，中村 佳朗 \dagger
A Three－Dimensional Unstructured Grid Generation on the Advancing Front Method Combined with the Delaunay Algorithm

by
R．Masuda＊and Y．Nakamura ${ }^{\dagger}$

Abstract

A method is proposed for generating three－dimensional unstructured grids using tetra－ hedral elements．A tetrahedral element is formed by joining three vertices of a triangle as a base to a newly added vertex point．The new vertex point is placed by the Ad－ vancing Front Method，and the corresponding tetrahedral elements are formed from this new point by the Delaunay algorithm．In order to control the distribution density of grid points，the location of the new grid point is determined by using spacing pa－ rameter stored in a structured background grid which covers the whole computational domain．The present method has the merits of two methods：flexibility of grid points placement by the Advancing Front Method and robustness of forming tetrahedral elements by the Delaunay algorithm．

1 はじめに

近年はコンピュータの高速化や主記憶容量の増大 が著しい。パソコンでも Linux や FreeBSD に代表さ れる Free の UNIX ベースの OS が普及し手軽に数値 シミュレーションができるようになってきた。ハード面は今後ますます進化することが予想され，さらに複雑で大規模な数値計算ができるようになるであろう。

流体の数値計算をする際には計算領域内に格子点 を配置し，空間の離散化を行ら。構造格子は格子点を規則的に配置することで格子点同士の位置関係が簡潔 に記述され，メモリー容量を少なくできる。一方で複雑な形状の周りに構造格子を形成するときには複数の格子を重ね合わせるなどの工夫が必要となる。非構造格子は格子点同士をつないで 2 次元では三角形要素， 3 次元では四面体要素を作る。そのため任意の位置に格子点を配置させることができる。ただし格子点同士 の位置関係を記憶しなければならないため，構造格子 より多くのメモリー容量を要する。しかし格子形状の

[^35]自由度は構造格子に比べてはるかに高く，計算領域が複雑な形状をしていてもその領域内を単一の格子で分割することができる。また非構造格子は部分的に格子点を追加したり削除したりすることも容易で，計算結果に応じて格子点の分布密度を制御する解適合格子も容易である。

格子生成法に関しては，構造格子は計算領域内で偏微分方程式を解いたり，関数で与えることにより格子点の位置を決める。一方，非構造格子では要素形状 の自由度と引き替えに格子点の配置が不規則で要素形成が困難である。そのため計算機による格子の自動生成が必要となる。非構造格子生成法には大きく分けて アドバンシング・フロント法 ${ }^{[1]}$（以下AFM）とデロー ニー分割法（以下 DLM）の 2 種類がある。これらの アプローチは全く異なり，それぞれ一長一短がある。

AFMは3次元の場合，計算領域の境界形状を三角形要素で定義してそれを四面体要素の底面として領域内にひとつずつ格子点を配置しながら境界面を前進さ せていき，領域内をすべて要素で埋め尽くす方法であ る。この方法の特徴は，格子点を配置する方法の容易

さである。しかし領域内を四面体で確実に埋め尽くせ る保証がないため，格子生成は何回かの試行錯誤が必要となる。AFMの発展型にアドバンシング・レイヤー法 ${ }^{[2]}$ があり，粘性領域をよりよく解像するために物体近傍で四面体3つからなる三角柱を物体表面に沿って層状に形成していく。

DLM は領域内に任意にばらまかれた格子点群を用い，全ての四面体要素の外接球の中にその要素の4頂点以外の格子点が入らないような格子が一意に形成 できるといら定理に基づいている。ただしDLM では格子点群を凸包するように格子形成するため，凹型の領域内の場合には境界部分で特別な取り扱いが必要に なる。

これら2つの方法の長所と短所は相反するもので はないので，両者の長所をうまく組み合わせた方法が いくつか提案されている ${ }^{[3],[4]}$ 。本研究では AFMを基 に計算領域境界から内部に格子点を追加しながら DLM によって要素形成を行ら。

2 格子生成法

基本的な格子生成のプロセスはAFMと同じ手順 をとり，順次格子点を追加しながら四面体要素を形成 していく。その格子点が他の四面体要素の外接球の中 に入った際は Bowyer－Watsonの方法に基づきデロー ニー分割を満たすように要素の組み替えを行う。

2.1 境界表面格子

計算領域の境界面（外部境界，内部境界）に三角形要素で境界表面格子を作成する。三角形要素には表と㕌の面ができるが，計算領域内部に面する方を表の面 と定義する。つまり図1のように格子点 $1,2,3$ とベク トル \vec{a}, \vec{b} を定義し，表側の法線ベクトル \vec{n} を式（1）で計算する。

$$
\begin{equation*}
\vec{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \tag{1}
\end{equation*}
$$

四面体要素は境界要素のおもて面側（ \vec{n} の方向）に形成 される。

AFM では四面体の底面となった三角形が境界格子から取り除かれ，側面の三角形が新たに境界格子に追加される。このようにして境界格子が計算領域内に徐々に前進しながら格子生成が進む。AFMには境界形状を保持しながら格子生成を行らという利点がある。 つまりAFMは新しい要素が境界面と交わる場合はそ

格子点1

図 1：表面要素のおもて面の定義

の要素を採用せずに次の候補へと移る。一方 DLM で は領域全体を凸包するように格子形成するので設定し た境界を突き抜ける場合がある。

2.2 背詈格子

背景格子を別に用意し，それに四面体要素の大き さを制御するパラメータを記憶させておく。ここでは背景格子は直交格子で作成した。四面体要素の大きさ は，底面の三角形から新しく追加する格子点までの高さ により決定される。ここでは，高さそのものではなく，四面体要素の外接球の半径をパラメータにした。この パラメータの滑らかな分布を求める方法は Pirzadeh ${ }^{[5]}$ の論文に詳細に記述されている。この大きさを制御す るパラメータSは式（2）のポアソン方程式を解いて求 める。

$$
\begin{equation*}
\nabla^{2} S=G \tag{2}
\end{equation*}
$$

ソース項 G は領域内に分布させたソースエレメント S_{n} とそのソースエレメントの影響領域 $\psi_{n} な と ゙ か ら な ~$ る。たとえば図2 で格子点（ $\mathrm{i}, \mathrm{j}, \mathrm{k}$ ）についてソース項 $G_{i, j, k}$ を求めるときはソースエレメント S_{1}, S_{2}, S_{3} と格子点（i，j，k）との距離 $r_{1}, r_{2}, r_{3}, ~ S_{1}, S_{2}, S_{3}$ が持っている影響領域 $\psi_{1}, \psi_{2}, \psi_{3}$ から次式で計算する。

$$
\begin{equation*}
G_{i, j, k}=\sum_{n=1}^{3} \psi_{n}\left(\tilde{S}_{i, j, k}-S_{n}\right) / r_{n}^{2} \tag{3}
\end{equation*}
$$

ここで，$\tilde{S}_{i, j, k}$ は繰り返し計算の途中で得られる S の値 である。式（2）を境界条件 $S=S_{b}$ のもとでSORによ り繰り返し計算する。

ここではソースエレメントを点としているが，線分で与えることもできる。また，ソースエレメントの影響領域に方向の重みを持たすことも可能である。

図 2：背景格子のパラメータの計算法

2.3 格子点追加法

AFMと同様に，格子生成開始時は境界表面格子 に囲まえた計算領域内には格子点も要素もなく，境界表面格子から内部に向かってひとつずつ格子点を追加 しながら要素を構築していく。

まず表面格子の要素の中から1つを選び出す。新 しく格子点を追加する前に，近傍にある既存の格子点 が利用できるかどうかをチェックする。その外接球内 に四面体の 4 頂点以外の格子点が含まれず，なおかつ外接球の半径が背景格子から求めたパラメータの値よ りも小さいという条件を満たせばその格子点を使って四面体要素を形成する。もしそのような格子点が見つ からなかった場合には新しく格子点をひとつ追加して四面体要素を形成する。

この新しく追加する格子点の位置は背景格子のパ ラメータを用いて決める。図3にその位置の求め方を示す。表面要素の外接円の半径を r ，外心を g ，背景格子から内挿して求めた g でのパラメータの値を S とす る。格子点は外心 g から表面要素の法線ベクトルの方向に次式で求める高さ h の場所に配置する。

$$
\begin{equation*}
h=S+\sqrt{S^{2}-r^{2}} \tag{4}
\end{equation*}
$$

図 4 で示すように新しい格子点の高さ h は r（表面要素の外接円の半径）を下限とし，$S<r$ の場合は $h=r$ にする。四面体の外接球の半径は $h=r$ のとき に最小となるが，$h<r$ の場合は外接球の半径が急激 に増加するため，そのまま四面体要素を形成すると後述するデローニー判定の䄞に計算効率が悪くなるから である。

また新しい格子点の高さの上限は以下のようにす る。図5のように，いくつかの既存の近傍の格子点 P の中で四面体を作ったときの外接球が最小となる半径

図 3：追加する格子点の位置

図 4：追加する格子点の高さの下限

図 5：追加する格子点の高さの上限
$R_{\text {min }}$ を求め，次式で $h_{\text {max }}$ を決定する。

$$
\begin{equation*}
h_{\max }=R_{\min }+\sqrt{R_{\min }^{2}-r^{2}} \tag{5}
\end{equation*}
$$

この理由もデローニー判定に関する次節で述べる。こ のようにして格子点を配置する場所の上限と下限を設定して余分な計算を排除する。

2.4 デローニ—判定

上で述べた，新しく追加さえた格子点 P に対して ここでデローニー判定を実施する。デローニー判定と は四面体要素に対してその外接球の中に他の格子点が入らないかどうかをチェックすることである。

従来の DLM での Boywer－Watson の方法による格子点追加時の要素の再構成法を 2 次元の場合につい て簡単に説明する。図6（a）の格子は 15 個の要素から成っていてデローニー分割を満たしている。つまりそれ ぞれの三角形要素の外接円の中にその3つの頂点以外 の格子点が含まれない。ここに新しく格子点 P を追加 すると，この格子点は要素 a と要素 b の外接円の中に含まれる。この場合一旦要素 a, b を取り除く。この取り除いた部分には多角形ができ，その頂点と新しく追加 した格子点 Pとを結んで要素の再構成を行うと図6（b） のような格子ができる。この格子もまたデローニー分割の条件を満すことが数学的に証明されている。この ことは 3 次元の場合においても全く同様である。

これから本研究における要素形成を図7と図8を参照しながら説明する。図は2次元的に描かそているが実際には 3 次元であるので文中では 3 次元としている。

要素形成には次の3つのパターンがある。
1）1 番目のパターンは図7の要素aのように既存の格子点 P_{1} を用いて形成さえる。底面の境界要素の近傍の格子点をいくつか候補に選び，その格子点 で仮に四面体を作る。その外接球の半径が小さい順に並べ，その順にデローニー判定を行う。この場合は新しく形成される四面体だけデローニー判定を行えぼよい。その他の既存の四面体要素はす でにデローニー条件を満たしている。デローニー分割を満たす格子点が見つかり，なおかつその外接球の半径が背景格子のパラメーターから計算さ れる半径よりも小さければその格子点を使って四面体要素を形成する。
2）1）の方法で要素形成できなかった場合新しく格子点をひとつ追加する。2番目のパターンは図7の要素ちのように新しい格子点で四面体要素を形成し，

（a）格子点追加前の格子

（b）要素再構成後の格子

図6：デローニー分割の要素再構成法

その状態でデローニー分割の条件を満たしている場合である。この場合は新しい格子点が追加され ているので，すべての要素に対してデローニー判定を行う必要があるが，実際はその付近にある要素のみ行えば十分である。

既存の格子点

図7：要素形成のパターン 1,2

3） 3 番目が本研究でもつとも特徴的な要素形成のパ ターンである。2）の方法と同様に新しい格子点を追加して近傍の四面体要素についてデローニー判定した結果，その外接球の中にこの格子点が含ま れる場合である。例えほ図8（a）では底面Cに対 して新しく追加した格子点 P は既存の要素 d と要素 e の外接球の中に含まれる。従来の DLMと同様にして要素dと要素eを一旦取り除くと図8（b）

のように底面 D と底面 $\mathrm{E}_{1}, \mathrm{E}_{2}$ が現れる。そしてこ れらの底面と格子点 P をつないで要素を再構成す ると図8（c）の要素 c^{\prime} ，要素 d^{\prime} ，要素 $\mathrm{e}_{1}{ }^{\prime}$ ，要素 $\mathrm{e}_{2}{ }^{\prime}$ が形成される。これらの要素はデローニー分割の条件を満たしている。

ここで注意しなければならないことは，新たに追加された要素（図8（a）の要素c）の外接球の中 に他の既存の格子点が含まれる場合には本アルゴ リズムは成り立たないということである。これを防ぐために 2.3 節で述べたように新しい格子点の底面からの高さに上限を設けている。

一方格子点の高さに下限を設けた理由は，もし高さが低すぎる場合は要素形状が平たくなり，外接球が非常に大きくなる。このような要素が残っ ているとデローニー判定に引つかかる要素が増え て要素の再構成の回数が増加し，効率が非常に低下する。そのため四面体はなるべく外接球の半径 が小さくなるように形成する。

2.5 最後まで残る領域

デローニー分割しながら格子生成を続けていくと最後まで四面体要素が形成されずに残る領域が計算領域の境界近傍にでてくる場合がある。ある境界表面の三角形要素の 3 点を含む最小の外接球の中にその他の境界表面格子の格子点が含まれている場合にはどのよ らな四面体を形成してもデローニー分割を満たさない からである。このような場合には境界表面格子をデロー ニー分割を満たすように作れば回避される。領域が残っ た場合は最後にこの領域だけ強制的にAFM で格子生成すればよい。

3 格子生成例

本研究のアルゴリズムで作成した格子の例を示す。図 9 は後退角 45° の厚いデルタ翼の境界表面格子で格子点数は 456 点，要素数は 908 個である。図 10 は格子生成終了後の格子を横から見た断面の拡大図で，全体の格子点数は 11,555 点，要素数は 67,857 個である。 ただし翼の近傍はアドバンシング・レイヤー法 ${ }^{[2]}$ を適用して物体表面に沿って層状に要素が形成されている。

次に生成された格子を用いてデルタ翼まわりの流 れを計算した。計算条件は $R e=10^{3}$ ，迎角 20° である。図11はデルタ翼上面付近の，また図 12 はデルタ翼対称面での圧力分布と速度ベクトルを示す。

（a）

（b）

（c）

図 8：要素形成のパターン 3

図9：デルタ翼の境界表面格子

図 10：デルタ翼周りに形成された格子

4 まとめ

従来のDLMによる格子点追加法では，既にデロー ニー分割を満たしている領域内に格子点を追加し，要素を再構成して新たなデローニー分割された格子を作 るが，本研究のアルゴリズムはデローニー分割された領域内だけでなく，その領域の外側に格子点を追加し ても同様に要素の再構成ができるであろうという考え に基づいている。格子点追加法にAFMを用いること で両者の特徴を活かした格子生成法が可能となった。

参考文献

［1］Parikh，P．，Pirzadeh，S．，and Löhner，R．，A Pack－ age for 3－D Unstructured Grid Generation，Finite－ Element Flow Solution and Flow Field Visualiza－ tion，ŇASA CR－182090， 1990.
［2］Pirzadeh，S．，Three－Dimensional Unstructured Viscous Grids by the Advancing－Layers Method， AIAA J．，Vol．34，No．1，1996，pp．43－49．
［3］Mavriplis，D．J．，An Advancing Front Delaunay Triangulation Algorithm Designed for Robust－ ness，J．Comput．Phys．，1995，pp．90－101．

図 11：デルタ翼上面付近の流えの計算結果

図12：デルタ翼中心の流れの断面図
［4］Marcum，D．L．，Generation of Unstructured Grids for Viscous Flow Applications，AIAA Paper，75－ 0212，1995，pp．1－17．
［5］Pirzadeh，S．，Structured Background Grids for Generation of Unstructured Grids by Advancing－ Front Method，AIAA J．，Vol．31，No．2，1993，pp． 257－265．

有限要素計算による翼の等角写像の探究

牛島 照夫，横松 大作，安藤 一平，矢野 祐輔
（電気通信大学 電気通信学部 情報工学科）

An Investigation of Conformal Mapping for a Wing through Finite Element Method

by
USHIJIMA，Teruo，YOKOMATSU，Daisaku，ANDO，Ippei and YANO，Yusuke Department of Computer Science and Information Mathematics
Faculty of Electro－Communications
The University of Electro－Communications

Abstract

Through finite element computation，we can compute precisely the flow profile of the 2D perfect fluid around the cross section of a wing satisfying Kutta condition at its trailing edge．A proper value γ should be determined numerically in the computation． The value γ ，representing the magnitude of the circulation in a normalized sense，is characterized with the aid of the conformal mapping for the wing in this paper．The conformal mapping for th wing is the mapping which maps conformally the whole exterior domain of the wing onto the whole exterior domain of the unit circle．A few numerical results are reported for NACA23012 wing and Kármán－Trefftz wing．The results work as numerical evidence for the validity of the characterization．A procedure for numerical determination of the mapping through finite element computation is also proposed．

O．はじめに

二次元完全流体中の翼まわりの流れで，巽の後縁でクッタの条件を満たす流れは，有限要素法による数値計算で精密に計算出来る。この計算においては，ある特性値 γ を数値的に決定し なけえばならない。この値ては，ある正規化された意味で，循環量の大きさを表す。この $\begin{gathered}\text { の値を，翼の等角写像によって特徴 }\end{gathered}$付けることがこの論文でなされる。翼の等角写像しは，翼型の外部領域全体を，単位円の外部領域全体に等角に写像するもの である。この特徵付けを，NACA23012 翼およびカルマン・ト レフツ翼において，数値的に実証する計算結果を報告する。 d らに，有限要素計算を用いて，翼の等角写像を数値的に決定す る手䫍を提案する。

1．翼型の外部の流れ関数

平面 R^{2} 内の有界領域 \mathcal{O} は翼型の二次元断面を表わすものと する。その境界 \mathcal{C} は翼面である。翼型の外部領域を』として，次 の外部問題を考える：
（E）$\left\{\begin{array}{c}-\Delta \psi=0 \text { in } \Omega, \\ \psi=0 \text { on } \mathcal{C}, \\ \psi-\psi_{0} \text { は無限遠で有界．}\end{array}\right.$
ここで ψ_{0} は Ω 全体で調和であるものとする。
仮定 0 （E）の解の一意性を認める。すなわち，Ω で調和 で境界Cで零であり，Ω で有界な関数 $\psi \in C^{2}(\Omega) \cap C(\bar{\Omega})$ は，Ω全体で恒等的に零であるとする。（より数学的に言えば翼面Cは この性質をもつものであることを要請する。）
迎え角を表わす実パラメタのを持つ一様流の流れ関数：

$$
\psi_{0, \alpha}=-\sin \alpha \cdot x+\cos \alpha \cdot y
$$

と，循環流に対応する流れ関数：

$$
\psi_{0, c}=\log r
$$

を考える。ここで $r=\sqrt{x^{2}+y^{2}},(x, y) \in R^{2}$ である。

問題 (E) において，$\psi_{0}=\psi_{0, \alpha}$ および $\psi_{0}=\psi_{0, c}$ としたとき わ ψ をそれぞれ $\psi_{u, \alpha}$ く ψ_{c} で表わす。実数 γ に対して

$$
\psi(\gamma)=\psi_{u, \alpha}+\gamma \psi_{c}
$$

とおく。 $\psi(\gamma)$ は，速度1を持つ迎え角 α の一様流に䡛近する，二次元完全流体におうける翼型 \mathcal{C} まわり流れ場の流れ関数である。

2．クッタの条件をみたす複素速度ボテンシャル

平面 R^{2} と複素平面 C を同一視して，複素数 $z=x+i y, z=$ $\mathrm{x}+i \mathrm{y}$ を用いる。境界Cがジョルダン閉曲線のとき，Ω は z －平面の単位円の外部に等角に写像される。その写像関数は

$$
\begin{aligned}
z=c(\mathbf{z}) & =\sum_{n=1}^{-\infty} c_{n} \mathbf{z}^{n} \\
& =c_{1} \mathbf{z}+c_{0}+\frac{c_{-1}}{\mathbf{z}}+\frac{c_{-2}}{\mathbf{z}^{2}}+\cdots
\end{aligned}
$$

と表現される。この報告では

$$
c_{1}>0
$$

と正規化する。関数 $c(\mathbf{z})$ を翼の等角写像と呼ぶことにする。 このとき翼面 \mathcal{C} は

$$
\mathcal{C}=\{z=c(\mathbf{z}):|\mathbf{z}|=1\}
$$

と表わされる。写像 $z=c(\mathbf{z}) は$

$$
\mathbf{z}=\mathbf{z}_{+}=e^{-i \beta}
$$

において特異である，すなわち

$$
\left.\frac{d c}{d \mathbf{z}}\right|_{\mathbf{z}=\mathbf{z}_{+}}=0
$$

であるようなものを考える。 \mathbf{z}_{+}の像 $z_{+}=c\left(\mathbf{z}_{+}\right)$は翼の後縁の点に対応すると了解する。

助変数

$$
Z=e^{-i \alpha} \mathbf{z}
$$

を導入し，

$$
C(Z)=c(\mathbf{z})
$$

とおく。Z平面における単位円まわり流れの複素速度ポテンシャ ルの一般解は

$$
F(Z)=V\left\{\frac{1}{2}\left(Z+\frac{1}{Z}\right)+i k \log Z\right\}
$$

である。ここでVとkは実バラメタである。 z 平面における迎え角 α を持つ速度 U の一様流の複素速度 $w_{0}(z)$ は

$$
w_{0}(z)=U e^{-i \alpha}
$$

である。Uは正の，α は実のパラメタである。
定理 $1 V=2 c_{1} U$ とする。このとき

$$
f(z)=F(Z), z=C(Z)
$$

は $w(z)=\frac{d f}{d z}$ としたとき，

$$
w(z)-w_{0}(z) \rightarrow 0, \quad z \rightarrow \infty
$$

をみたす翼型 \mathcal{C} まわり流れの複素速度ポテンシャルの一般解で ある（図1参照）。

証明 合成関数の微分公式と逆関数に対する微分公式によって

$$
\begin{equation*}
\frac{d f}{d z}=\frac{d F}{d Z} \cdot \frac{d Z}{d z} / \frac{d z}{d z} \tag{1}
\end{equation*}
$$

である。したがって

$$
\begin{aligned}
\frac{d f}{d z} & =\frac{V\left\{\frac{1}{2}\left(1-\frac{1}{Z^{2}}\right)+i k \cdot \frac{1}{Z}\right\} \cdot e^{-i \alpha}}{\left\{c_{1}-\frac{c_{-1}}{\mathbf{Z}^{2}}-\frac{2 c_{-2}}{\mathbf{Z}^{3}}-\cdots\right\}} \\
& =\frac{V}{2 c_{1}} e^{-i \alpha} \frac{\left\{1+\frac{2 i k}{Z}-\frac{1}{Z^{2}}\right\}}{\left\{1-\frac{c_{-1} / c_{1}}{\mathbf{Z}^{2}}-\frac{2 c_{-2} / c_{1}}{\mathbf{Z}^{3}}-\cdots\right\}}
\end{aligned}
$$

だある。ここで $z \rightarrow \infty$ のとき同程度の速さで $\mathrm{z} \rightarrow \infty$ かつ $Z \rightarrow \infty$ であるから，

$$
U=\frac{V}{2 c_{1}}
$$

に対して $z \rightarrow \infty$ のとき

$$
\frac{d f}{d z}=U e^{-i \alpha}\left(1+\mathcal{O}\left(\frac{1}{z}\right)\right)
$$

である。こえは命題の成立することを示している。口
定義2 翼型 \mathcal{C} まわり流れの複素速度ポテンシャル $f(z)$ が タッタの条件をみたすとは，$z=z_{+}$において $\frac{\mathrm{d} f}{\mathrm{~d} z}$ が有限に確定す ることである。口

定理3 定理1 のステートメントにおいて与えられている複素速度ポテンシャル $f(z)$ が，クッタの条件をみたすためには

$$
k=\sin (\alpha+\beta)
$$

でなければならない。
定理3の証明を遂行するために，次の命題 31 を用意する。そ のために記法：

$$
W(Z)=\frac{\mathrm{d} F}{\mathrm{~d} Z}(Z)
$$

を使用する。すなわち

$$
W(Z)=V\left\{\frac{1}{2}\left(1-\frac{1}{Z^{2}}\right)+i k \frac{1}{Z}\right\}
$$

である。

命題 31 単位円周上の点 $Z_{+}=e^{-i \theta_{+}}$が $W(Z)$ の零点で ある：

$$
W\left(Z_{+}\right)=0
$$

ための必要十分条件は

$$
k=\sin \theta_{+}
$$

である。
証明 実際

$$
\frac{2 Z^{2} W}{V}=Z^{2}+2 i k Z-1
$$

の右辺の二次式は，二根 Z_{+}と Z－を持つものとしてよい。根と係数の関係により

$$
Z_{+}+Z_{-}=-2 i k, \quad Z_{+} Z_{-}=-1
$$

が成立する。第二の関係式から

$$
Z_{-}=-\left(Z_{+}\right)^{-1}=-e^{i \theta_{+}}
$$

である。したがって第一の関係式から

$$
k=\frac{Z_{+}+Z_{-}}{-2 i}=\frac{e^{-i \theta_{+}}-e^{i \theta_{+}}}{-2 i}=\sin \theta_{+}
$$

である。
定理3の証明 Z 平面における後縁の点 z_{+}の原像 Z_{+}は，

$$
Z_{+}=e^{-i \theta_{+}}, \quad \theta_{+}=\alpha+\beta
$$

と表される。命題31によって，W（ $\left.Z_{+}\right)=0$ と $k=\sin (\alpha+\beta)$ とは同値である。ところで，

$$
\frac{d f}{d z}=\frac{d F}{d Z} / \frac{d z}{d Z}=\frac{W(Z)}{C^{\prime}(Z)}
$$

である。本稿においては，$c^{\prime}\left(\mathbf{z}_{+}\right)=0$ を前提としているから $C^{\prime}\left(Z_{+}\right)=0$ である。したがって $z=z_{+}$においてタッタの条件をみたすためには $W\left(Z_{+}\right)=0$ でなければならない。すなわ ち $k=\sin (\alpha+\beta)$ でなければならない。 \quad 。

3．クッタの条件をみたす流れ関数

定理4 迎え角 α の一様流に漸近する流え場の流れ関数

$$
\psi(\gamma)=\psi_{u, \alpha}+\gamma \psi_{c}
$$

がクッタの条件をみたす流れ場の流れ関数であるためには
（2）

$$
\gamma=2 c_{1} \sin (\alpha+\beta)
$$

でなければならない。口
定理4の証明を遂行するために，次の命題41を用意する。
命題41 定理1 のスデートメントで与えられる複素速度ポ テシシャル $f(z)$ に対して，実二変数 x と y の奉関数 $\Psi(x, y)$ を

$$
\Psi(x, y)=\operatorname{Im} f(z), z=x+i y
$$

によって定めると

$$
\Psi=U\left\{\psi_{u, \alpha}+\gamma \psi_{c}\right\}, \quad \gamma=2 c_{1} k
$$

である。
定理4の証明 定理3と命題41から直らに得られる。
命題41の証明 第一段 実二変数 x と y を複素数 $z=x+i y$ に対応させ，さらに $z=C(Z)$ によって Z－平面 $の$ 点 Z に対応さ せる。この対応によって基準となる流れ関数 $\Psi_{u, \alpha}$ と Ψ_{c} を

$$
\begin{aligned}
\Psi_{u, \alpha}(x, y) & =\operatorname{Im} \frac{1}{2}\left(Z+\frac{1}{Z}\right) \\
\Psi_{c}(x, y) & =\operatorname{Im} i \log Z
\end{aligned}
$$

によって定める。
第二段

$$
\Psi_{u, \alpha}(x, y)=\frac{1}{2 c_{1}} \psi_{u, \alpha}
$$

何となれば，$z \rightarrow \infty$ のとき

$$
\frac{1}{2}\left(Z+\frac{1}{Z}\right)-\frac{1}{2 c_{1}} e^{-i \alpha} z=\mathcal{O}(1)
$$

である。一方，本稿では $z \rightarrow \infty$ のとき，

$$
\psi_{u, \alpha}-\operatorname{Im} e^{-i \alpha} z=\psi_{u, \alpha}-\psi_{0, \alpha}=\mathcal{O}(1)
$$

であるとしている。第一段より $z \rightarrow \infty$ のとき

$$
\Psi_{u, \alpha}-\frac{1}{2 c_{1}} \psi_{u, \alpha}=\mathcal{O}(1)
$$

である。更に

$$
\begin{aligned}
\left.\Psi_{u, \alpha}\right|_{\mathcal{C}} & =\left.\operatorname{Im} \frac{1}{2}\left(Z+\frac{1}{Z}\right)\right|_{|Z|=1} \\
& =0
\end{aligned}
$$

である。したがってC上で

$$
\Psi_{u, \alpha}-\frac{1}{2 c_{1}} \psi_{u, \alpha}=0
$$

である。仮定 0 より，上の等式は Ω 全体で成立する。

第三段

$$
\Psi_{c}=\psi_{c}
$$

である。このことを示すために $z \rightarrow \infty$ のとき

$$
\begin{aligned}
& \mathbf{z}=d_{1} z+d_{0}+\frac{d_{-1}}{z_{0}}+\frac{d_{-2}}{z^{2}}+\cdots \\
& d_{1}=\frac{1}{c_{1}}, d_{0}=-\frac{c_{0}}{c_{1}}, d_{-1}=-c_{1}, \cdots
\end{aligned}
$$

と表されることを認める。次に

$$
\begin{aligned}
\operatorname{Re} \log Z & =\log |Z| \\
= & \log |\mathbf{z}| \\
& =\log \left(|z| \cdot\left|d_{1}\right|\right. \\
& \left.\left|1+\frac{d_{0}}{d_{1}} \frac{1}{z}+\frac{d_{-1}}{d_{1}} \frac{1}{z^{2}}+\cdots\right|\right)
\end{aligned}
$$

である。したがって $z \rightarrow \infty$ のとき

$$
\text { Re } \log Z=\log |z|+\mathcal{O}(1)
$$

である。これからr $\rightarrow \infty$ のとき

$$
\Psi_{c}=\operatorname{Im} i \log Z=\log r+\mathcal{O}(1)
$$

である。本稿では $r \rightarrow \infty$ のとき

$$
\psi_{c}=\log r+\mathcal{O}(1)
$$

としている。したがって $r \rightarrow \infty$ のとき

$$
\Psi_{c}-\psi_{c}=\mathcal{O}(1)
$$

である。更に

$$
\left.\Psi_{c}\right|_{\mathcal{C}}=\left.\operatorname{Im} i \log Z\right|_{|Z|=1}=0
$$

である。したがって \mathcal{C} 上で

$$
\Psi_{c}-\psi_{c}=0
$$

である。仮定 0 より，上の等式は Ω 全体で成立する。
第四段（命題41 の証明）

$$
f(z)=F(Z)=V\left\{\frac{1}{2}\left(Z+\frac{1}{Z}\right)+i k \log Z\right\}
$$

であり，$\Psi=\operatorname{Im} f$ であるから，第一段より

$$
\Psi=V\left\{\Psi_{u, \alpha}+k \Psi_{c}\right\}
$$

である。定理1 のステートメントでV＝ $2 c_{1} U$ としているから

$$
\Psi=2 c_{1} U\left\{\Psi_{u, \alpha}+k \Psi_{c}\right\}
$$

である。第二段と第三段により

$$
\begin{aligned}
\Psi & =2 c_{1} U\left\{\frac{1}{2 c_{1}} \psi_{u, \alpha}+k \psi_{c}\right\} \\
& =U\left\{\psi_{u, \alpha}+2 c_{1} k \psi_{c}\right\}
\end{aligned}
$$

したがって命題41の結論が成立している。 ロ
定理1，命題31，定理3は翼理論においてはよく知られて いることと思われる（今井［2］など）。定理4の導出の道すじを明晰にするために証明を附した。

4．有限要素計算手法のあらまし

量 γ を有限要素計算によって定めることを追究してきた。翼の外部の無限頒域の取り扱いと翼の後縁における特異性の処理が ステェクロフ作用素による非局所境界条件によつて解決される ことに着目した。

我々か手法を適用する上での翼型 \mathcal{C} に対する制限は，「翼の後縁 Pの近くでは翼の上面と下面は正の角度を持ってPで交わる二直線と一致している」ことである。

我々の手法によって導出した離散化問題の数値計算の手順は次のようである。

1．数値係数連立一次方程式への変換
2．循環流流え関数 ψ_{c} の有限要素計算
3．循環流拡大係数 C_{1} の算出
4．一様流流え関数 ψ_{u} の有限要素計算
5．一様流桩大係数 U_{1} の算出
6・クッタの条件をみたず流れ開数

$$
\psi(\gamma)=\psi_{u}+\gamma \psi_{c}, \quad \gamma=-U_{1} / C_{1}
$$

の算出。
以上の手順の内容は，昨年度のシンポジウム論文集で報告し た（横松－牛島［5］）。

5．翼の等角写像の初項の数値的決定

我々の手法によつて翼型NACA23012に対して迎え角 α を変化させて正規化循環量 γ を求めたものをプロットしたところ，定理4の表式（2）がよく再現されることを確認した（図 2 ）。数値計算による表式（2）の係数 $c_{1} お よ ひ ゙$ 零揚力角一 β は

$$
c_{1}=1.104129258, \quad-\beta=-1.169237(\text { 度 })
$$

である。定理4の正規化循環量 γ から次の諸量を求めることが できる。翼まわりの循環量厂：

$$
\begin{aligned}
\Gamma & =2 \pi U \gamma \\
& =4 \pi U c_{1} \sin (\alpha+\beta)
\end{aligned}
$$

ここでUは翼に向かって流入する一様流の速度の大きさである。揚力 L ：

$$
\begin{aligned}
L & =\rho U \Gamma \\
& =4 \pi \rho U^{2} c_{1} \sin (\alpha+\beta)
\end{aligned}
$$

ここで，ρ は流体の密度である。
揚力係数 C_{L} ：

$$
\begin{aligned}
C_{L} & =\frac{\rho U \Gamma}{\frac{1}{2} \rho U^{2} l} \\
& =\frac{8 \pi c_{1}}{l} \sin (\alpha+\beta)
\end{aligned}
$$

ここで，lは翼弦長である。
NACA23012の迎え角 α を変化させたときの，高レイノルズ数の下での風洞実験による揚力俰数と有限要素数值計算結果か ら数値的に求められた揚力係数を比較したところ，迎え角が小 さいところでは両者は整合していることがわかった（図3）。実際の数値計算では翼弦長 l を 4 としているので，数値計算によ る正規化循環量を $\gamma_{h}(\alpha)$ とすると，対応する揚力係数 C_{L}^{h} は

$$
\begin{aligned}
C_{L}^{h}(\alpha) & =\frac{4 \pi}{l} \gamma_{h}(\alpha) \\
& =\pi \gamma_{h}(\alpha)
\end{aligned}
$$

となる。図3の数値計算値は，この値をプロットしたものである。

6．カルマン・トレフツ翼への適用

解析的に翼型が与えられ，後縁において，翼の上面と下面が，正の角度を持って交わる翼型の一つが，カルマン・トレフツ翼 である。

この翼型を定義するために，ζ 平面から z 平面への等角写像 $z=K_{p}(\zeta)$ を用いる。この写像は，$z と \zeta$ が

$$
\begin{equation*}
\frac{z-a}{z+a}=\left(\frac{\zeta-a}{\zeta+a}\right)^{p} \tag{3}
\end{equation*}
$$

をみたすものとして定められる。ここで，p は，

$$
1<p \leq 2
$$

の範囲にあるパラメタである。この範囲の p に対して，複素数 Zの主分枝を，

$$
Z^{p}=\exp (p \log Z)
$$

とおく。 $\log Z は, ~$ 対数関数の主値である。すなわち，

$$
Z^{p}=|Z|^{p} e^{i p \theta}
$$

と定める。換言すれば，関数記号 Z^{p} の意味は，独立変数 Z の偏角 θ を一 $\pi \leq \theta<\pi$ の範囲に限って，$|Z|^{p} e^{i p \theta}$ をその関数値と するものであると解釈する。

ところで，複素数ちに対して，

$$
\theta=\arg \zeta, \theta_{+}=\arg (\zeta-1), \theta_{-}=\arg (\zeta+1)
$$

として，これらの偏角は，$-\pi \leq \theta_{+}, \theta, \theta_{-}<\pi を み た す よ う に ~$標準化する。このとき，$\Theta=\theta_{+}-\theta_{-}$は，$-\pi \leq \Theta<\pi$ の範囲 にある。そこで，

$$
Z=\frac{\zeta-a}{\zeta+a}
$$

に対して，Z^{p} を定めることが出来る。（3）の右辺はこのように解釈する。
$\zeta \rightarrow \infty$ において，

$$
\begin{equation*}
K_{p}(\zeta)=\frac{a}{p} \zeta+\frac{a}{p} \cdot \frac{p^{2}-1}{3} \cdot \frac{1}{\zeta}+\cdots \tag{4}
\end{equation*}
$$

と避開される。
ζ 平面の第二象現の点 ζ_{0} を固定する。 $r=\left|\zeta_{0}-1\right|$ とおく。

$$
\zeta_{0}=1+r e^{i(\pi-\beta)}
$$

と現される。 実パラメタ a, p, r, β によつて表さえるカルマン・ トレフツの翼面Cは，

$$
\mathcal{C}=\left\{z=K_{p}(\zeta):\left|\zeta-\zeta_{0}\right|=r\right\}
$$

によって定められる。（ $p=2$ のときは，一般ジューコフスキー翼となる。）

助変数

$$
\mathbf{z}=\frac{\zeta-\zeta_{0}}{r}
$$

を用いて

$$
z=c(\mathbf{z})=K_{p}(\zeta)
$$

と定めると，（4）から， $\mathrm{z} \rightarrow \infty$ では，

$$
\begin{aligned}
& z=c(\mathbf{z})=c_{1} \mathbf{z}+c_{0}+c_{-1} \mathbf{z}^{-1}+c_{-2} \mathbf{z}^{-2}+\cdots \\
& c_{1}=\frac{a}{p}, \quad c_{0}=\frac{a}{p}, \quad c_{-1}=\frac{a}{p} \cdot \frac{p^{2}-1}{3} \cdot \frac{1}{r} \cdot \cdots
\end{aligned}
$$

である。定理4より正規化された循環量 γ は，

$$
\begin{equation*}
\gamma=2 \frac{a}{p} r \sin (\alpha+\beta) \tag{5}
\end{equation*}
$$

である。値一 β は，零揚力角である。さらに翼の上面と下面は後縁の点において，

$$
\tau=(2-p) \pi
$$

なる角度を持ってそれぞれの接線が交わっていることが解る。
ここでは，$a=1, p=1.9, r=1.2, \beta=3^{\circ}$ とおいたカルマン・ トレフツの翼型に対する有限要素計算の結果を紹介する。ここ だ，我々の手法から生じる問題点に対面する。すなわち，解析的に与えられる翼型Cにおいては，翼の上面と下面は翼の後縁 の近くで決して直線ではない。そこで後縁の点 P 南中心に半径 0.3 の円を描き，この円と，翼の上面および下面との交点をそ れぞれ，QおよびRとして，この円の内部にある翼の上面，お よで翼の下面をそれそれ線分 $P Q$ ，および線分 $R P$ で置き換え る。このように翼型を修正して，我々の手法を適用した（図4参照）。

要素の初期分割を接点数64，要素数 96 の分割（図5）とし て，順次組織的な二分的細分を行った。すなわら細分前要素三角形を，その頂点と各辺の中点を用いて 4 個の合同な小三角形 に分割し，それれ等を細分後の要素三角形とする。この際，細分前三角形の辺の一つが細分前計算領域の境界になる場合は，中点を原内部領域 Ω_{i} の境界上に移動させて，細分後小三角形を生成する。この手順に従って三回細分を繰り返したときの三角形分割（最密分割）は接点数 3200 ，要素数 6144 （図6）である。

この最密分割における迎え角 $\alpha=0$ のときの一様流の流れ関数から決まる流線図を図7に示す。最密分割で計算した循環流 の流れ関数から決まる流線図は図8である。我々の手法で決め たみか値は

$$
\gamma=0.0063787
$$

である。この γ の値をを使って $\psi(\gamma)=\psi_{u}+\gamma \psi_{c}$ から定めた流線図は図9である。流線は滑らかに後縁から分離していてクッタの条件をみたしていると判断出来る。図10には，迎え角 $\alpha=15^{\circ}$ のときの解析解が決定する流線と有限要素解が決定する流線と を比較して示した。いずれもクッタの条件をみたす流れに対し てである。点線で解析解を表し，実線で有限要素解を表してい る。要素分割の程度と数値計算における翼型の修正の二点を考慮しておおむむねよい—致であると判断する。

表1は，迎え角 $\alpha=0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$ のときの γ° の計算値 γ_{h} の
 してある。表1によれば，数値計算値 γ_{h} は，分割を細かくする のに応じて収束する傾向にある。その収束の速さは，三角形分割の代表的長さ h の二乗のオーダーに近いと推測される。し かしながら，そのときの収束値 γ_{0} は，理論値 γ とは，相対誤差 1% 程度の食い違いのある値と推測出来る。この食い違いは，翼 の後縁部の修正に起因する。修正した翼型そのものも，ある写像関数によって，その翼型の外部全体は，単位円の外部全体に等角写像される。この翼の等角写像の初項の係数 c_{1} から γ_{0} は， $\gamma_{0}=2 c_{1} \sin (\alpha+\beta)$ によって決まるべき量である。

後縁部の肩形切除を行わずに，領域 Ω_{i} が凹な角を後縁で，持 つものとして，三角形分割を実施して，有限要素計算を進める ことは可能である。すなぁち，ψ_{u} と ψ_{c} を数値計算し，拡大係数 U_{1} と C_{1} を後縁の点を中心とする扇形の円弧上境界 C_{ρ} 上でのこ れらの有限要素解の値を用いて数値的に定めることが可能であ る。そのような手法によって，$a=1, p=1.9, r=1.2, \beta=5^{\circ}$

の場合に数値計算を実施した。この際，三角形分割の細分を進 める毎に後縁近くで直線近似する翼面の部分の大きさは，後縁 の点からの距離が細分前の距離の $1 / 2$ になるようにとった。
表2はこの方法で得られた迎え角 $\alpha=0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$ のとき の γ の計算値 γ_{h} の収束状況と解析解から（5）によって決まる γ の値を比較して示してある。表2によれば，数値計算値 γ_{h} は，分割を細かくするのに応じて単調増加して理論值 γ に収束している ように見える。また，その収束の速さは，h の一乗のオーダー に近いように観察される。しかしながら，収束の速さが緩慢で あることから，有限の h での γ_{h} の値は，最密分割においても相対誤差 10% 程度である。このことは，後縁部の特異性によって，流れ関数自体が後縁の点で特異性を持つことになり，対応する有限要素解の収束が緩慢になることに起因している。この事情 の定性的および定量的，もしくは，理論的および数値的な詳細 にわたる解明は次の課題である。
なお図 4 から図 10 と表 1 は安藤［1］より転載した。表2は矢野［4］の結果である。

7．有限要素計算による翼の等角写像の同定

先ず，$\phi_{0}=x$ として，次の外部問題，(D) を考える。

$$
(D) \quad\left\{\begin{array}{c}
-\Delta \phi=0 \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 \text { on } \mathcal{C}, \\
\phi-\phi_{0} \text { は無限遠で有界. }
\end{array}\right.
$$

問題（D）の解 ϕ は，無限遠で流速 1 の x 軸に平行な—様流に漸近 する循環の無い二次元翼まうり流れのポテンシャル関数である。

この問題 (D) は，(E) と同様な手法で有限要素計算可能であ る。このことを踏まえて次の仮定らを設定する。

仮定5 所与の翼型 \mathcal{C} に対して，無限遠で流速 1 の x 軸に平行な一樣流に漸近する，循環の無い，二次元翼まわり流れの複素速度ポテンシャル

$$
f=\phi+i \psi
$$

は，翼の外部領域と翼面上の任意の点 z において，その値 $f(z)$ は，任意精度で計算可能である。

そこで，

$$
\begin{gathered}
\phi_{-}=\min _{(x, y) \in \mathcal{C}} \phi(x, y), \quad \phi_{+}=\max _{(x, y) \in \mathcal{C}} \phi(x, y), \\
\hat{F}_{0}=\frac{\phi_{+}+\phi_{-}}{2}, \quad a=\frac{\phi_{+}-\phi_{-}}{2}
\end{gathered}
$$

と定めて，ζ 平面上での関数 $\hat{F}(\zeta)$ を

$$
\hat{F}(\zeta)=\hat{F}_{0}+\frac{1}{2}\left(\zeta+\frac{a^{2}}{\zeta}\right)
$$

によって定義する。このとき，$|\zeta| \geq a$ なるらに対して翼の写像閏数 $\hat{C}(\zeta)$ の値 z を

$$
f(z)=\hat{F}(\zeta)
$$

をみたすものとして定める。
定理1の証明の中の式（1）によって，翼外の点 z では $\frac{d f}{d z} \neq 0$ であり，$f(z)=\hat{F}(\zeta)$ より

$$
\frac{d z}{d \zeta}=\frac{d \hat{F}}{d \zeta} / \frac{d f}{d z}
$$

が，翼外の点 z で成立する。すなわち，関数 $z=\hat{C}(\zeta)$ は $|\zeta|>a$ では，当然のことながら，正則である。

$$
\text { そこで }|\zeta|>a \text { では, }
$$

$$
\begin{aligned}
z & =\hat{C}(\zeta)=\sum_{n=1}^{-\infty} C_{n} \zeta^{n} \\
& =C_{1} \zeta+C_{0}+\frac{C_{-1}}{\zeta}+\frac{C_{-2}}{\zeta^{2}}+\cdots
\end{aligned}
$$

と展開出来ると考えて，その近似形 $z=\hat{C}^{(N)}(\zeta)$ を，

$$
\begin{aligned}
z & =\hat{C}^{(N)}(\zeta)=\sum_{n=1}^{-N} C_{n}^{(N)} \zeta^{n} \\
& =C_{1}^{(N)} \zeta+C_{0}^{(N)}+\frac{C_{-1}^{(N)}}{\zeta}+\frac{C_{-2}^{(N)}}{\zeta^{2}}+\cdots+\frac{C_{-N}^{(N)}}{\zeta^{N}}
\end{aligned}
$$

の形で定めることにする。その手順の一つを以下に述べる。
第一段 外部領域 Ω の中に互いに異なる $N+2$ 個の点 z_{j} を取 り）$f_{j}=f\left(z_{j}\right)$ とする：

$$
z_{j} \in \Omega, \quad f_{j}=f\left(z_{j}\right), \quad-1 \leq j \leq N
$$

第二段 ζ 平面の原点を中心とする半径 a の円板の外部にあ る点 ζ_{j} を $f_{j}=\hat{F}\left(\zeta_{j}\right)$ をみたすように定める。すなわち，ζ_{j} は次 の二次方程式 $\left(Z_{j}\right)$ の根のうち，$|\zeta|>a$ をみたすものである：

$$
\begin{equation*}
\zeta^{2}-2\left(f_{j}-\hat{F}_{0}\right) \zeta+a^{2}=0 \tag{j}
\end{equation*}
$$

第三段 次の $N+2$ 元の連立一次方程式 $\left(C_{N}\right)$ を解いて， $N+2$ 個の俰数 $C_{j}^{(N)},-N \leq j \leq 1$ ，を定めて，$\hat{C}^{(N)}(\zeta)$ を決定する：
$\left(C_{N}\right)\left\{\begin{array}{c}C_{1}^{(N)} \zeta_{j}+C_{0}^{(N)}+\frac{C_{-1}^{(N)}}{\zeta_{j}}+\frac{C_{-2}^{(N)}}{\zeta_{j}^{2}}+\cdots+\frac{C_{-N}^{(N)}}{\zeta_{j}^{N}} \\ =z_{j}, \quad-N \leq j \leq 1 .\end{array}\right.$
上の手順の第三段における連立一次方程式 $\left(C_{N}\right)$ は，Vander－ monde の行列式の知識によって，一意可解であることが解る。

得られた $\hat{C}^{(N)}(\zeta)$ から，本稿での標準的な翼の写像関数 $z=$ $c(\mathbf{z})$ の形に変換する作業を最後に行う。

上に述べた手順の有効性の検討，特に Theodorsen［3］他によつ て確立している伝統的な手法との比較が，当面の課題である。

謝辞

図30 NACA23012の風洞実験の値は，
G．P．D．Siemens 氏が NACA のテクニカルレポートの数表か ら数値を電子化したものをWWW で入手し使用した。ここに記して謝意を表する。昨年度の講演発表の後で，航空宇宙技術研究所吉田憲司博士から，本研究課題の歴史などにつき有益な教示を受けた。吉田博士の好意に感謝する。安藤［1］と矢野［4］ の卒業研究における数値計算は，電気通信大学助手小山大介氏 の助言の下に行われた。同氏の尽力に感謝する。

参考文献

［1］安藤一平，後縁の点を考慮したカルマントレフツ翼周り定常流の数値計算，平成 9 年度電気通信大学卒業論文，電気通信大学電気通信学部情報工学科，1998年3月．
［2］今井 功，等角写像とその応用，岩波書店，1979
［3］T．Theodorsen，I．E．Garrick，General theory of arbitrary wing sections，NACA Report No．452， 1933.
［4］天野神輔，二次元完全流体中における翼周り流れの有限要素計算，平成 9 年度電気通信大学卒業論文，電気通信大学電気通信学部情報工学科，1998年3月．
［5］横松大作，牛島照夫，二次元完全流体中のクッタの条件を みたす翼まわり流れの有限要素計算，第15回航空機計算空気力学シンポジウム論文集，科学技術庁航空宇宙技術研究所刊行 （発表1997年6月13日，刊行1998年2月）。

図 1：翼の等角写像

図 2：迎え角 α を変化させたときの正規循環量 $\gamma_{h}(\alpha)$

図 3：迎え角 α と揚力係数 C_{L}（風洞実験の值は，レイノルズ数 8.8×10^{6} のとき）

図 4：カルマン・トレフツ翼の後縁付近の抆大図 点線：翼型の直線近似，実線：理論上の翼型

図5（左上）：初期分割（接点数 64 ，要素数 96 ）
図6（右上）：最密分割（接点数 3200 ，要素数 6144 ）図7（左中）：一様流の流れ関数（迎え角なし）
図8（右中）：循環流の流れ関数
図 9 （左下）：クッタの条件を満たす流れの流れ関数
図 10（右下）：解析解の流線と有限要素解の流線の比較点線：解析解，実線：有限要素解

表 1：迎え角と三角形分割を変化させたときの，計算値 γ_{h} と理論值 γ（後縁部分餿型切除，$a=1, p=1.9, r=1.2, \beta=3^{\circ}$ ）

	迎角 0°	迎角 5°	迎角 10°	迎角 15°
分割 1	0.070585	0.186471	0.300939	0.413116
分割 2	0.065544	0.176868	0.286846	0.394641
分割 3	0.064134	0.174294	0.283127	0.389805
分割 4	0.063787	0.173649	0.282189	0.388582
理論値 γ	0.066109	0.175798	0.284149	0.390337

表 2：迎え角と三角形分割を変化させたときの，計算値 γ_{h} と
理論値 γ（後縁部分無切除，$a=1, p=1.9, r=1.2, \beta=5^{\circ}$ ）

	迎角 0°	迎角 5°	迎角 10°	迎角 15°
分割 1	-0.164221	-0.045662	0.073244	0.191593
分割 2	-0.019309	0.093930	0.206454	0.317407
分割 3	0.045227	0.156013	0.265612	0.373190
分割 4	0.075883	0.185796	0.294294	0.400552
理論値 γ	0.110091	0.219345	0.326929	0.432025

ベクトル量の輸送に対する数値計算法について

白山 晋（高度情報科学技術研究機構）

A Numerical Method for a Vector Advection

by
Susumu SHIRAYAMA（RIST）

Abstract

A linear advection－diffusion equation has been solved in order to develop a new scheme．It has been found from a relation between an interpolation method and numerical scheme that a Lagrangian scheme is one of the best way to solve a scalar advection equation．It is，however，difficult to deal with a advection equation for a vector quantity．In this paper，we consider a precise method to interpolate the vector in a cell．

1．はじめに

数値スキームを構築する上でスカラー量の移流拡散方程式 が，線形，非線形性を問わず重要な役割を担ってきた。 現時点においても，精度検証として，一次元または多次元の線形移流拡散方程式をはじめに扱うことが多い。 これまでの結果から，線形数値スキームの範䜷でスカラー量の輸送を扱 えば，スペクトル法やラグランジェ的な方法が良い性質を示 すことが確かめられている．これはスキームと局所補間を結び付けることによって裏付けることができる。 非線形ス キームも，例えば，エルミート補間のような傾きを与えるこ とのできる局所補間によって表現できる。 流線に沿つて流 れてくる情報を利用するセミラグランジェ・スキームにおい ては，格子セル内部の分布を利用するために局所補間の考え は特に重要である。
ベクトル量については一次元のシステム方程式に対し，特性速度とリーマン不変量による成分の分離（写像）の後，各成分に対してスカラー量で構留した方法を拉張するといら形 で議論がなさえることが多い。 しかしながら，二次元，三次元の速度ベクトルのような従属変数として，それ自身をベ クトル量として扱った方が物理的な意味合いの明確になる量 を各成分毎に離散化し，それぞれの数値的な特性を合わせる という方法論は保存則の観点から破綻をきたすす可能性がある。

オイラー的な方法であれば，和分形式による全領域での保存性の確認，エネルギー方程式や場全㳦での保存量の導入（例 えば荒川ヤコビアン）による整合条件や拘束条件の導入によ る打ち切り誤差や離散化の任意性の制御によって，成分毎の離散化にベクトル量としての特性を反映させることで破綻を回避できるかもしえない。 セミラグランジェ的手法の場合 は，成分每の局所補間がベクトル量の局所的分布に与える影響を調べることで保存的なスキームを構築できる可能性があ る．しかしながら，陽的にベクトル量の輸送を扱った方法 はないものと思われる．

本稿では，ベクトル量の輸送を直接的に表現する方法を提案する。セミラグランジェ法による移流スキームにあいて適切な局所補間を考察することからはじめる。提案する方法の目標は，バクトル量の移流拡散が長時間積分に対して十分精度良く扱えることである。

2．二乗量の保存特性

ベクトル量の移流拡散を扱う場合，その絶対値が数値ス キームによってどのように変化するかを調べることが重要で ある．これはベクトル量を方向と大きさに分離する考え方で

ある．ここで対象とするベクトルをuとし，その成分を (u, v, w) ，または，$\left(u_{1}, u_{2}, u_{3}\right)$ で表す。 絶対値は｜ $\mathbf{u} \mid$ とす る．

絶対値を直接扱った報告はほとんどないが，二乗量に関し てはいくつかの文献がある［1－3］．

はじめに離散化レベルでのエネルギー，エンストロフィ等 の保存概念を組み入れた方法について考察する。 和分とい ら形で全体の積分値を保存するといら離散化は，気象では非線形不安定性に関連して保存型の方程式を用いて調心られて いた．この考えはArakawa によって拡張された［1］．その概略を示す。

二次元非圧縮，非粘性流れの渦度方程式は，

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}+\mathbf{u} \nabla \zeta=0 \tag{1}
\end{equation*}
$$

 を流れ関数とすると，

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{k}} \times \nabla \Psi \\
\zeta=\hat{\mathbf{k}} \cdot \nabla \times \mathbf{u}=\nabla^{2} \Psi
\end{gathered}
$$

である．式（1）をヤコビアンJを用いて記述すると，

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}=J(\zeta, \Psi) \tag{2}
\end{equation*}
$$

となる．ここで，（．）を全領域での平均値とすると，以下のヤ コビアンの性質を導くことができる。

$$
\begin{gathered}
\overline{J(p, q)}=0, \\
\overline{p J(p, q)}=0, \\
\overline{q J(p, q)}=0 .
\end{gathered}
$$

この性質を用いると，式（2）から渦度の平均値らの保存が， Ψ •式（2）から運動エネルギーの平均値 $\frac{1}{2} \overline{\mathbf{u}^{2}}=\frac{1}{2} \overline{(\nabla \Psi)^{2}}$ の保存が，ζ •式（2）から渦度の自乗の平均値：エンストロフィの平均値 $\mathbf{\zeta}^{2}$ が保存されることがわかる。
Arakawa 法は離散化のレベルでこれらの保存が成立するよ らに離散式を求めるといらものである。 具体的には式（ 2 ） の右辺のヤコビアンのいくつかの離散化式を用意することか らはじめる。 例えば，使用するまわりの計算点を変えるな どで 3 種類の離散ヤコビアン $J_{1}^{h}, J_{2}^{h}, J_{3}^{h}$ が用意できたとする。
実際に利用する離散ヤコビアンをその3種類の線形結合で与える（Arakawa Jacobian）。

$$
J^{h}=\alpha J_{1}^{h}+\beta J_{2}^{h}+\gamma J_{3}^{h}
$$

$J^{h}, \Psi J^{h}, \zeta J^{h}$ を全領域で足しこみ，領域の大きさで割ると，離散化された渦度の平均値，運動エネルギーの平均値，エン ストロフィの平均值が求められる。 それぞれは保存される。 すなわち，三つの末知数 (α, β, γ) に対する三つの方程式が得られる．これを解けば (α, β, γ) が決定される。 離散化に おける任意性を利用することにより保存概念を離散式に組み入れるのである。

これらは全体の保存（和分形）に有効である。 但し，局所の保存を陽的に示しているわけではない。

次に非圧縮性のナビエ・ストークス方程式を扱う・森西の手法 $[2,3]$ に従って速度の二乗量の保存を扱い，連続の式の役割について考える。

非圧縮性流体の移流項の形として次の4つのものが考えら れる．移流項を（Conv．$)_{i}$ として，（Conv．$)_{i}$ は，

$$
\begin{gathered}
(\text { Div. })_{i} \equiv \frac{\partial u_{i} u_{j}}{\partial x_{j}}, \\
(\text { Adv. })_{i} \equiv u_{j} \frac{\partial u_{i}}{\partial x_{j}}, \\
(\text { Skew. })_{i} \equiv \frac{1}{2} \frac{\partial u_{i} u_{j}}{\partial x_{j}}+\frac{1}{2} u_{j} \frac{\partial u_{i}}{\partial x_{j}}, \\
(\text { Rot. })_{i} \equiv u_{j}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right)+\frac{1}{2} \frac{\partial u_{i} u_{j}}{\partial x_{j}},
\end{gathered}
$$

のいずれかの形で表現できる。 それぞれを発散型（（Div．）），移流型（（Adv．）），混合型（（Skew．）），回転型（（Rot．））と呼ぶ。次に連動方程式から運動エネルギーを見積もる。 第一成分に関する運動方程式に u_{1} を乗じると，

$$
\frac{\partial\left(\frac{1}{2} u_{1}^{2}\right)}{\partial t}+u_{1} \cdot(\text { Conv. })_{1}=-u_{1} \cdot(\nabla p)_{1}+\ldots
$$

となる．$u_{1} \cdot(C o n v .)_{1}$ は各々の形について，

$$
\begin{gathered}
u_{1} \cdot(\text { Div. })_{1}=\frac{\partial\left(\frac{u_{1}^{2}}{2}\right) u_{j}}{\partial x_{j}}+\frac{1}{2} u_{1}^{2} \cdot\left(\frac{\partial u_{i}}{\partial x_{i}}\right), \\
u_{1} \cdot(\text { Adv. })_{1}=\frac{\partial\left(\frac{u_{1}^{2}}{2}\right) u_{j}}{\partial x_{j}}-\frac{1}{2} u_{1}^{2} \cdot\left(\frac{\partial u_{i}}{\partial x_{i}}\right), \\
u_{1} \cdot(\text { Skew. })_{1}=\frac{\partial\left(\frac{u_{1}^{2}}{2}\right) u_{j}}{\partial x_{j}},
\end{gathered}
$$

となる（ここで回転型ま移流型と全く同じ性質を示すために省略）．他の成分 u_{2}, u_{3} を乗じても同様の式となる。こ の結果から従来指摘されてきたように混合型が本質的に運動 エネルギー方程式に関して保存性を持っていることがうかる。
森西はこれらの性質を離散化された方程式系について考察 し，全体が移流項の形式とコンシステントな非圧縮性流体の数値解法を導いた。

ベクトル量の局所的な輸送を考えた場合，Arakawa法は局所保存性を陽に扱わないために，ベクトル量の局所表現を算出する方法として直接利用することは難しい（全体の保存特性はスキームのチェックには用いる）。森西 の方法は，局所的な保存特性を全体のものと結び付けて いるもののコントロールボリューム法が基準であるために ベクトル量の局所的な分布に対する情報が欠落する。 このため，本稿で考えているセミラグランジェ的方法への拡張が困難である。 しかしながら，森西の考察における －すべての形式において連続の式（ $\nabla \mathbf{u}=0$ ）を満足すると，運動エネルギーの保存に関しては問題がなくなる！といら性質は，ベクトル量の局所的な分布を考える場合重要となる。

3．連続の式と二乗量の保存

前節で示したように連続の式と運動エネルギーの保存は深 く関連する．特に離散レベルで連続の式を満足させることは，非圧縮性流体において離散レベルの二乗量を保存させるため には本質的となる。
そこで，局所的なベクトル場の分布を考えたときに連続の式がどの程度満足されるのかを調べてみる。 はじめに図 1 に示す計算セルを考える。 このセル内で速度 $\mathbf{u}=(u, v)$ を双一次で補間すると，

$$
\begin{align*}
u & =u_{i, j}+\frac{u_{i+1, j}-u_{i, j}}{\Delta x} x+\frac{u_{i, j+1}-u_{i, j}}{\Delta y} y \\
& +\frac{u_{i+1, j+1}-u_{i+1, j}-u_{i, j+1}+u_{i, j}}{\Delta x \Delta y} x y \tag{3a}\\
v & =v_{i, j}+\frac{v_{i+1, j}-v_{i, j}}{\Delta x} x+\frac{v_{i, j+1}-v_{i, j}}{\Delta y} y \\
& +\frac{v_{i+1, j+1}-v_{i+1, j}-v_{i, j+1}+v_{i, j}}{\Delta x \Delta y} x y \tag{3b}
\end{align*}
$$

となる．双一次補間は多次元風上の概念としては各方向で の一次精度のものよりも高精度とさえるが，セル内での質量保存の式は，

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\left.\frac{\partial v}{\partial y}\right|_{h} \approx \\
\left(1-\frac{y}{\Delta y}\right) \frac{u_{i+1, j}-u_{i, j}}{\Delta x}+\left(\frac{y}{\Delta y}\right) \frac{u_{i+1, j+1}-u_{i, j+1}}{\Delta x} \\
+\left(1-\frac{x}{\Delta x}\right) \frac{v_{i, j+1}-v_{i, j}}{\Delta y}+\left(\frac{x}{\Delta x}\right) \frac{v_{i+1, j+1}-v_{i+1, j}}{\Delta y}, \tag{4}
\end{gather*}
$$

または，

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\left.\frac{\partial v}{\partial y}\right|_{h} \approx y \frac{\partial^{2} u}{\partial x \partial y}+x \frac{\partial^{2} v}{\partial x \partial y} \tag{5}
\end{equation*}
$$

と近似され（ここで， $0 \leq x \leq \Delta x, 0 \leq y \leq \Delta y)$ ，速度場は連続の式の意味でセル内部で一次精度となっていることが示 さえる。 セミラグランジェスキームを用いる場合には特に この点に留意する必要がある。 セル内部で連続の式が一次精度であるために二乗量の保存が破綻する可能性がある。逆に言えば，セル内部の構造を連続の式，二乗量の保存等で決定することで精度が向上する可能性がある。 こらしたセ ル内部の構造と局所近似を対応させる手法によって，正確に ベクトル場の輸送を取り扱うことのできる数値スキームの構築を行う。

図1．格子セルの幾何形状

4．数値計算法

偏微分方程式の数値解法において離散化が一意に決定 することは少なく，離散化の任意性が存在する。また， FDM，FVM，FEMといった離散化はなめらかな解の領域で局所補間と関連付けることができる［4－6］．よって局所補間 にも任意性が生じる。その任意性に着目すると，従属変数で あるベクトル量から導出できるスカラー量（二乗量など）や別種のベクトル量の保存を，目的とするベクトル量の局所補間に含めることができる。

図 2

まず，図2に示す風上領域での線形補間を対象とする。ま た，着目する保存量を二乗量 $q=u^{2}+v^{2}$ とする。 三頂点 で (u, v) が求まっているものとすれば，頂点での q も決定す る．それらの値を $\left(u_{0}, v_{0}, q_{0}\right),\left(u_{2}, v_{2}, q_{2}\right),\left(u_{4}, v_{4}, q_{4}\right)$ とす ると，対象領域にむいて (u, v, q) は以下のように近似される。

$$
\begin{align*}
& u=u_{0}+\frac{u_{0}-u_{2}}{\Delta x} x+\frac{u_{0}-u_{4}}{\Delta y} y \tag{6a}\\
& v=v_{0}+\frac{v_{0}-v_{2}}{\Delta x} x+\frac{v_{0}-v_{4}}{\Delta y} y \tag{6b}\\
& q=q_{0}+\frac{q_{0}-q_{2}}{\Delta x} x+\frac{q_{0}-q_{4}}{\Delta y} y \tag{6c}
\end{align*}
$$

一方で，qは式（6a），（6b）の近似された (u, v) からも算出で きる。

$$
\begin{gather*}
q=u^{2}+v^{2}=q_{0}+\frac{q_{0}-q_{2}}{\Delta x} x+\frac{q_{0}-q_{4}}{\Delta y} y \\
+\frac{x}{\Delta x}\left(-1+\frac{x}{\Delta x}\right)\left(\left(u_{0}-u_{2}\right)^{2}+\left(v_{0}-v_{2}\right)^{2}\right) \\
+\frac{y}{\Delta y}\left(-1+\frac{y}{\Delta y}\right)\left(\left(u_{0}-u_{4}\right)^{2}+\left(v_{0}-v_{4}\right)^{2}\right) \\
+2 \frac{x y}{\Delta x \Delta y}\left(\left(u_{0}-u_{2}\right)\left(u_{0}-u_{4}\right)+\left(v_{0}-v_{2}\right)\left(v_{0}-v_{4}\right)\right) \tag{7}
\end{gather*}
$$

式（6c）と式（7）の相違がセル内部の構造を考える上で重要で ある．式（6c）と式（7）が表すセル内部での場を図3に示す速度（中心を（ $0.25 \Delta x,-0.5 \Delta y$ ）においた渦場から生じるも の）を用いて示したのが図4である。

図3

図4a式（6c）を用いた分布

図4b式（7）を用いた分布

もし式（6c）の近似が正確であるとすれば，セル頂点で二乗量 の保存が成立するようなベクトル場でも，セル内部において式（6a），式（6b）から計算される二乗量は保存しない。逆に セル内部で二乗量を保存させるように式（6a），式（6b）を修正 すれば，セル内での保存の良い局所補間を求めることができ る．その補間をセミラグランジェ法に適用すれば，保存則 を満足するようにスキームを設計できる可能性がある。
一例として，一次元の線形移流方程式を用いて方法を説明

する．ベクトル量 (u, v) に対する線形の移流方程式は，

$$
\begin{align*}
& \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}+B \frac{\partial u}{\partial y}=0 \tag{8a}\\
& \frac{\partial v}{\partial t}+A \frac{\partial v}{\partial x}+B \frac{\partial v}{\partial y}=0 \tag{8b}
\end{align*}
$$

である．ここで移流速度を (A, B) とした。 はじめに従属変数であるベクトル場に対して，ある演算子を施してスカ ラー量または別種のベクトル量を作る．ここでは，二乗量 q を採用する。 式（8a），（8b）から次式が成立する。

$$
\begin{equation*}
\frac{\partial q}{\partial t}+A \frac{\partial q}{\partial x}+B \frac{\partial q}{\partial y}=0 \tag{8c}
\end{equation*}
$$

次に式（ 8 c ）を解くのだが，スカラ一量に対する精度の良いス キームが提唱さえているのでそのスキームを用いえばよい。

そして，多くの数値スキームは局所補間と関連付けられる のでスカラー量に対するセル内の分布を求めることができる。

その分布を用いて従属変数であるべクトル量の局所補間を補正する。 その後，式（8a），（8b）を以下のようにセミラグ ランジェスキームで解く。

$$
\begin{align*}
u^{n+1} & =u^{n}\left(x_{i, j}-A \Delta t, y_{i, j}-B \Delta t\right), \tag{9a}\\
v^{n+1} & =v^{n}\left(x_{i, j}-A \Delta t, y_{i, j}-B \Delta t\right) . \tag{9b}
\end{align*}
$$

(u, v, q) のセル内の適切な分布が求まれば，式（8）の時間積分 を正確に遂行できる。 ただし，q の分布に注意しなければな らない。例えば，式（8c）を一次の風上法で解けば，式（6c） のセル内分布となるが，式（6c）の近似の正当性を十分に吟味 しておかなければ従属変数 (u, v) に対する正しい局所補間を導くことはできない。

4.1 ベクトル場の局所補間 1

さて，式（6c）の近似が良いものとして，(u, v) の構成法を考えてみよう．式（6a），式（6b）の代わりに次式を用いる。

$$
\begin{gather*}
u=u_{0}+\frac{u_{0}-u_{2}}{\Delta x} x+\frac{u_{0}-u_{4}}{\Delta y} y+\alpha x y \tag{10a}\\
v=v_{0}+\frac{v_{0}-v_{2}}{\Delta x} x+\frac{v_{0}-v_{4}}{\Delta y} y+\beta x y \tag{10b}
\end{gather*}
$$

式（10a）と（10b）を $u^{2}+v^{2}$ に代入後，式（7）と比較して，α と β を決定する．

4.2 ベクトル場の局所補間 2

ベクトル場を方向と大きさに分けることで，大きさ（二乗量）の近似を核とした局所補間を構成することができる，ま ず，式（6a），（6b）を，

$$
\begin{align*}
& \hat{u}=u_{0}+\frac{u_{0}-u_{2}}{\Delta x} x+\frac{u_{0}-u_{4}}{\Delta y} y \tag{10a}\\
& \hat{v}=v_{0}+\frac{v_{0}-v_{2}}{\Delta x} x+\frac{v_{0}-v_{4}}{\Delta y} y \tag{10b}\\
& q=q_{0}+\frac{q_{0}-q_{2}}{\Delta x} x+\frac{q_{0}-q_{4}}{\Delta y} y \tag{10c}
\end{align*}
$$

とする。 (\hat{u}, \hat{v}) から方向成分を抽出する。

$$
u^{*}=\frac{\hat{u}}{\sqrt{\hat{u}^{2}+\hat{v}^{2}}}, \quad v^{*}=\frac{\hat{v}}{\sqrt{\hat{u}^{2}+\hat{v}^{2}}}
$$

式（10c）を用いて，$u=u^{*} \sqrt{q}, v=v^{*} \sqrt{q}$ とすることで，セ ル内部の (u, v) を構成する。

この方法も，スカラー量 q のセル内の分布関数を基準とし て，ベクトル場の分布を求めるものである．説明のために線形補間を採用したが，スカラー量qに関する保存性の良い数値スキームを採用し，その数値スキームから導かれるセル内のqの分布関数を利用主れば，高精度化への拚張は難しく ない。

おわりに
セミラグランジェ・スキームにあいて，ベクトル量の輸送 を正確に記述するための局所的な補間について考察した。現時点で得られている知見は以下の通りである。
－ベクトル量の輸送を正しく扱ちにな保存概念を離散式に組 み入れることが重要である。 具体的には，

- 数値アルゴリズム全体の整合性
- 離散化にあける任意性
- 局所補間における任意性

を利用すえしばよい。
－ベクトル量を方向と大きさに分離することにより，大きさ （二乗量）に対する最適な局所補間を探すことができれば，保存性の良い分布関数を得ることができる。これをセミラグラン ジェ的方法に利用してベクトル量の移流方程式を解けばよい。
－但し，ベクトル量に対してある演算子（作用素）を施した場合のスカラー量に関するセル内の近似の正当性を補助的な支配方程式を利用して調心゙る必要がある。
－直交等間隔格子系ではある程度成功しているが，一般のセ ル形状での議論が今後の課題となる。

参考文献

1．Arakawa，A．，J．Comp．Phys．vol．1，1966，pp．119－ 143.

2．森西洋平，日本機械学会論文集（B編）， 62 巻 604 号， pp．4090－4097（1996）
3．森西洋平，日本機械学会論文集（B編）， 62 巻 604 号， pp．4098－4105（1996）
4．Shirayama，S．，Bulletin of the American Physical So－ ciety，vol．34，no．10，1989，p． 2314.
5．Shirayama，S．，AIAA－91－1563－CP，Proceedings of the AIAA 10th Computational Fluid Dynamics Con－ ference，June， 1991.
6．Shirayama，S．，AIAA Journal，vol．30，no．5，1992， pp．1237－1242．

保存則（スカラー及び系）の差分近似の高精度化について

相曽秀昭（AISO，Hideaki）＊

Abstract

In this report we treat differene approximation for scalar conservation laws．We are interested in the consistency with entropy condition，which is essential for the convergence to the entropy solution．Here we revisit and use Oleĭnik＇s E－condition，one of the statements which define the entropy condition，to analyze the consistency with entropy condition，although we usually employ Lax＇s entropy inequality，another definition of the entropy condition．The viewpoint of Oleĭnik＇s E－condition gives us a result which is more related with numerical behavior of difference approximation．

1．まえがき

偏微分方程式の数値計算では何らかの離散近似を用い る。数学的な見地からこれらの離散近似を構成又は改善し ようとする場合に行われる議論は大まかには次の 3 種類に分けられる。
（0）考えられている偏微分方程式の解の存在や一意性，そ の他の性質の解析。
（1）離散近似の収束の解析。即ち，離散化を無限に密にし た場合の極限（差分化の場合には，$\Delta x, \Delta t$ 等の差分の間隔を0に近づけた場合の極限）に於いて，離散近似に よって得られる数値解が計算の目的である偏微分方程式の真の解に収束するか否かについての議論。
（2）離散近似で得られる数値解の挙動（質又は性質）の解析。即ち，（1）の議論によって真の解への収束が保証された場合について，収束の様子について更に精密な解析を行い，有限な離散化に於ける数値解の挙動で不都合な事は起こらないか否かを考察する。
（0）のような解析は離散近似に直接関係しない事もある が，解の性質を知る事は離散近似の研究に必要な事である。 また，この様な解析の中で適当な離散近似の極限として解 を構成する事もあり，その場合には解の構成の議論自体が当該差分近似の真の解への収束の証明にもなる。ただ，そ のような離散近似であっても直ちに数値計算に実用できる とは限らない。解の構成の為の離散化（証明可能なものを一つ考案すれば十分）と数値計算の為の離散化（数値計算結果の品質を高めるための工夫が必要，また数値計算の目的 に応じて異なる離散化が用いられることも多い）の性格の相違の認識する必要がある。
（1）では（0）の目的に用いられない離散近似も解析の対象になる。その意味では数値計算を意識した数学的な解析 （数値解析）に特有な問題意識である。実際，（1）は数値計算の為の離散近似に求められる最低限の条件であり，離散近似が収束しなかったり真の解でないものに収束すれば数

[^36]値計算の信頼性は失われてしまう。それ故，収束について の理論的な理論的な検討は古くから行われてきた。工学に現れる問題で十分に実用となることが経験（厳密解との比較や実験との比較等）から知られながら数学的な収束証明 が得られていない離散化も依然として存在するが，これら の方法は何らかの妥当性を内在していると考えられる訳で今後の研究の進展によりいずれは収束の証明がなされると期待してよいであろう。
（2）は数値解析により特有な問題意識である。（1）の議論によって真の解への収束が数学的に保証される離散化で あっても，実用計算で求められる品質が満足されないこと は多い。（1）の議論では離散化は無限に密になる（差分近似 で言えばいくらでも格子を密にして格子点数を大きくでき る）ということが前提にあるので，実用計算で通常使用さ れる程度の離散化（計算機資源の量，計算時間等により制約される）では数値計算結果が求められる品質に達しない ことも十分に生じ得る。そのため，収束の様子をより詳細 に検討し，離散近似から得られた数値解と真の解との誤差 や数値解自体の挙動を定量的または定性的に解析すること が重要である。この観点は偏微分方程式の解の性質を追求 する為の解析では殆ど意識されないと考えられ，数学的な道具（理論体系）も数値解析の側から提案していかねばなら ないことが多い。

Euler 方程式等が含まれ流体力学でも重要視される保存則の差分近似に関する研究状況を簡単に述べれば次の様に なる。
（0）保存則の解は不連続を有する為，通常はエントロピー条件を満たす弱解（エントロピー解）が解として期待さ れる。スカラ一保存則の解の存在と一意性はOleĭnik［9］ により40年ほど前に示された。しかし保存則の系では解の存在や一意性の解析は大変に困難であり，その典型例である圧縮性 Euler 方程式についても未だよく分 かっていない。
（1）上の（0）で述べた事情の故，収束の理論的証明は殆どの場合にスカラー保存則に限定される。スカラー保存則の種々の差分近似について収束を論じることは，Oleĭnik［9］以来いろいろと行われてきた。（ $[1,4,5,10,11]$ 等を参照 のこと）個々の差分近似についてでなくある範囲の差分

近似の類（class＝集まり）について収束を論じるもので は，単調型（monotone）差分近似を扱った［3］，TVD（全変動减少）型を扱った［8］（エントロピー解への収束は保証されないがTVD 型は収束を考える上で重要な類 である），E－scheme の類を扱った［11］などがある。筆者もエントロピー解に収束する差分近似を数値粘性の視点から定める許容的（admissible）差分近似の類［1］を提案している。［1］は［11］をほぼ拡張可能な限度まで拡張した結果で，陽的 3 点差分近似のエントロピー解へ の収束に関して best－possible な結果である。また，［1］ の拡張として，高精度を得る為の 5 点差分近似（又は 5 点以上）ではどのような差分近似の類がエントロピー解に収束するかを論じたもの［2］も発表されている。
（2）保存則の差分近似の精度を論じる殆どの方法は，Taylor展開での打切誤差の次数から精度を考察している。し かしながら，至る所2次以上の精度を有する差分近似 は収束し得ないので，精度を 1 次に落とす例外的な部分が必ず存在する。種々の研究により高次精度が保証 される部分は広がったが，解の滑らかさを仮定するこ の方法は衝撃波や接触不連続，膨張波領域の境界（空間 1 次元では膨張波の両端）といった解の滑らかさが失わ れた特異的な部分に対して有効ではない。一方，保存則の非線型性に由来する現象に対応する数値的挙動の解析の重要性を考えると，より有効な解析の手段が必要とされている。

本稿では，（2）の観点からの解析の一つとして，Oleĭnik のE－条件を用いてスカラー保存則の差分近似の数値挙動 を解析した例を紹介する。E－条件はスカラー保存則のエン トロピー条件を定義する方法の一つであるが，［9］で Lax－ Friedrichs 差分近似のエントロピー条件への適合を証明す るのに用いられて以降，差分近似の解析には殆ど用いられ ていない。しかし，数値的挙動の解析に重点を置く場合， E－条件への適合の議論はエントロピー不等式への適合に比 べて有利な点もある。特に逆衝撃波の膨張過程に於いて生 じる＂bridge＂亡称される数値的現象 ${ }^{1}$ 等の不都合な数値的挙動や膨張波の境界付近での「だれ」などを数式を用いて うまく説明できる方法となっている。

[^37]
2．保存則とその差分近似

関数 $u=u(x, t),-\infty<x<\infty, t \geq 0$ についてのスカ ラー保存則の初期値問題

$$
\left\{\begin{array}{l}
u_{t}+f(u)_{x}=0,-\infty<x<\infty, t>0 \tag{1}\\
u(x, 0)=u_{0}(x),-\infty<x<\infty
\end{array}\right.
$$

を近似する為の差分近似を考える。但し，流速関数fは適当 な正数 δ に対して $f^{\prime \prime}>\delta$ が成り立ついわゆる厳密凸（strictly convex）関数であると仮定しておく。

差分の幅を x－方向と t－方向にそれぞれ $\Delta x, \Delta t$ とし，そ の比 $\lambda=\frac{\Delta t}{\Delta x}$ を固定する。各格子点 $(x, t)=(i \Delta x, n \Delta t)$ に割り当てられる $u=u(x, t)$ の近似値 u_{i}^{n} を定める手順とし て次の粘性型（陽的）差分を仮定する。

$$
\begin{align*}
u_{i}^{n+1}= & u_{i}^{n}- \\
& \frac{\lambda}{2}\left\{f\left(u_{i+1}^{n}\right)-f\left(u_{i-1}^{n}\right)\right\} \tag{2}\\
& +\frac{\lambda}{2}\left\{a_{i+\frac{1}{2}}^{n}\left(u_{i+1}^{n}-u_{i}^{n}\right)-a_{i-\frac{1}{2}}^{n}\left(u_{i}^{n}-u_{i+1}^{n}\right)\right\}
\end{align*}
$$

この差分近似は各係数 $a_{i+\frac{1}{2}}^{n}$ により定まり，これらの係数は数値粘性係数と呼ばれる。2また数値流速 $\bar{f}_{i+\frac{1}{2}}^{n}$ を

$$
\begin{equation*}
\bar{f}_{i+\frac{1}{2}}^{n}=\frac{1}{2}\left\{f\left(u_{i}^{n}\right)+f\left(u_{i+1}^{n}\right)\right\}-\frac{1}{2} a_{i+\frac{1}{2}}^{n}\left(u_{i+1}^{n}-u_{i}^{n}\right) \tag{3}
\end{equation*}
$$

で定めれば（2）は次の保存型に書ける。

$$
\begin{equation*}
u_{i}^{n+1}=u_{i}^{n}-\lambda\left\{\bar{f}_{i+\frac{1}{2}}^{n}-\bar{f}_{i-\frac{1}{2}}^{n}\right\} \tag{4}
\end{equation*}
$$

差分近似という場合，差分近似の手続きを定める式（2） や（4）の他，それら手続きから得られた差分近似のデータ $\left\{u_{i}^{n}\right\}_{i, n \in Z n \geq 0}$ を指す事もある。

差分近似の収束の議論では，各 $\Delta=(\Delta x, \Delta t)$ について定まる差分近似の値 $\left\{u_{i}^{n}\right\}_{i, n \in Z n \geq 0}$ から関数 u_{Δ} を

$$
u_{\Delta}(x, t)=u_{i}^{n},\left\{\begin{array}{l}
\left(i-\frac{1}{2}\right) \Delta x<x<\left(i+\frac{1}{2}\right) \Delta x \tag{5}\\
n \Delta t \leq t<(n+1) \Delta t
\end{array}\right.
$$

で定め，$\Delta \longrightarrow(0,0)$ としたときの u_{Δ} の収束を考える。 また，差分近似の初期値 $\left\{u_{i}^{0}\right\}_{i \in 2}$ は $\Delta \longrightarrow(0,0)$ のときに $u_{\Delta}(\cdot, 0) \longrightarrow u_{0}$ となるように適当に定める。例えば，

$$
\begin{equation*}
u_{i}^{0}=\frac{1}{\Delta x} \int_{\left(i-\frac{1}{2}\right) \Delta x}^{\left(i+\frac{1}{2}\right) \Delta x} u_{0}(x) d x \tag{6}
\end{equation*}
$$

のようにとってもよい。
さて，初期値問題（1）のエントロピー解について簡単に復習する。問題（1）は $f(u)$ の非線型性ゆえに初期値が滑 らかであっても通常は $0<t<\infty$ での滑らかな解は存在 しない。そこで不連続を許容する為，C_{0}^{∞} に属する任意の関数 ϕ（即ち無限回微分可能で，$|x|, t$ が十分に大であれば $\phi(x, t)=0$ となる任意の関数）について

$$
\begin{align*}
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left\{u(x, t) \phi_{t}(x, t)+f\right. & \left.f(u(x, t)) \phi_{x}(x, t)\right\} d x d t \\
& +\int_{-\infty}^{\infty} u_{0}(x) \phi(x, 0) d x=0 \tag{7}
\end{align*}
$$

が成立すれば $u=u(x, t)$ を解と考える事にしてこれを弱解 $u=u(x, t)$ と呼ぶ。しかし弱解は一意でないという不都合 があり，物理的な視点から見れば妥当ではない解（亜音速 から超音速に加速する衝撃波，いわゆる逆衝撃波を有する解など）も含まれる事になる。そこで通常はエントロピー条件（このエントロピー条件については次節で詳説する）と いう付加的条件を考え，それらの妥当でない弱解を排除し て一意な解を定めようとしている。この様に定められる解 をエントロピー解と呼んでいる。スカラー保存則の初期値問題（1）ではエントロピー解の存在と一意性は証明されて いる。［9］

3．エントロピ一条件

初期値問題（1）の弱解に対するエントロピー条件の記述 には同値なものがいくつか存在する。ここではよく用いら れるもの3つを述べる。
（E1）(x, t) 空間内の曲線 $C: x=s(t), t \in S(S$ は適当な区間）に沿って解に不連続があるとき，C 上の任意の点 $(s(t), t)$ に於いて

$$
\begin{equation*}
\lim _{x \uparrow s(t)} f^{\prime}(u(x, t))>s^{\prime}(t)>\lim _{x \downarrow s(t)} f^{\prime}(u(x, t)) \tag{8}
\end{equation*}
$$

が成立する。
（E2） 2 つの関数の対 (U, F) で
1．U が凸かつ
2．$F^{\prime}=U^{\prime} f^{\prime}$
を満足するものをエントロピー対（entropy pair）と呼 ぶ。任意のエントロピー対 (U, F) に対し，次のエント ロピー不等式（distribution の意味で解釈される）

$$
\begin{equation*}
U(u)_{t}+F(u)_{x}=0 \tag{9}
\end{equation*}
$$

が成立する。
（E3）適当な正定数 E が存在して，不等式

$$
\begin{equation*}
\frac{u(x+h, t)-u(x, t)}{h}<\frac{E}{t} \tag{10}
\end{equation*}
$$

が任意の一 $\infty<x<\infty, t>0, h>0$ に対して成立 する。

よく知られているように問題（1）の解の滑らかな部分の任意の場所で特性曲線を考えることができるが，これら特性曲線が発生するか又は消滅するのは解の不連続と $t=0$ に於いてである。（E1）は解の不連続に於ける特性曲線の発生と消㓕について条件を課していて，「解の不連続から時間進行の方向に向かって特性曲線が発生することはない」と いうことを規定している。これはEuler 方程式の記述する王縮性流体現象の「衝撃波を流体が通過する前は超音速か つ通過した後は亜音速でなければならない」という事実に対応している。
（E2）は $x-$ 空間内の任意有限体積 V で U なる量の収支に注目している。（ここでは「体積」は1次元の体積即ち長 さであることに注意しておく）仮に（9）の等号が成立すれ

ば，Vの境界を通じての量 U の流入流出が存在するのみで V 内での量 U の生成消滅はないことになる。不等式（9）の不等号は任意有限体積内で量 U の消滅の可能性のみを許容 し生成が有り得ない事を意味する。弱解 $u=u(x, t)$ が滑 らかな部分では $F^{\prime}=U^{\prime} f^{\prime}$ から（ 9 ）の等号が成立するので， （E2）は実質的には不連続に於いてのみ条件としての意味を持つ。量 U はエントロピーと呼ばれる。
（E3）は各 $t>0$ での $u=u(x, t)$ の x－方向での平均変化率の上界を規定しており，その上界は t に反比例する。解 $u=u(x, t)$ が滑らかかつ x－方向に増加する部分ではい わゆる膨張（rarefaction）を生じているが，この膨張の仕組 みを記述しているとも考えられる。また， $\lim _{x \uparrow x_{0}} u(x, t)<$ $\lim _{x \uparrow x_{0}} u(x, t)$ となるような不連続はいかなる点 $\left(x_{0}, t\right), t>0$ に於いても許容されない事を示している。（但し $t=0$ 即ち初期値では許容されている。）

標語的には（E1），（E2），（E3）を
（E1）：不連続での特性曲線の生成消滅を規定する。
（E2）：各有限体積のエントロピー収支を規定する。
（E3）：膨張の仕組みを規定する。
の様に言ってよいと思われる。但し，この 3 条件はスカラー保存則のエントロピー条件の異なる記述の方法に過ぎない のであって互いに同値であることに今一度注意する。

4．差分近似のエントロピ一条件適合性

さて，差分近似のエントロピー解への収束を保証しよう とすれば，差分近似がエントロピー条件に相当する何らか の性質を有する事（エントロピー条件適合性）を示しその事実から差分近似が収束する先の弱解もエントロピー条件 を満たす事を導くのが普通の方法である。勿論，エントロ ピー条件適合性以前に差分近似の弱解への収束が問題とな るが，TVD（全変動减少）の性質を利用してかなり広い範囲 の差分近似を扱うことができるのでここでは議論しない。 TVD の性質と収束の関係については［1，8］に詳しい。

差分近似のエントロピー条件適合性を論じる為に，前節 のエントロピー条件の記述（E1），（E2）又は（E3）がどのよ らに用いられるかを考察しよう。
（1）（E1）は不連続に於いて不等式（8）の成立を求めている。 これは

$$
\begin{equation*}
\lim _{x \uparrow s(t)} f^{\prime}(u(x, t))<s^{\prime}(t)<\lim _{x \downharpoonright s(t)} f^{\prime}(u(x, t)) \tag{11}
\end{equation*}
$$

となる場合を排除する事を意味する。しかし，エント ロピー解解 $u=u(x, t)$ の滑らかな部分に於いても，任意の正実数 $h>0$ について

$$
\begin{equation*}
f^{\prime}(u(x, t))<f^{\prime}(u(x+h, t)) \tag{12}
\end{equation*}
$$

となる事があり得る。（膨張領域を考えればよい。）そ こで，差分近似 $\left\{u_{i}^{n}\right\}_{i, n \in Z}$ n ≥ 0 において

$$
\begin{equation*}
f^{\prime}\left(u_{i}^{n}\right)<f^{\prime}\left(u_{i+1}^{n}\right) \tag{13}
\end{equation*}
$$

なる状況が生じた場合，エントロピー条件に反する不連続である（11）の状況に相当するのか，それとも解は

滑らかで（12）に相当するのかを判断する必要が出てく る。これは本質的には離散的でしかない差分近似の数値データ $\left\{u_{i}^{n}\right\}_{i, n \in Z, n \geq 0}$ を元にそれが近似する弱解の不連続の場所を推定する（即ち，隣接する各格子点の組 $(i \Delta x, n \Delta t)$ と $((i+1) \Delta x, n \Delta t)$ でその 2 点間に弱解の不連続が存在するものを選び出す）事の必要性を意味 するが，この問題自体が大変に困難な問題である。以上の理由から，この方法でエントロピー条件への適合 を検証するのは容易でなく，実際，解析に用いられた例は殆どない。
（2）差分近似でエントロピー不等式（9）に相当するものは数値エントロピー不等式

$$
\begin{align*}
& U\left(u_{i}^{n+1}\right)-U\left(u_{i}^{n}\right)+\frac{\lambda}{2}\left\{F\left(u_{i+1}^{n}\right)-F\left(u_{i-1}^{n}\right)\right\} \\
& -\frac{\lambda}{2}\left\{A_{i+\frac{1}{2}}^{n}\left(u_{i+1}^{n}-u_{i}^{n}\right)-A_{i-\frac{1}{2}}^{n}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right\} \leq 0 \tag{14}
\end{align*}
$$

である。ここで各係数 $A_{i+\frac{1}{2}}^{n}$ は i, n ，や Δ に関係なく一様有界（即ち適当な M について $\left|A_{i+\frac{1}{2}}^{n}\right|<M$ ）でなければ ならない。
（3）（E3）の不等式（10）に相当するものとして差分近似 $\left\{u_{i}^{n}\right\}_{i, n \in Z} n \geq 0$ では

$$
\begin{equation*}
\frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x}<\frac{E^{\prime}}{\Delta t} \tag{15}
\end{equation*}
$$

又は

$$
\begin{equation*}
\frac{u_{i+1}^{n}-u_{i-1}^{n}}{2 \Delta x}<\frac{E^{\prime}}{n \Delta t} \tag{16}
\end{equation*}
$$

といった形の不等式（但し，E^{\prime} は適当な正実数）を考え られる。

以上から，差分近似のエントロピー条件適合性の解析に は（2）又は（3）の様な方法で（E2）又は（E3）への適合性を議論するのが自然と考えられる。この 2 つの比較を進めよう。

数値エントロピー不等式（14）の解析では不連続の位置 についての情報を必要としない。そのため，差分近似の数値的挙動に対する考察をそれほど行うことなく解析を進め ること可能である。即ち，数値エントロピー不等式は差分近似のエントロピー条件適合性の理論的考察の為には非常 に洗練された記述である。実際，Godunov の差分近似［5］， Engquist－Osher の差分近似［4］，Tadmor の E－差分近似［11］ のクラス，筆者による許容的（Admissible）差分近似［1］の クラス等のエントロピー条件適合性は数値エントロピー不等式（14）又はこれと同等の不等式によって示された。［1］ の議論を拡張した［2］では高精度差分近似も含むかなり広 い範囲の差分近似のエントロピー条件適合性が示されてい る。反面，この特徴は数値エントロピー…等式（14）による差分近似の数值的挙動の支配が直接的でない事も意味して おり，数値エントロピー不等式を手がかりに差分近似の数値的挙動を解析するのは容易でないことを示している。

一方，（15）や（16）の様な不等式を直接証明できる差分近似の範囲は数値エントロピー不等式の場合程には広くな いと予想されるが，E－条件（10）が膨張の生じる部分でエン トロピー解の挙動を支配するのと同様にこれらの不等式は

差分近似の数値データを值接的に支配している。つまり差分近似の数値的挙動についての情報がより具体的に得られ ると考えてよい。E－条件への適合によるエントロピー条件適合性の議論は，Oleĭnik［9］によるスカラー保存則のエント ロピー解の存在と一意性の証明の中で Lax－Friedrichs の差分近似に対して行われた。これは差分近似のエントロピー条件適合性の議論で最初のものであるが，Godunovの差分近似から後は数値エントロピー不等式によるエントロピー条件適合性の議論に代わられた。しかし，差分近似の高精度化にはその数値的挙動の解析が不可欠である事を考慮す れば，Lax－Friedrichs 以外にどのような差分近似が E－条件 に適合するかを解析することも重要である。

次節以降，差分近似のE－条件の適合について解析した結果を述べる。

5．E－条件への適合性

先ず［9］で扱われた Lax－Friedrichs 差分近似の場合につ いて簡単に見ておく。この差分近似は（2）の数値粘性係数を $a_{i+\frac{1}{2}}^{n} \equiv \frac{1}{\lambda}$ で定める事で得られ，本質的に staggered mesh（互い違い型格子）上の差分近似である。［9］では（16）の形の不等式が大体次の様に示されている。

1．流速関数 f の厳密凸性から，$z^{n} \leq \max _{i \in \mathbb{Z}}\left\{u_{i+1}^{n}-u_{i-1}^{n}\right\}$ に ついて，

$$
\begin{equation*}
z^{n+1} \leq z^{n}-\frac{\lambda c}{4}\left(z^{n}\right)^{2} \tag{17}
\end{equation*}
$$

$$
\text { を導く。(但し } \left.c=\inf f^{\prime \prime}\right)
$$

2．不等式（17）から

$$
\begin{equation*}
\frac{z^{n+1}}{2 \Delta x}<\frac{2}{c} \frac{1}{n \Delta t} \tag{18}
\end{equation*}
$$

が導かえるる。
ここで不等式（10）右辺中の定数 Eの optimal value は ${ }^{1}$ で あるのに対し，差分近似の不等式（16）の E^{\prime}（元の不等式 （10）のEに対応）に当たるものが $\frac{2}{c}$ である事に注意する。E－条件は不等式（10）を満足する何らかの定数 E の存在のみ要求するのもので，Lax－Friedrichs 差分近似で構成された近似解の極限としてエントロピー解を構成するのが目的であれ ば不等式（16）を満足する定数 E^{\prime} が存在すれば十分である。 しかし数値計算結果に注目すれば，E^{\prime} が E の optimal value の 2 倍である事の影響が膨張波の部分で観察される。（膨張波領域内部での膨張の不足とそれに付随して起こる膨張波 の境界での「だれ」等）勿論，エントロピー解への収束が証明されているので，$\Delta x, \Delta t$ を小さくすればする程にこう した数値的不都合は目立たない形になり数値解はエントロ ピー解に近づいていく。ただ，現実の数値計算では $\Delta x, \Delta t$ をいくらでも小さくできる訳ではない。そのような環境下 で数値解の質を問題とする場合 $E^{\prime} か ゙ E$ の optimal valueか らどの程度異なるかは重要になってくる。

さて，ここでは E－条件への適合性の解析を Lax－ Friedrichs 以外の差分近似に拡張する。次の 2 つの定理が成立する。

定理1粘性型差分近似（2）が Godnov 差分近似で ある，即ち各数値粘性係数 $a_{i+\frac{1}{2}}^{n}$ が

$$
\begin{equation*}
a_{i+\frac{1}{2}}^{n}=\max _{\left(s-u_{i}^{\mathrm{m}}\right)\left(s-u_{i+1}^{n}\right)} \frac{f\left(u_{i}^{n}\right)+f\left(u_{i+1}^{n}\right)-2 f(s)}{u_{i+1}^{n}-u_{i}^{n}} \tag{19}
\end{equation*}
$$

により定められる場合，ある正定数 E^{\prime} が存在して，

$$
\begin{equation*}
\frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x}<\frac{E^{\prime}}{n \Delta t} \tag{20}
\end{equation*}
$$

が全ての $i, n \in Z, n \geq 1$ で成立する。
定理2 $0<\epsilon_{0}<\frac{1}{2}$ を満たす任意の ϵ_{0} を固定する。関数 $h(s),-1 \leq s \leq 1$ を次の条件が満足されるよ うに定める。

1．$h(s)$ は s の連続関数。
2．$h(0) \geq \frac{\epsilon_{0}}{\lambda}$ ．
3．$h(-s)=h(s)$ ．
4．$|s| \geq \frac{1}{2}$ である s に対し $h(s)=|s|$ ．
5．h は凸関数，即ち

$$
h\left(\theta s_{1}+(1-\theta) s_{2}\right) \leq \theta h\left(s_{1}\right)+(1-\theta) h\left(s_{2}\right) .
$$

上記の関数 h と

$$
q_{i+\frac{1}{2}}^{n}=\left\{\begin{array}{l}
\frac{f\left(u_{i+1}^{n}\right)-f\left(u_{i}^{n}\right)}{u_{i+1}^{n}-u_{i}^{n}}, u_{i+1}^{n} \neq u_{i}^{n} \tag{21}\\
f^{\prime}\left(u_{i}^{n}\right), u_{i+1}^{n}=u_{i}^{n}
\end{array}\right.
$$

なる $q_{i+\frac{1}{2}}^{n}$ によって粘性型差分近似（2）の各数値粘性係数 $a_{i+\frac{1}{2}}^{n}$ が

$$
a_{i+\frac{1}{2}}^{n}= \begin{cases}h\left(q_{i+\frac{1}{2}}^{n}\right), & u_{i}^{n}<u_{i+1}^{n} \tag{22}\\ \left|q_{i+\frac{1}{2}}^{n}\right|, & u_{i}^{n} \geq u_{i+1}^{n}\end{cases}
$$

で定められる場合，ある正定数 E^{\prime} が存在して，

$$
\begin{equation*}
\frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x}<\frac{E^{\prime}}{n \Delta t} \tag{23}
\end{equation*}
$$

が全ての $i, n \in Z, n \geq 1$ で成立する。
上の両定理とも（15）の形の不等式を結論としていて，こ の点が Lax－Friedrichs 差分近似を扱った Oleǐnik の結果と は異なるが，E－条件への適合性を扱う点ではOleĭnik の結果の拡張である。また，定理 2 は Harten $[6,7]$ 等で提唱され た entropy－fix（エントロピー修正）の技法が E －条件の視点 から見ても妥当なものである事を示している。（entropy－fix のエントロピー条件適合性に関しては，数値エントロピー不等式の手法で筆者［1］が既に議論している。）

以下，証明を概観する。
証明の本質は流速関数fの凸性に依存している。定理1 については，$u_{i+1}^{n+1}-u_{i}^{n+1}$ を $u_{i}^{n}-u_{i-1}^{n}$ と $u_{i+1}^{n}-u_{i}^{n}$ によって評価し（17）と同様の評価式を得ればよい。ただ，上流型差分 でありながらも見かけ上は対称性を有する Lax－Friedrichs差分と異なり，Godunov 差分に於いては $u_{i-1}^{n}, u_{i}^{n}, u_{i+1}^{n}$ の

関係によって場合を分けて議論せねばならない。このよう な証明から得られる結論の不等式（20）の右辺分子の定数 E^{\prime} の optimal value が，Lax－Friedrichs 差分の場合の 2 倍 の $\frac{4}{\inf f^{\prime \prime}}$ となる。この事実は数値的には重要である。数値計算の観点からは Godunov 差分の方が Lax－Friedrichs 差分よりも総合的に優れている事が認められているものの， bridge はLax－Friedrichs 差分よりも顕著である事が知られ ている。本定理によれば，この bridge 現象を定数 E^{\prime} の違 いに由来するものとして説明できる。，定理 2 の証明はも う少し複雑になる。まず，定理の仮定の関数 $h(s)$ は

$$
\begin{equation*}
h_{\epsilon}(s)=\max \left\{|s|, \frac{\epsilon}{\lambda}\right\} \tag{24}
\end{equation*}
$$

で定められる関数 $h_{\epsilon}(s),-1 \leq s \leq 1$ の族 $\left\{h_{\epsilon}\right\}_{0<\epsilon<\frac{1}{2}}$ の凸結合で生成されることから，h は $h_{\epsilon}, 0<\epsilon<\frac{1}{2} \sigma$ どれかであ るとして証明を行えば十分である。証明の技術上の問題と しては，一部の状況（sonic－point 周辺の膨張波）で f の凸性 に由来する（17）の形の評価が得られない事があるが，その場合にはある正定数 ϵ^{\prime} に対し
$\left(u_{i+1}^{n+1}-u_{i}^{n+1}\right)^{+} \leq\left(1-\epsilon^{\prime}\right) \max \left\{\left(u_{i}^{n}-u_{i-1}^{n}\right)^{+},\left(u_{i}^{n}-u_{i-1}^{n}\right)^{+}\right\}$
の形の評価が可能であり，最終的には

$$
\begin{equation*}
\frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x} \leq \max \left\{\frac{E_{1}}{n \Delta t}, \frac{E_{2}\left(1-\epsilon^{\prime}\right)^{n}}{\Delta x}\right\} \tag{26}
\end{equation*}
$$

$\left(E_{1}\right.$ 及び E_{2} は正定数）なる評価が導かれ，

$$
\frac{F_{2}\left(1-\epsilon^{\prime}\right)^{n}}{\Delta x}=\frac{E_{2} \lambda n\left(1-\epsilon^{\prime}\right)^{n}}{n \Delta t}
$$

と書ける事から，適当な正定数 E^{\prime} をとって結論の不等式 （23）の成立が示される。ただ，（25）の観察（ $(1-\epsilon)$ の指数 が $n \Delta t$ でなく n である事に注意）から分かる通り，n が十分に大であれば不等式（23）で $E^{\prime}=E_{1}$ とおいたものが成立 する。ここで E_{1} のoptimal value は定理1の定数 E^{\prime} と同様 に $\frac{1}{\inf f^{\prime \prime}}$ であることに注意する。即ち，初期からの経過時間 $n \Delta t$ が小さくとも Δt を十分に小さくとるならば Godunov差分近似と同様の評価を成り立たせる事ができる。

いわゆる entropy－fix 型の TVD 差分を用いた数値計算 では時間が 0 に近い部分（initial layer）で sonic－point 周辺 の膨張波の部分で bridge の現象が顕著である事が経験的に知られている。（特に $h(0)$ の値が小さい場合）この定理は， そうした bridge の大きさのオーダーが $O\left(\left(1-\epsilon^{\prime}\right)^{n}\right)$ 程度で ある事を示している。即ち，その bridge は $n(t=n \Delta t$ で はない）の指数オーダーで減衰するものであり，十分に小 さな Δt をとるか又はある程度時間が経過した状態を問題 とするのであれば bridge による不都合を実用上は回避でき る事を意味している。こうした結論は性質は数値エントロ ピー不等式によるエントロピー条件適合性の解析では得ら れなかったものであり，E－条件への適合性を解析する事に よる利点の一つであるといえる。

6．結論

数值解の質を数学的に解釈する為の概念や道具を整備す る目的の解析の一つとして E －条件への適合性を論じた訳だ

が，この解析が従来の数値エントロピー不等式中心のエン トロピー条件適合性に比べて差分近似の数値挙動に関して より豊富な情報をもたらす事が分かった。今後もこのよう な方向の解析を進めたいと考えている。

また，少々数値計算的な視点からは離れるが，定理1及 び 2 で提示した差分近似のエントロピー解への収束はこの E－条件への適合性が示される以前は，BV（有界変動関数の カテゴリー）でしか示されなかった。しかし，定理1及び 2 によってE条件への適合性が示された為に，これら差分近似の収束は L^{∞}（本質的に有界である関数のカテゴリー） で保証される。このことは，これらの差分近似のエントロ ピー解への収束がより強い意味で証明された事を意味する。

参考文献

1）H．Aiso．Admissibility of difference approximation for scalar conservation laws．Hiroshima Math．J．， 23（1）：15－61， 1993.

2）H．Aiso．A General Class of Higher Order－Accurate Difference Approximations for Scalar Conservation Laws Converging to the Entropy Solution．Compu－ tational Fluid Dynamics＇96（Proceedings of Third ECCOMAS Computational Fluid Dynamics Confer－ ence．），937－943， 1996.

3）M．Crandall and A．Majda．Monotone difference approximations for scalar conservation laws．Math． Comp．，34：1－21， 1980.

4）B．Engquist and S．Osher．Stable and entropy satis－ fying approximations for transonic flow calculations． Math．Comp．，34：45－75， 1980.

5）S．K．Godunov．Finite difference method for numerical computation of discontinuous solutions of the equa－ tions of fluid dynamics（in Russian）．Mat．Sb．（N．S．）， 47：251－306， 1959.

6）A．Harten．High resolution schemes for hyperbolic con－ servation laws．J．Comput．Phys．，49：357－393， 1983.

7）A．Harten．On a class of high resolution total－ variation－stable finite－difference schemes．SIAM J． Numer．Anal．，21（1）：1－23， 1984.

8）A．Y．LeRoux．A numerical conception of entropy for quasi－linear equations．Math．Comp．，31：848－872， 1977.

9）O．Oleĭnik．Discontinuous solutions of nonlinear differ－ ential equations．Uspekhi Mat．Nauk．（N．S．），12：3－73， 1957．English transl．in Amer．Math．Soc．Transl．，Ser． 2，vol．26，95－172．

10）S．Osher and E．Tadmor．On the convergence of dif－ ference approximations to scalar conservation laws． Math．Comp．，50：19－51， 1988.

11）E．Tadmor．Numerical viscosity and the entropy condi－ tion for conservative difference schemes．Math．Comp．， 43：369－382， 1984.

数値テータの「V——安是性検証う式の概会検討

高橋匡康＊，中村絹代＊

Conceptional Study on the Inspection of TV－Stability of Numerical Data by
Tadayasu TAKAHASHI＊，Kinuyo NAKAMURA＊

ABSTRACT

In this article we propose a method on the inspection of TV（Total Variation）－stability of numerical data（solutions of difference equations）．The key information in our method are critical points and extremums of physical quantities，and those information are used to get mathematical rigidity required for computational fluid dynamics．In case of the one－ dimensional Euler equations，admissibility criteria for difference schemes are given．It is remarked that those criteria are deduced from the mathematical structure of Euler equations．

1．はじめに
本報告においては，計算対象物理量の臨界点と極値の点検による計算結果の検証法を提案する。

臨界点と極値が有界変動関数の最小かつ核的情報であることに注意すると，本検証法により科学計算における以下の目標の達成が可能となる。
（1）数値解が微分方程式の解の近似であること を確認すること。
（2）差分スキームの高精度化に必要な具体的な情報を獲得すること。
（3）数学的に保証される範囲内でのデータ補正 の明確化を図ること。

さて，計算機の性能の向上並びに数値解法の進歩に伴い，C F D 等科学計算によって算出される数値データに対しては，以下の条件が一層厳しく要求されることになる。
（i）数学的撖密性を確保していること。
（ii）物理現象を高精度で模擬していること。
（iii）工学的データとして高品質であること。

これらの条件は必ずしも同等ではなく論理的には次のような包含関係を有している。

高品質性 \subset 高精度性 \subset 厳密性

この包含関係からも数学的䉷密性を確保すること が先決であることは明白であろう。

数学的詳細については省略するが，オイラー方程式に代表される双曲型保存系の解の存在と一意性に関する研究は近年急速に進展し，解の一意性 は解決され，解の存在の解決も時間の問題となっ ている。本報告で述べられる空間1次元オイラー方程式に対する検証法はこのような数学的背景に基づくものであることを付記する。

2．臨界点と極値

少なくとも圧縮性流体の計算においては，（局所的）有界変動関数の枠組で議論すれほ十分であ る。有界変動関数の枠組に限定すると，上で述べ

[^38]た厳密性の確保の問題は，すべての計算過程にお ける全変動量安定性（TV－stability）の確保の問題に帰着される。
さて，$u(x)$ を区間 $[\mathrm{a}, \mathrm{b}]$ 上で定義された以下の ような関数とする。

この場合， $\mathrm{x}_{\mathbf{i}}$ が関数u（x）の＂臨界点（critical point）＂と呼ばれ，u（ x_{i} ）が＂極値（extremum）＂ と呼ばれる。すなわち，極値は局所的最大値ある いは局所的最小値を意味し，臨界点は極値を与え る空間点を意味する。
$\mathrm{u}(\mathrm{x})$ の $[\mathrm{a}, \mathrm{b}]$ における全変動量（Total Variati on）は，臨界点と極値により次式で定義される。

$$
\begin{array}{r}
\mathrm{TV}(\mathrm{u} ;[\mathrm{a}, \mathrm{~b}])=\sum_{\mathrm{i}=0}^{\mathrm{E}\left|\mathrm{u}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}\right)\right|} \\
\\
\left(\mathrm{x}_{0}=\mathrm{a}, \mathrm{x}_{5}=\mathrm{b}\right)
\end{array}
$$

この定義より，臨界点の個数と極値の大きさが全変動量を規定していることがわかる。したがって，臨界点と極値を計算機上で追跡することにより全変動量の変動を解析することが可能となる。ここ で，臨界点と極値に着目したことが，本報告の1 つのキーポイントであることを述べておく。

3．オイラー方程式における検証法
圧縮性流体を対象とする現実の計算は，一般曲線座標系のもとで実行される。このような状況に おいても空間 1 次元オイラー方程式に対する差分 スキームが基本となる。実際，一般曲線座標系の問題への拡張が可能であるため，以下では空間1次元オイラー方程式における検証法を述べること とする。また，本検証法は，非粘性流れにおいて はオイラー方程式，粘性流れにおいてはナビエ・ ストークス方程式の対流項を念頭としていること を付記しておく。

さて，時間発展的に実行される科学計算におい ては，計算対象物理量の臨界点は発生•移動•消滅し，極値の大きさも変化する。非線形波動の観点では，臨界点や極値の変化は離散的な波の干渉 に起因するものと解釈される。例えば，オイラー方程式によって支配される波（流れ）においては，臨界点の発生は波の干渉の始まりを意味し，臨界点の消滅は波の干渉の終わりを意味する。繰り返 し的ではあるが，このことからも臨界点と極値の重要性が認識できるものと思われる。

3．1．空間 1 次元オイラ一方程式

空間 1 次元オイラー方程式をベクトル形で記述 すると以下となる。

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{t}}+\mathrm{F}(\mathrm{U})_{\mathrm{x}}=0, \mathrm{t}>0, \infty<\mathrm{x}<\infty . \\
& \text { ここで, } \\
& \mathrm{U}=(\rho, \mathrm{m}, \mathrm{E})^{\mathrm{t}} \\
& \mathrm{~F}(\mathrm{U})=\left(\mathrm{m}, \mathrm{~m}^{2} / \rho+\mathrm{P}\right.
\end{aligned}
$$

$$
, \mathrm{m}(\mathrm{E}+\mathrm{P}) / \rho)^{\mathrm{t}}
$$

ρ ：密度
m ：運動量
E：全エネルギー
u ：速度
P：圧力

$$
\mathrm{P}=(\gamma-1)\left(\mathrm{E}-\mathrm{m}^{2} / 2 \rho\right)
$$

流束 F のヤコビアン行列 $\nabla \mathrm{F}$ の 3 個の固有値およ び 5 個のリーマン不変量のうち 3 個を以下に列挙 する。

固有値：
$\lambda_{1}=u-c, \lambda_{2}=u, \lambda_{3}=u+c, ; c=\sqrt{\gamma \mathrm{P} / \rho}$
リーマン不変量：
$u, P, P / \rho^{\gamma}$（エントロピー）

固有値は波の分類に使用され，リーマン不変量は波を識別するために使用される。特に速度uと圧力 Pは，非線形波の干渉において数学的に保証さ れない臨界点の判定にも使用され，本検証法にお いて本質的な役割を演じる物理量であることを強調しておく。

3．2．差分スキームに対する数学的要件
本報告では，保存型差分スキームを対象として議論を進める；
$\mathrm{U}_{\mathrm{i}}^{\mathrm{n}+1}=\mathrm{U}_{\mathrm{i}}^{\mathrm{n}}-\frac{\Delta \mathrm{t}}{\Delta \mathrm{x}}\left[\mathrm{F}_{\mathrm{i}+1 / 2}^{\mathrm{n}}-\mathrm{F}_{\mathrm{i}-1 / 2}^{n}\right]$
ここで，$\Delta \mathrm{x}>0$ は格子幅，$\Delta \mathrm{t}>0$ は時間刻み幅であり，$\Delta \mathrm{t} / \Delta \mathrm{x}$ は一定とする。また， $\mathrm{F}_{\mathrm{i}+1 / 2}^{\mathrm{n}}$ は数値流束と呼ばれるものである。

さて，差分スキームに対しては以下の数学的要件が要求される。
（R1）全変動量が格子幅に関して一様に有限で あること。
（R2）数学的エントロピ一条件を満足すること。要件（R1）は，前に述べた全変動量安定性（TV－sta bility）を要求する条件である。また，オイラー方程式の場合には，要件（R2）は速度が増加する空間領域において不連続波が発生しないことと同等 となる。

差分法等によるオイラー方程式の解の存在は，現時点では未解決である。このような状況におい ては，上記要件，特に（R1）を工学的な観点で調べ ることが必要であり重要となる。

3．3．波の分類と識別

オイラー方程式によって支配される波は，定性的には次のように分類される（表1）。

表1．波の分類

	固有値	不連続波	連続波
線形波	u	接触不連続波	接触連続波
非線形波	$\mathrm{u}-\mathrm{c}$	衝撃波	膨張波圧縮波
	$\mathrm{u}+\mathrm{c}$	衝撃波	膨張波圧縮波

また，連続波は，リーマン不変量の単調性により次のように識別することができる（表2）。

表2．リーマン不変量による連続波の識別

	単調性
接触連続波	$\mathrm{P} / \rho^{\text {人 }}$（単調性保存）
（ $\mathrm{u}-\mathrm{c}$ ）－膨張波	u ：増加 ，P：減少
（ $\mathbf{u}+\mathrm{c}$ ）－膨張波	u ：増加 ，P ：増加
（ u－c）－圧縮波	u ：減少，，P：増加
（u＋c）－压縮波	u ：減少，P ：減少

ここで， $\mathrm{P} / \rho^{\gamma}$ の臨界点は固有値uの変化に応 じて移動するが，発生あるいは消滅することはな いことを注意する。また，連続波には線形波と 2種類の非線形波が混在しており，（u－c）一膨張波等の表現は便宜的なものであることに注意す る。

4．全変動量安定性の検証

全変動量安定性の検証は，ベクトル量

$$
\begin{array}{r}
\left\{U_{i}^{n}\right\}=\left\{\left(\rho_{i}^{n}, m_{i}^{n}, E_{i}^{n}\right)^{t}\right\} \\
(n \geqq 1,1 \leqq i \leqq N)
\end{array}
$$

の各成分において発生あるいは消滅する臨界点を対象とする。また，検証の目的を臨界点と極値の言葉で述べ直すと以下となる。
（1）数学的に保証されない臨界点の判定と解消法
（2）極値の大きさが不十分な場合の改良法
（3）差分スキームの再構築方針の具体化参考として，波の干渉と臨界点の挙動の関係を述 べておく（表3）。

表3．波の干渉と臨界点の挙動

	臨界点の挙動
干渉開始	発生
干渉中	移動
干渉終了	消墄

4．1．非許容臨界点の判定法と解消法
数値ノイズおよび臨界点の許容性（admissibil ity）•非許容性（inadmissibility）に関する定義 を以下に与える。
定義1（Numerical Noise）。
臨界点が次の性質を持つとき，対応する物理量分布を数値ノイズと呼ぶ；
（i）臨界点が隣接していること。
（ii）次の計算においても対応する臨界点 が隣接していること。

数値ノイズの識別は，乱流等の複雑な流れの解明においては特に重要となる。なお，性質（ii） は膨張も圧絔も起きないことを意味している。

定義2（Admissibility of Critical Points）． $\left\{U_{i}^{n}\right\}$ の臨界点が，速度，圧力のいずれ かの単調領域においてのみ発生あるいは消滅するとき，許容臨界点と呼ぶ。逆に，
$\left\{U_{i}^{n}\right\}$ の発生あるいは消滅した臨界点が速度と圧力の両方の臨界点となるとき，非許容臨界点と呼ぶ。

詳細については省略するが，臨界点の許容性•非許容性は，いわゆるリーマン問題の解の性質か ら導出されることを注意する。

さて，数値ノイズあるいは臨界点が非許容であ ると判定された場合には，補間等により極値を修正することが必要となる。例として，線形補間に よる修正を以下に示す。

$$
\mathrm{U}_{\mathrm{i}}^{\mathrm{n}+1} \rightarrow \hat{U}_{\mathrm{i}}^{\mathrm{n}+1}=(1-\theta) \mathrm{U}_{\mathrm{i}-1}^{\mathrm{n}+1}+\theta \mathrm{U}_{\mathrm{i}+1}^{\mathrm{n}+1}
$$

$\begin{array}{lllll}\mathrm{i}-2 & \mathrm{i}-1 & \mathrm{i} & \mathrm{i}+1 & \mathrm{i}+2\end{array}$
i：非許容臨界点
－：極値 $\mathrm{U}_{\mathrm{i}}^{\mathrm{n+1}}$
Δ ：修正値 $\mathrm{U}_{\mathrm{i}}^{\mathrm{n}+1}$

4．2．亟値の精度不十分性の改良法

強い膨張波の干渉においては，密度が負の値で計算される可能性が高くなる。密度が負になると いらことは，極値が下向きに過大に計算されるこ とを意味している。いずれにしても，極値が過大 あるいは過少に計算された場合には，内挿補間あ るいは外㨉補間により極値を修正することが必要 となる。例として，内插補間による修正を以下に示す。

4．3．差分スキームの再構築手順
臨界点が非許容あるいは極値が不十分であると判定された場合には，計算で得られている数値に基づいて差分スキーム，実際的には数値流束の見直しを行うことが必要となる。具体的な手順を以下に示す。
（1）算出されたデータ $\mathrm{U}_{\mathrm{i}}^{\mathrm{n}+1}$ に基づいて望まし い極値 \hat{U}_{i}^{n+1} を予測する。
（2）数値流束に対する修正量 $\delta_{i-1 / 2}^{n}, \delta_{i+1 / 2}^{n}$ を算定する。

$$
\begin{aligned}
\hat{U}_{i}^{n+1}=U_{i}^{n}-\frac{\Delta t}{\Delta x} & {\left[\left(F_{i+1 / 2}^{n}+\delta_{i+1 / 2}^{n}\right)\right.} \\
& \left.-\left(F_{i-1 / 2}^{n}+\delta_{i-1 / 2}^{n}\right)\right]
\end{aligned}
$$

（3）流束制限子等を調整し，対応する数値流束 の定式化を行う：

$$
\hat{F}_{i+1 / 2}^{n}=F_{i+1 / 2}^{n}+\delta_{i+1 / 2}^{n}
$$

（4）再計算を実行し，\hat{U}_{i}^{n+1} が得られることを確認する。

5．おわりに

本報告における結果および今後の課題等を以下 にまとめる。
（a）臨界点と極値が有界変動関数の最小情報で あることに着目し，差分スキームの全変動量安定性が連続波に対する次の条件を調べるこ とに帰着できることを示した：
（i）数値ノイズが発生しないこと。
（ii）エントロピー $\mathrm{P} / \rho^{\gamma}$ の単調性が保存 されること。
（iii）計算対象物理量の臨界点は，速度，圧力のいずれかの単調領域においてのみ発生あるいは消滅すること。
なお，これらの条件の一義的決定は，オイラ一方程式の解の一意性が解決されたことに依 るものである。
（b）数値ノイズを含む非許容臨界点が客観的に定義されたため，臨界点と極値を追跡•監視 することにより，非許容臨界点に関する「発生時と発生位置」および「起因する干渉の種類」等の情報を獲得することが可能となった。
（c）差分スキームを対象とする＂キャリブレー ション＂を実行するための方法論と理論的根拠が与えられた。
（d）臨界点と極値による点検法は C F D 技術等 の高精度化•高信頼化への新しいアブローチ法として期待できるものであり，臨界点と極値の解析を新しい機能とする可視化システム の充実が不可欠である。また，多次元問題に おける臨界点と極値の表示法等の検討が重要 である。

最後に，臨界点と極値の視点で分析した圧縮性流体計算における堅牢性障害と分解能障害に関す る表と二，三の注意を以下に示す（表 4）。

表4．圧縮性流体計算における堅牢性障害と分解能障害
I．計算スキーム（格子 \＆差分スキーム）における問題点

	淘れての種類	弾害の種類		䧛電の三里原因	䧛書の解泽消法
堅理性	強い膨張波	正値性（ $\rho>0$ ）	極値の過大性	双曲性の退化	流束の修正
	境界層等の亜音速流れ	非圧絡性（ $\rho=$ 一定）	臨界点の非許容性	非圧縮性への退化	流東の修正
分解能	斜め衝撃波等	過大平滑化	臨界点の位置	多次元性	風上性の強化
	よどみ点等	カーバンクル現象	臨界点の非許容性	数値的特異性	風上性の強化
	渦流れ	過大平滑化	極値の過小性	多次元性	風上性の強化
	乱流等の最小渦	過大平滑化	極値の過小性	平均化の均一性	流束の修正

II．圧棭性N S の計算解法における問題点
－対流項の線形化が 1 次精度差分スキームに基づく場合，数値ノイズが発生する可能性が大きいので注意が必要である。
－運動量方程式の粘性項は
＂速度では線形＂だが＂運動量では非線形＂
となる。従って，計算対象変数を運動量とする場合には粘性項の取り扱いに注意が必要である。

燃焼を伴う剪断流れの数値シミュレーション溝渕泰寛（航技研）
 Numerical Simulation of Shear Flows with Combustion
 Yasuhiro Mizobuchi（NAL）

Abstract

A shear flow between a high－temperature，oxidizing stream and an ambient－temperature，hydrogen con－ taining steam，which is in a spontaneous ignition condition，is numerically simulated to investigate the mixing and combustion phenomena in a compressible shear flow．The computation is two－dimensional as a preliminary study for the three－dimensional analysis although the convective Mach number is rel－ atively high．It is shown that the simulations depend much on the computational grid size，and that consideration of the fluctuation effects on chemical processes is indispensable for averaged simulations．

1．はじめに

燃焼流れは様々な工学的分野において重要な役割を果 たしており，その解明の重要性は誰もが認めるとことで ある。燃焼形態は大別して予混合火炎と拡散火炎の 2 種類がある。予混合火炎とは予め混ざり合った燃料と酸化剤の燃焼であり，拡散火炎とは燃料と酸化剤が混合しな がらの燃焼である，どちらかといえば燃料と酸化剤の混合を考えなくて良い予混合火炎の方が解析が容易で，多 くの理論，モデルが提案されている。しかしなからら実際工学に多く用いられるのは拡散火炎であり，身近なとこ ろではガスバーナーに始まり，スクラムジェットエンジ ンに至るまでの様々な分野に広く応用される。従って今後拡散火炎の研究を押し進める必要があり，特に将来の航空機開発においては高レイノルズ数，高圧縮性の剪断燃焼流れの重要性が増すと考えられる。

剪断流れの殆どは乱れがある非定常問題であるので，数値解析する際には微細な流体の構造及びそこでの挙動ま で捕らえるか，またはそれらの影響を計算に取り入れる必要がある。そのために最も明解な手法は十分に細かい格子系を用いたDNS（Direct Numerical Simulation）であ ろう。しかし現在の計算機の能力ではDNS は基礎的な流 れへの適用が限界で，実用問題への適用は殆んど絶望的で ある。そのため現状ではLES（Large Eddy Simulation） またはRANS（Reynolds Averaged Navier－Stokes）によ る解析が現実的な手法と考えられる。とは言ってもどち らの方法にも未解決な問題が多い。LES の場合は計算格子以下のスケールの渦の影響を subgrid モデルを用いて取り入れ，空間平均的な解を得ることになるが，その際格子をどのくらいまで細かくすれば良いかという基準は明確でなく，かなり楽観的な意見もあるものの相当細か い格子を使わないといけないことは明らかである。一方 RANS では時間平均の方程式を解くことになるが，それ がどのくらいの時間にわたる平均なのかということが不明な限り，無限の時間の平均以外は解としての説明がつ かない。すなわち渦の構造などが一切見えない程のっぺ りとした解以外はRANS の解としての意味付けが難し い。更に燃焼等の化学反応が伴う流れ場の計算では，化学反応モデルの選択は勿論のこと，LES，RANSにおい てはフィルタリング，時間平均操作によって失われた微小な変動が化学反応に及ぽす影響もモデル化して方程式 に加えなければならない。この様に燃焼流れの数値計算

法は確立されているとは言えず解決していかなければな らない問題が多い。
著者はRANSと温度変動に依存する乱流反心速度を組み合わせたモデルを用いてスクラムジェット燃焼器内流れ等の乱流燃焼流れの計算を試みて来た ${ }^{[1]}$ が，そのモ デルで十分であるとは到底思えない。そこで現在燃焼流 れの解明，モデル化を目指して比較的基礎的な噴流，混合層における燃焼のシミュレーションを行っている，今回は燃焼を伴う剪断流れを比較的細かい計算格子を用い て乱流モデルを用いないで計算した結果を報告する。

2．モデル

気体は熱的には平衡状態にあると仮定し，反応モデルと しては9化学種（ $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}, \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}_{2}$ ， N_{2} ） 17 反応モデル ${ }^{[2]}$（表1）を用いている。化学種の拡散 には Fick の法則を用い濃度の勾配に比例して拡散すると している。各化学種の粘性係数，熱伝達係数および2成分拡散係数は Lennard－Jones ポテンシャルモデル ${ }^{[3]}$ から求め，エンタルピ等はJANAFテーブル ${ }^{[4]}$ から引用する。混合気体の粘性係数，熱伝達係数はWilkeの混合則から求め，混合気体中の化学種 i の拡散係数 D_{i} は

$$
\begin{equation*}
D_{i}=\frac{1-X_{i}}{\sum_{i \neq j} \frac{X_{j}}{D_{i j}}} \tag{1}
\end{equation*}
$$

としている。但し X_{i} は化学種iのモル分率，$D_{i j}$ は化学種 i, j の 2 成分拡散係数である。

3．支配方程式

支配方程式は，2次元ナビエ・ストークス方程式に9化学種の保存式を組み达んだ方程式である。本来全密度の保存式は必要ないが化学種の密度の補正のために支配方程式に含めている。支配方程式は一般曲線座標系で以下 のように書ける。

$$
\begin{equation*}
\frac{\partial Q}{\partial \tau}+\frac{\partial F_{\xi_{i}}}{\partial \xi_{i}}=\frac{\partial F_{v \xi_{i}}}{\partial \xi_{i}}+H_{c} \tag{2}
\end{equation*}
$$

ここに，

$$
Q=V\left[\begin{array}{c}
\rho \\
\rho u_{1} \\
\rho u_{2} \\
E \\
\rho z_{s}
\end{array}\right], \quad F_{\xi_{i}}=\left[\begin{array}{c}
n_{i j} \rho u_{j} \\
n_{i j} \rho u_{1} u_{j}+n_{i 1} p \\
n_{i j} \rho u_{2} u_{j}+n_{i 2} p \\
n_{i j}(E+p) u_{j} \\
n_{i j} \rho z_{s} u_{j}
\end{array}\right]
$$

$$
\begin{align*}
& F_{v \xi_{i}}=\left[\begin{array}{c}
0 \\
n_{i j} \tau_{1 j} \\
n_{i j} \tau_{2 j} \\
n_{i j}\left(\tau_{j k} u_{k}+q_{j}\right) \\
n_{i j} \rho D_{s} z_{s, j}
\end{array}\right], \\
E & =e+\frac{1}{2} \rho\left(u_{1}^{2}+u_{2}^{2}\right) \tag{3}\\
e & =\sum_{s} \rho z_{s}\left(\int C p_{s} d T+\Delta H_{f s}\right)-p \tag{4}\\
p & =R_{u t} T \sum_{s} \rho z_{s}, \tag{5}\\
\tau_{i j} & =\mu\left(u_{i, j}+u_{j, i}-\frac{2}{3} \delta_{i j} u_{m, m}\right) \tag{6}\\
q_{j} & =\kappa T, j+\sum \rho D_{s} h_{s} z_{s, j} \tag{7}\\
h_{s} & =\int C p_{s} d T+\Delta H_{f s} \tag{8}
\end{align*}
$$

$z_{s}(s=1 \sim 9)$ は化学種 s の単位質量当りのモル数， H_{c} は化学反応モデルの生成項である。（ $), i \equiv \partial() / \partial x_{i}$ ， $\left(x_{1}, x_{2}\right) \equiv(x, y)$ はカーテシアン座標系，$\left(\xi_{1}, \xi_{2}\right) \equiv(\xi, \eta)$ は一般座標系である。Vは計算セルの体積，$n_{i j}$ はセル境界の面ベクトルである。 $C p_{s}, \Delta H_{f s}$ はそれぞれ化学種 s の1モルあたりの定圧比熱および生成熱，R_{u} は普遍気体定数である。その他特記の無い記号は慣用に従う。

4．解析手法

剪断層における微細な構造を解析するためには細かい計算格子を用いる必要があるともに空間時間とも精度の高い計算方法が望まれる。

有限差分（有限体積）法において空間の精度を上げるた めには，周辺の点の値を使うことになる。より高次の精度を得るためには，より遠くの格子点の値を使わなけれ ばならない，非圧縮流体の場合は無限大の速度で情報が伝播するので，どんな遠くの情報が届いて来てもおかし くはないが，圧縮性流体の場合は有限の速度で情報が伝播するので，遠くの点（＞伝播速度 \times 時間刻み）の情報 を使うのはおかしい。このような理由から現状では対流項はRoeスキームを高精度化した3次精度のTVD数値流束 ${ }^{[5]}$ で評価し，粘性項は 2 次精度の中心差分法で計算 している。TVDスキームは渦や乱流の変動を抑えつけ てしまうと意見もあるが，それらを十分な格子点数で表現できる程細かい計算格子を用いるという前提に立てば リミタ働くのは限られた領域であり，また用いているり ミタが極値で流束を 1 次精度に落とさないよう若慮した ものなので殆ど問題ないと考えている。
時間方向には Runge－Kutta 法を用いて 2 次精度の時間積分を陽的に行なっている。非定常問題には近似陰解法と Newton 法を組み合わせた陰的積分によって時間刻 みを大きくとる方法が用いられることが多い。しかし圧縮性流れの非定常計算においてクーラン数 1 を越える時間刻みを用いることについてはかなり疑問がある，そこ で，ここではクーラン数を大きくとることはやめ陽解法 を用いている。また位相誤差の問題は時間積分の精度を上げることにより将来的にはある程度克服できると考え ている．通常の化学反応を伴う非平衡計算では化学反応 の有限の特性時間によって計算が硬直化することが問題

になるが本研究では計算格子が非常に細かく，また陽解法を用いているため時間積分刻みは非常に小さく制限さ れ，化学反応の特性時間がほとんど問題にならない。その ため化学反応生成項に対する処置は一切行なっていない。化学種の拡散によるフラックスは Fick の法則

$$
\begin{equation*}
f_{s}^{d i f}=-\rho D_{s} \frac{\partial z_{s}}{\partial x_{i}} \tag{9}
\end{equation*}
$$

を用いて評価している。拡散速度とは各化学種の速度と流体全体の平均速度とのズレであるので，拡散によるフ ラックスを全化学種について足し合わせた総和は 0 でな ければならない，すなわち

$$
\begin{equation*}
\sum_{s} f_{s}^{d i j}=0 \tag{10}
\end{equation*}
$$

が成り立たなければならない。化学種が 2 種類の場合は上式は成り立つが，化学種が 3 種類以上の場合，上式にお いて等号が一般的に成り立つのは全ての化学種の拡散係数が同じ場合だけである。再突入物体周りの流れ場等に用いられる物理モデルでは化学種の拡散係数に同じ値を用いることが多くこの問題は起こらないが，燃焼流れに おいては化学種の拡散が支配的な場合が多く，より正確 な拡散係数を用いようとしたために新しい問題が生じて しまったことになる，このため化学種の密度の総和が全体の密度と等しくならなければいけないという基本的な条件が満たされなくなってしまう，通常この問題を解決 するためには，誤差分を特定の化学種に押しつけてしま うか，または，

$$
\begin{equation*}
\rho_{s}^{\prime}=\rho_{s} \frac{\rho}{\sum_{s} \rho_{s}} \tag{11}
\end{equation*}
$$

として化学種の密度を計算毎に補正を行なう。しかし，ど ちらの場合も化学種の保存を満たさず，厳密に言えば定常流れにおいて収束解を得る事ができない。そこで，化学種の密度を補正するのはやめて，計算セル境界で式（10） を満たすように以下に示す拡散のフラックスを補正する方法を用いる。セル境界では化学種によって拡散のフラッ クスが正のものと負のものがあり，本来，正のフラックス の㥹和と負のフラックスの総和は同じ絶対値を持たなけ ればならない。しかし支配方程式がそれを許さないので，両者の絶対値の平均が正しい値だと仮定し，それぞれの総和が平均値となるように正のフラックス負のフラック スとも補正する。具体的には補正した化学種 s の拡散フ ラックス $f_{s}^{\prime} d i f$ を支配方程式から求められる拡散フラッ クス $f_{s}^{d i f}$ から以下のように求める。

$$
\begin{equation*}
f_{s}^{\prime d i f}=f_{s}^{\prime+}-f_{s}^{\prime-} \tag{12}
\end{equation*}
$$

ここに，

$$
\begin{aligned}
& f_{s}^{ \pm}=f_{s}^{ \pm} \frac{S^{a v e}}{S^{ \pm}}, \quad S^{a v e}=\frac{S^{+}+S^{-}}{2} \\
& S^{ \pm}=\sum_{s} f_{s}^{ \pm}, \quad f_{s}^{ \pm}=\frac{\left|f_{s}^{d i f}\right| \pm f_{s}^{d i f}}{2}
\end{aligned}
$$

である，勿論この方法では支配方程式を正しく解いたこ とにはならないので根本的な問題の解決にはなっていな いが，少なくとも保存則は満たしている。なお，数値的な問題により化学種の密度には誤差が生じる可能性がある ので拡散項を上記の方法で計算した後で式（11）を用い て補正を行なっている

5．計算結果

水素／酸素系の燃焼を伴う剪断流れ ${ }^{[6]}$（図1）についての計算結果を示す。流れ場の条件は表に示される通りで，酸素を含む高温の超音速流れと水素を含む常温の亜音速流 れからなる前断流れである。高温流側の温度がかなり高 いので実験的には着火が自然に起こる条件である
圧縮性の剪断流れの重要なパラメータの一つに対流マッ八数 $M_{c}=\left(U_{1}-U_{2}\right) /\left(c_{1}+c_{2}\right)$ がある。ここに $U, ~ c$ は流速，音速である。 $M_{c}<0.4$ では流れは殆ど 2 次元的で Kelvin－Helmholtz 不安定が支配的である一方，$M_{c}>0.6$ では3次元的な不安定が出て来ることが理論的にも実験的にも示されている。本例の場合 $M_{c}=0.8$ であり流れ場の 3 次元性がかなり大きいと予測される。しかしなが ら今回は研究の第一段階であること，また計算機能力の制限から2次元計算としている。

計算領域は $50 \mathrm{~cm} \times 50 \mathrm{~cm}$ の正方形で，その左端中央に スプリッターを仮定している。図2に示すように計算領域を10等分の領域に分割し，それぞれの領域に計算機を 1台割り当てて並列計算を行なっている。計算格子は等間隔格子で全体の格子点数は 2000×2000 ，従って格子幅 は 0.25 mm である
境界条件は次のように与えている。流入条件はそれぞ れの側の一様流条件に固定している。燃料側の流入速度 が亜音速であるので今後改善の必要はある。流出および側面の境界条件は無反射境界条件 ${ }^{[7]}$ を適用し圧力波が境界を通り抜けるようにしている。また初期条件では前断層内に速度分布は仮定しておらず，高速／低速流境界では速度分布は不連続としている

図 3 は燃焼反応によって生じた OH の分布の時間履䄳 の一部である，燃焼が起こっているのは非常に薄い層内 である事が分る。また図からは読みとりにくいが燃料と空気が渦を巻いた所から燃焼が始まっている。これは渦 を巻いて淀むことによって燃焼が始まるのに十分な高温領域が生じるためである． $\mathrm{t}=1.78 \mathrm{msec}$ までは燃焼が始ま る位置は後方に流されているが， $\mathrm{t}=2.68 \mathrm{msec}$ では上流か ら燃焼が始まっている，このように燃焼開始位置が後方に流され，その後で上流から再び燃焼が始まるということ を繰り返して燃焼が保たれている。これは着火点付近の渦の生成が間欠的で燃焼も間欠的に始まるためだと考え られる。研究当初は 3 次元計算への拡張を考え 500×500 の計算格子を用いていたが燃焼する解は得られなかった。 これは粗い計算格子では着火点付近の細かな渦や，薄い燃焼層をとらえる事ができないためと考えている。

図4は密度分布で図左がある瞬間の分布，右が時間平均 の分布である。瞬間値の分布の低速流の出口境界付近に密度が低い部分があるが，これは無反射条件では出口境界にある逆流域の取扱が難しく渦がうまく境界を通過で きずに停留してしまったためと考えられる。今後は出口境界を更に遠方にとる必要がある。時間平均の分布にも その影響が現われているが，計算領域 50 cm のうち 30 cm程度は信用できると考えると剪断層の成長率は 20% 弱で あることが分る。一方実験 ${ }^{[6]}$ での成長率は 15% であり計算ではかなり大きく見積もっている

図5は OH の分布である。図中の矢印の先がスプリッ ターの先端に対応している。瞬間的な分布では燃焼によっ てかなりの OH が発生しているが時間平均で見ると非常 に弱い燃焼のように見える。また計算結果の時間平均分布から読み取れる着火位置は約 8 mm である。実験 ${ }^{(6)}$ で

の可視化による測定では着火位置はスプリッターから約 5 mm であり，着火位置についても実験と相違が見られる。

これら実験との相違の原因の一つとしては 3 次元的な混合を見積もれていないことが挙げられる。また実験で はスプリッター上に境界層が存在し当然そこには乱れが存在し，スプリッター先端ではすでに乱れた流れになっ ている，今回の計算では流入条件には乱れを与えていな いため，スプリッター直後の混合を見積もれていないこ とも原因の一つと考えられる。更に計算格子が十分に細 かくはないということも考えられる。

図6は温度分布である。瞬間的な分布では1600Kを越え活発に燃焼が起こっている領域が見られるが，それ は非常に狭い領域であり，時間平均をとると温度が高温流の一様流温度を越える領域は存在せず，この平均温度分布を見る限りでは燃焼は起こってないかのように見え てしまう。もしこの平均温度分布を定常的に実現できる燃焼流れ場の計算ができたとすると，その時生成される OII は非定常計算の時間平均値よりもずっと少ないもの となる。また時間平均の方程式を解いた場合を考えると，温度の分布は図6右図よりも高くなり得ず，そのまま化学反応をカップリングさせた方程式を解くと燃焼が殆ん ど起こらない解が得られるのは容易に想像できる。これ は時間平均の解を得ようとする際には温度，組成が時間／空間的に変動することが化学反応に及ぼす影響を計算に取り込まなければ物理的な解が得られないということを示している。

図7は着火点付近（スプリッターから 10 mm 後流位置） の温度履歴の一部である。温度の変動は燃焼が間欠的に起こっていることを示しており高温時は活発に反応が進 んでおり，低温時には進んでいない。図中破線で示した平均温度は約 883 K ，温度変動の自乗平均 δT は 292 K で ある。平均的な解を得るためには高温時に反応が大きく進む影響を計算に取り入れる必要がある。例えば文献［8］ の乱流反応速度（平均温度と δT から決まる）を用いると表1中の反応1の反応速度は通常の反応速度の 5 倍程度 となる。燃焼流れを平均的に捕らえようとする際にはこ の様な変動の影響を考慮したモデルを使って行く必要が ある。

6．まとめ及び今後の課題

高マッハ数の燃焼を伴う剪断流れについて乱流モデル を用いずDNS 的に数値計算を行なった。実験と比較し て剪断層の発達率はやや大きく見積もり，着火点は後方 となった。この原因としては対流マッハ数が比較的高い にもかかわらず 2 次元計算としたこと，流入境界での境界層と乱れを考慮していないこと等が考えられる。しか し計算格子を十分細かくとらなくてはいけないこと，平均方程式を解くだけでは物理的な解を得られないことな ど今後の研究に有益な知見が得られた。

今後は主流方向の計算領域を広げること，スプリッター上の境界層の影響を取り入れる，またはスプリッター上流まで計算領域を広げること，また将来的には3次元計算への拡張をおこなって行きたい。今回はDNS 的に計算を行なったが 3 次元流れに拡張する際にはLESを用 いた非定常解析を中心に研究を進めて行く予定である

今回の計算では流入境界において乱れを与えていない にもかかわらず計算途中で自然に不安定，乱れが発生し非定常な解となった，これは物理的というよりも数値計

算法，中でも境界条件に起因しているのように思える．特 に前述の通り出口境界の扱いは難しく，そこでの微小変動が影響しているのではないかと考えている，流入条件 にも解決すべき問題があり，境界の取扱いは今後の大き な課題である。

参考文献

［1］溝渕泰寛，小川哲：水素•酸素乱流燃焼流れの数値シ ミュレーション，第15回航空機計算空気力学シンポ ジウム論文集，1998，pp．51－56．
［2］Westbrook，C．K．：Hydrogen Oxidation Kinetics in Gaseous Detonations．Combustion Science and Technology，Vol．29，1982，pp．67－81．
［3］Chapman S．and Cowling T．G．：The Mathematical Theory of Non－Uniform Gases．Cambridge Univer－ sity Press， 1970.
［4］JANAF Thermochemical Tables， 1965.
［5］Wada Y．，Ogawa S．and Ishiguro T．：A Generalized Roe＇s Approximate Riemann Solver for Chemically Reacting Flows．AIAA paper 89－0202， 1989.
［6］Miller，M．F．et．al，：An Experimental Study of the Structure of a Compressible，Reacting Mixing Layer， AIAA paper 93－0354， 1993.
［7］Thompson K．W．，＇Time Dependent Boundary Con－ ditions for Hyperbolic Systems，＇Journal of Com－ putaitonal Physics Vol．68，pp．1－24， 1987.
［8］Sagara K．and Tsugé S．：Exact Solution of BBGKY hierarchy equation，Phys．Fluids，Vol．25， 1982，pp．1970－1977．

表1：化学反応モデル

	Reaction
1	$\mathrm{H}+\mathrm{O}_{2} \rightleftharpoons \mathrm{O}+\mathrm{OH}$
2	$\mathrm{H}_{2}+\mathrm{O} \rightleftharpoons \mathrm{H}+\mathrm{OH}$
3	$\mathrm{H}_{2} \mathrm{O}+\mathrm{O} \rightleftharpoons \mathrm{OH}+\mathrm{OH}$
4	$\mathrm{H}_{2} \mathrm{O}+\mathrm{H} \rightleftharpoons \mathrm{H}_{2}+\mathrm{OH}$
5	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{HO}_{2}$
6	$\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightleftharpoons \mathrm{H}+\mathrm{OH}+\mathrm{M}$
7	$\mathrm{H}+\mathrm{O}_{2}+\mathrm{M} \rightleftharpoons \mathrm{HO}_{2}+\mathrm{M}$
8	$\mathrm{HO}_{2}+\mathrm{O} \rightleftharpoons \mathrm{OH}+\mathrm{O}_{2}$
9	$\mathrm{HO}_{2}+\mathrm{H} \rightleftharpoons \mathrm{OH}+\mathrm{OH}$
10	$\mathrm{HO}_{2}+\mathrm{H} \rightleftharpoons \mathrm{H}_{2}+\mathrm{O}_{2}$
11	$\mathrm{HO}_{2}+\mathrm{OH} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
12	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \rightleftharpoons \mathrm{HO}_{2}+\mathrm{HO}_{2}$
13	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{M} \rightleftharpoons \mathrm{OH}+\mathrm{OH}+\mathrm{M}$
14	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H} \rightleftharpoons \mathrm{HO}_{2}+\mathrm{H}_{2}$
15	$\mathrm{O}+\mathrm{H}+\mathrm{M} \rightleftharpoons \mathrm{OH}+\mathrm{M}$
16	$\mathrm{O}_{2}+\mathrm{M} \rightleftharpoons \mathrm{O}+\mathrm{O}+\mathrm{M}$
17	$\mathrm{H}_{2}+\mathrm{M} \rightleftharpoons \mathrm{H}+\mathrm{H}+\mathrm{M}$

表2：計算条件

	Air	Fuel
Temperature（K）	1250	265
Pressure（atm）	0.88	0.88
Mach Number	1.4	0.3
	$X_{\mathrm{O}_{2}}=0.23$	$X_{\mathrm{H}_{2}}=0.10$
Composition	$X_{\mathrm{H}_{2} \mathrm{O}}=0.25$	$X_{\mathrm{N}_{2}}=0.90$

図 2：計算領域および境界条件

図 3： OH 分布の時間履歴

図 4：密度分布（左：踩問値 右：時間平均値）

図 5： OH 分布（左：瞬間値 右：時間平均値）

図 6：温度分布（左：瞬間作 右：時間平均値）

図 7：著火点付近の温度履歴

超音速ジェットスクリーチのタブによる抑制のシミュレーション

大田 英輔 ${ }^{* 1}$ ，木分 孝幸 ${ }^{* 2}$ ，小林 紘＊3，生沼 秀司＊3，長井健一郎＊3

Suppression of Screech－Noise by a Tab Pair from Supersonic Rectangular Jets

by
Eisuke OUTA ${ }^{* 1}$ ，Takayuki KIWAKE ${ }^{* 2}$ ，
Hiroshi KOBAYASHI ${ }^{* 3}$ ，Hideshi OINUMA ${ }^{* 3}$ ，and Kenichirou NAGAI＊${ }^{*}$

Abstract

Reduction of jet noise radiated from supersonic propulsion jets at the minimum loss in the thrust efficiency is one of primary requirements in developing a low noise engine which will be mounted on a future supersonic commercial transports．Screech noise is a discrete frequency component arising in a low supersonic range of the jet Mach number typically less than 1.8 ，and dominates other noise components associated with turbulent mixing and shock waves．The component is thought to be sustained by large scale coherent eddies which is collectively generated along the free shear layer through a modulation of instability of the shear layer by a feedback of upstream propagating sound waves．The authors have conducted series of precise noise measurements and optical observations of the jet structures at at the National Aerospace Laboratory using various shapes of untreated and treated nozzles．

In the present paper，structures of under－expanding jets issued from convergent nozzles with rectangular exit cross－sections are discussed based on an unsteady three－dimensional Navies－Stokes analysis．Screeching jets from an untreated nozzles and screech－free jets from nozzles set with a tab pair are computed at a Mach number of 1.5 ． Numerically represented schlieren pictures are found agree well with the experimental pictures．A typical pattern of flapping oscillation accompanied by a coherent generation of large scale eddies is numerically visualized for a case of the nozzle with the aspect ratio of 3．Pressure fluctuations induced in the close field also exhibit basic features of flapping and helical modes respectively for nozzles with rectangular and square cross－sections．It is made clear by the computation that the tabs set in the major sides of the nozzle lip work as longitudinal vortex generators which enhance entrainment of ambient air to divide the jet into a pair of parallel jets．The flapping oscillation is no more sustained， possibly because reduced spacings of shock cells in the divided jets become mismatched with a length scale required for organizing coherent eddies．However，in case of a square cross－section nozzle，the tabs induce another complicated low amplitude disturbance，and the reduction of pressure fluctuation will not be complete．

1．はじめに

次世代超音速輸送機の開発に関連して，ジェットエンジン騒音の低減化が大きな課題の一つとなっている，エンジン騒音のうち，排気ジェット騒音を下げることは，特に離陸時の環境問題として，必須の事項であるが，推力効率の低下を極力抑えた低減化の方策を開発する必要がある。ところで，陸上飛行時の低超音速のジェット騒音には，乱流騷音や衝撃波関連の広帯域騒音にスクリーチ音と称される分離哇波数の騒音が重畳し，それが高次成分と共に卓越した騷音源として感知される。従って，この成分を最小限の推力低下のもとで完全に除去することが，最初の目標となる。

筆者らは，種々の形状のノズルについて，騷音特性を詳細 に計測し，低減目標に 4 ［EPN－dB／\％thrust loss］を設定 して，ノズル出口に矩型などの微小タブを装着した場合の適合効果を実験的に調查してきた［1，2］．超音速ジェットのス クリーチ音については，その発生機構は早くから研究されて

[^39]おり［3］，ジェット表面に沿って移流する大スケールの渦と衝撃波セルの干渉によって放射され，その音響波が外囲気体中を上流伝播して，ノズル出口の薄い表面せん断層の不安定性を励振し，大スケール渦を組織するフィードバックループ が構成されて風期性が維持される。その形態は，ジェット マッハ数 $M_{j} \approx 1.1$ レベルで衝撃波セルが軸方向に振動するト ロイダルモード，軸対称性の強いノズルでジェット軸風りに振動するへリカルモード，比較的高いマッハ数でアスペクト比の大きいノズルに生じるフラッピングモードに分類されて いる［4］．それらの振動夙波数についてもある程度の理論が提案されており，矩型ノズルでは，斜め交差衝撃波の線形安定性解析とジェット流速の 70% で移流する渦を仮定したモ デルにより，簡単な予測式が与えられている［5］．

一方，ノズルリップにタブを装着すると，ジェットの混合 が促進がされ，スクリ一チ音が抑性される。タブによる ジェットの断面形状やジェットの分割化，衝撃波セル間隔の縮小などが可視化実験により確認されてきた［6，7，8］．しか し，超音速ジエットを披うために実験は非接触計測に制限さ れ，詳細な物理的過程を把握するには実験と照合しながら行 なう数値解析が必要となる。音場シミュレーション $[9,10]$ と

ともに，衝撃波とせん断層を高精度で捉える非定常流解析を実施する必要がある。極めて膨大な CPU 容量を必要とする ものであるが，極く最近に軸対称トロイダルスクリーチにつ いての解析結果が報告されるようになつた［11］．

ここでは，音場解析の前段階として行なった矩型ジェット の内部および近距離場の流れ解析の結果を紹介する。アスペ クト比1～3のノズルで，スクリーチ成分が顕著な $M_{j}=1.48$ の場合について，3次元ジェットの構造とフラッピングの状沅 およびタブによる抑制の構造を示す。シュリーレン画像は実験画像とよく一致し，近距離場圧力の非対称変動，タブによ る縦渦の発生とジェット分割の効果などを述べる。

2．ノズル形状と数値解析

ノズル形状 図 1 に解析の対嶑とした収縮ノズルにタブを装着した状態を示す。出口断面を基準に x, y 軸をとり，軸方向にz座標をとる。出口寸法，計算領域および計算格子点数 を表示しておくが，計算領域の幅と長さはノズル長辺bの3倍と 7 倍の程度である。ノズル外側の上流境界は，エントレ インメントを円滑にするために，やや上流側に設けてある。基礎方程式系 衝撃波同士の干渉および衝撃波とせん断層 の干渉を含む超音速流れの乱流を扱うべきではあるが，物理的に妥当な乱流モデルを導入することは難しく，ここでは物質粘性と熱伝導を用いた簡単な系でNavier－Stokes 方程式 を解析する。すなわち，つぎの3次元非定常圧縮性の保存形方程式を解析する。

$$
\begin{equation*}
\partial_{t} Q+\partial_{x} E+\partial_{y} \boldsymbol{F}+\partial_{z} \boldsymbol{G}=\frac{1}{R e}\left[\partial_{x} \boldsymbol{R}+\partial_{y} S+\partial_{z} \boldsymbol{T}\right] \tag{1}
\end{equation*}
$$

ただし，

$$
\begin{align*}
Q & \equiv[\rho, \rho u, \rho v, \rho w, e]^{\mathbf{T}} \tag{2}\\
E & \equiv\left[\rho u, \rho u^{2}+p, \rho u v, \rho u w,(e+p) u\right]^{\mathbf{T}} \tag{3}\\
F & \equiv\left[\rho v, \rho u v, \rho v^{2}+p, \rho v w,(e+p) v\right]^{\mathbf{T}} \tag{4}\\
G & \equiv\left[\rho w, \rho u w, \rho v w, \rho w^{2}+p,(e+p) w\right]^{T} \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{R} \equiv\left[0, \tau_{x x}, \tau_{x y}, \tau_{x z}, u \tau_{x x}+\nu \tau_{x y}+w \tau_{x z}+\frac{\mu}{\operatorname{Pr}(\kappa-1)} \partial_{x} a^{2}\right]^{\mathbf{T}} \tag{6}\\
& S \equiv\left[0, \tau_{y x}, \tau_{y y}, \tau_{y z}, u \tau_{y x}+v \tau_{y y}+w \tau_{y z}+\frac{\mu}{\operatorname{Pr}(\kappa-1)} \partial_{y} a^{2}\right]^{\mathrm{T}} \tag{7}\\
& \boldsymbol{T} \equiv\left[0, \tau_{z x}, \tau_{z y}, \tau_{z z}, u \tau_{z x}+v \tau_{z y}+w \tau_{z z}+\frac{\mu}{\operatorname{Pr}(\kappa-1)} \partial_{z} a^{2}\right]^{\mathbf{r}} \tag{8}\\
& \text { 参力テテンソルは, } \\
& \quad \tau_{i j}=\mu\left[\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\lambda \delta_{i j}(\nabla \cdot \vec{u})\right], \lambda=-\frac{2}{3}
\end{align*}
$$

ここで，空間座標，時間，流速成分，密度，圧力，全工 ネルギー，温度，粘性发力等は，計算領域の x 方向長さ L ，無限遠大気の圧力 p_{∞} ，密度 ρ_{∞} ，音速 a_{∞} を用いて下記のように無次元表示されている。

$$
\begin{align*}
& (x, y, z) \sim \frac{(x, y, z)}{L}, t \sim t \frac{a_{\infty}}{L}, \quad(u, v, w) \sim \frac{(u, v, w)}{a_{\infty}}, \\
& \rho \sim \frac{\rho}{\rho_{\infty}}, \quad(p, e) \sim \frac{(p, e)}{\rho_{\infty} a_{\infty}^{2}}, \quad T \sim \frac{T}{a_{\infty}^{2}}, \quad \tau_{i j} \sim \tau_{i j} \frac{L}{\mu_{\infty} a_{\infty}} \tag{10}
\end{align*}
$$

気体は完全気体（ $\kappa=1.4$ ）で， $\operatorname{Pr}=0.72$ とする。
不等間隔直交格子系での解析を白動的にするために，式 （1）を一般座標系に変換して使用する。
差分スキ一ム 対流項には，衝撃波解析での実績が多い Chakravarthy－Osher の3次精度TVD法［12］を適用し，流束制限関数にはYeeの第1型式を用いる。拡教項には2次精度 4心差分を用いる。時間進行は，時間間隔3次精度の3段階 Runge－Kutta 法［Rizzi－Eriksson，13］を用いて，陽的に進める。初期条件 ノズル出口が音速状態のポテンシャルジェット と凮囲の標準状態静止気体を初期条件として与え，等エント ロピーマッハ数 M_{j} が設定値に達するまでノズル全圧を徐々 に上昇させる。静止大気にジェットを発生させる方法では，初期の球面衝撃波が計算境界を通過する際の反射波と過渡的 な渦が消減するまでに相等長いCPU 時間を必要とする。

Nozale	Dimension mm	Domain mm	Number of grid
RE－1	21.7×21.7	$100 \times 100 \times 2.39$	$11.3 \times 109 \times 240$
RE－2	31.6×15.2	$100 \times 100 \times 239$	$11.5 \times 109 \times 240$
RE－3	38.3×13.2	$100 \times 100 \times 239$	$117 \times 109 \times 240$
TAB	1.6×3.1		$6 \times 3 \times 1$

Fig． 1 Geometry of rectangular nozzle and computation domain indicated with boundary conditions．

境界条珄 超音速白由ジェットの解析に際しては，
（1）出口境界において，超音速流出部と两音速部が共存 し，その領域の境界は未知である。
（2）亜音速出口境界では渦による流れの流入出がある。
（3）エントレインメントおよび圧力波通過により，側面境界とノズル外上流境界で微小速度の気体の流入出がある。

ジェット主要部を詳細格子で解析しっその周囲を段階的に粗な格子で張り，適宜Euler方程式系で無限遠条件に適合さ せる方法が妥当であろう，ここでは，予備的段階として，計算領域をなるべく大きくとり，簡単な無反射条件を与える。
Thompson［14］に従い，各境界では粘性作用が弱いとし，双曲型Euler系で流れを近似する。境界面の法線方向（ x_{n} ）につ いての特性波を扱う。それらの速度は，下記のようになる。

$$
\begin{equation*}
\lambda_{1}=u_{n}-a, \lambda_{2}=\lambda_{3}=\lambda_{4}=u_{n}, \lambda_{5}=u_{n}+a \tag{11}
\end{equation*}
$$

ここで，λ_{1}, λ_{5} は x_{n} にたいして負および正の方向に伝播す
る音波，λ_{2} はエントロピー波，λ_{3}, λ_{4} は流れの接方向成分 （ $\vec{u}_{:}$）の x_{n} 方向移流速度を表わす。

このとき，特性方程式は下記のように表わされる．

$$
\begin{array}{ll}
\partial_{t} p-\rho a \partial_{t} u_{n}+\mathrm{R}_{1}=0, & \mathrm{R}_{1}=\lambda_{1}\left(\partial_{x n} p-\rho a \partial_{x n} u_{n}\right) \\
\partial_{t} p-a^{2} \partial_{t} \rho+\mathrm{R}_{2}=0, & \mathrm{R}_{2}=\lambda_{2}\left(\partial_{x n} p-a^{2} \partial_{x n} \rho\right) \\
\partial_{t} \vec{u}_{t}+\left[\begin{array}{l}
\mathrm{R}_{3} \\
\mathrm{R}_{4}
\end{array}\right]=0, & {\left[\begin{array}{l}
\mathrm{R}_{3} \\
\mathrm{R}_{4}
\end{array}\right]=\left[\begin{array}{l}
\lambda_{3} \\
\lambda_{4}
\end{array}\right] \partial_{x n} \vec{u}_{t}} \tag{12}\\
\partial_{t} p+\rho a \partial_{t} u_{n}+\mathrm{R}_{5}=0, & \mathrm{R}_{5}=\lambda_{5}\left(\partial_{x n} p+\rho a \partial_{x n} u_{n}\right)
\end{array}
$$

N－S COMPUTATION

EXPERIMENT （INSTANTANEOUS）

これらの関係を用いて，時間ステップ $(\mathrm{n}+1)$ と (n) における境界値の関係を次のように与える。
（超音速流入：ノズル出口より若干上流）$R_{1}, R_{2}, ~ R_{5}=0$ ．一定値を全圧比に対する等エントロピ一膨張の値で設定。 （超音速流出）超音速の格子点に適用。全て $\lambda_{i}>0$ であるか ら，内点で式（12）から R_{i} を計算，境界上での $\partial_{t} p, \partial_{t} u_{n}$ ，等 を定める。実際には，内点の値を境界上の値に使用する。 （亜音速境界：ノズル外上流，側面境界，流出境界の一部）

時間ステップ（ n ）の内点で流入出を判定する。 $x_{n}>0$ を向 く境界では，流出の場合，式（12）から $\mathrm{R}_{2}, ~ \mathrm{R}_{3}, ~ \mathrm{R}_{4}, ~ \mathrm{R}_{5}$ を内点 で計算，入射波には無反射条件を適用して $R_{1}=0$ 。式（12）式 を用いて，境界上の変数の時間変化 $\partial_{I} p, \partial_{t} u_{n}$ ，等を定める。

流入の場合， R_{5} を式（12）から計算し， R_{1} ， $\mathrm{R}_{2}, ~ \mathrm{R}_{3}, \mathrm{R}_{4}=0$ として，式（12）式から，境界上の変数の時間変化を与える。

なお，ノズルの対称面でも流れに渦的振動があるため，対称条件を入れず，全領域を計算する。
数値シュリーレン画像 完全平行な入射光路に沿って，解析した密度勾配を積分し，透過した光路の偏向角を計算す る．ナイフエッジ位置からの距離に比例するように輝度を与 え，感度を調節した。

3．超音速矩型ジェットとスクリーチ変動
3． 1 数値シュリーレン画像と実験画像 図2に正方形ノズルジェットの数値計算シュリーレン画像と実験画像 （瞬時レーザー光源，連続キセノン光源使用）を示す。左側

N－S COMPUTATION

EXPERIMENT （CONTINUOUS）

Fig． 2 Computed schlieren pictures of supersonic jets from square nozzle，and nozzle with tab pair；RE－1，$M_{j}=1.48$ ．

Fig． 3 Computed schlieren pictures of supersonic jets from rectangular nozzle，and nozzle with tab pair；RE－3，$M_{j}=1.48$ ．

Fig． 4 Flapping oscillation during 1 cycle of 5.6 kHz ；
RE－3，$M_{j}=1.48$

はタブ非装着，右側はタブ装着の画像である。衝撃波セルの形状と間隔，第2セル付近からせん断層の混合が促進されて いる様子など，計算と実験結果はよく一致している。タブ非装着の場合，第3セルが片奇った形状を呈しているが，タブ装着では両軸方向の投影画で対称性が保たれている。タブ装着辺から出発するせん断層は，非装着の場合より厚く発達し ているように見えるが，これは一様に発達しているのではな く，タブにより誘起された縦渦の巻上げによるものである。

アスペクト比3の結果を図3に示す。長軸方向投影画では，第2セルから第3セルにかけて，大規模渦が形成されてお

Fig． 5 Frequency of computed pressure oscillation compared with measured and theoretical screech frequency．

り，上側と下側では位相が異なって非対称となっている。
これに対し，短軸投影では非対称性が認められない。タブ装着の効果は正方断面の場合より顕著に現われ，タブ装着長辺 より出発するせん断層は一層に厚く投影され，長軸面に対す る非対称性も消失している。衝撃波セル間隔は極端に短く なっているが，短軸投影で明らかなように，タブ後流で2分 されたジェットの切に対する衝撃波セルのスケールになつて いる。縮退したセルも実験結果とよく一致している。
3．2 スクリーチ振動とタブによる抑制効果 計算事例のうち最も明確なRE－3のフラッピング振動パターンを $1 / 4$ 刲期で分割して図4に示す。位相 $\phi=0$ のとき，ジェット の下側で第2セル付近で形成されつつある渦が下流に移流 し，$\phi=3 \pi / 2$ では大スケールに成長して位相 $\phi=0$ における先行渦となる。ジェット上側では，位相が $\pi / 2$ 進んだ渦が移流 している．実験画像はレーザー干渉による乱れの重畳のため やや不鮮明であるが，第2セル付近から密度波が発生し計算 と同程度の速さで下流に移流している。乱流混合の様相は明 らかに物質粘性計算の結果とかなり異なつている。

図5に，ジェット近距離場での圧力変動の咕波数を遠距離場スクリーチ音凮波数および線形理論凮波数［5］と比較して おく，厳密にはそれぞれの根拠に違いがあるが，計算問波数 は妥当な值となっている。ノズルRE－1 とRE－3 について，

Fig． 6 Pressure fluctuation in near field of underexpanding jet issued from RE－1 nozzle（a，b）and $\mathbf{R E}-\mathbf{3}$ nozzle（c，d）； $\mathbf{M}_{1}=1.48$ ．

Fig． 7 Density（top）and vorticity（bottom）contours at various section of jet；Rectangular nozzle witout tab；RE－3， $\mathrm{M}_{\mathrm{i}}=1.48$

Fig． 8 Density（top）and vorticity（bottom）contours at various section of jet；Rectangular nozzle witout tab；RE－3， $\mathrm{M}_{\mathrm{i}}=1.48$

Fig． 9 Vorticity contours of jets respectively from square nozzles without tab（top）and with tab（bottom）；RE－1， $\mathrm{M}_{\mathrm{i}}=1.48$ ．

Fig． 10 Entrainment by longitudinal vortices
ジェット各辺近偣の圧打変動波形とr．m．s．値を示す。RE－1で は， $\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{D}$ のように軸㓮りを回転する位相差が現わ れ，ヘリカルモードの振動となっている．タブを装着するこ とにより， 3 dB 程度の減衰となるが，依然風期的変動が残り その湖波数はかなり高くなつている．タブが流れの構造を必 ずしも変えていないことを後に述べる。RE－3では，長軸非対称の変動が卓越して現われる，タブの減衰効果は 12 dB 以上 に達し，変動波形もかなり不規則で各辺とも同程度の振幅と なっている。この減衰量は騒音圧スペクトルに重畳する 3 dB程スクリーチ成分のレベルに匹敵している。

4．ジェットの構造とタブの効果
3． 1 断面内密度分布と渦度分布 図7にRE－3ノズ ルについて，密度上軸方向渦度成分の分布が軸方向に変化す る経過を示す。 $\mathrm{z} / \mathrm{b}=1$ 程度の第 2 衝撃波セル付近までは，長軸，短軸対称に膨張しているが，それより下流で混合層に密度と渦度が連動した長軸非対称性が現われる。 $\mathrm{z} / \mathrm{b}=2.2$ では， ジェットは完全にノズル対称面から上側に片奇り， $\mathrm{z} / \mathrm{b}=2.6$ では右下方に片奇っている。渦度（時計方向：白，反時計方向：黒）は複雑な挙動を示し，混合を非対称にしている。

一方，タブを装着すると（図 8 ），$z / b=2.6$ に至るまで密度の非対称性は弱く，さらにz／b＝1では衝撃波セルが左右に分かれ， $\mathrm{z} / \mathrm{b}=1.8$ ， 2.2 ではジェットが 2 分されている様子が認められる。渦度分布ではさらに明確で， $\mathrm{z} / \mathrm{b}=1.8 \sim 2.6$ の区間では円形状に配列した渦が2つの平行な円形ジェットを形成している。逆に，周囲気体との混合は盛んではない。この ような規則性は，図10に示すように，タブによって強制的 に誘導される双子渦が洁囲気体を卓越的に巻き込み，また コーナー部の渦と回転方向が適合する安定な渦系を構成する ことによると思われる。しかし，このような渦系，もしくは 2 分ジェットが安定でフラッピング等の振動を起こさない力学的根拠は現在明らかではない。

ところで，ここで用いた寸法のタブは正方形ノズルに対し ては必ずしも影響が顕著ではないことが図 9 より予想され る。タブ非装着でも，ジェット風囲の渦は比較的軸対称に配列し，配列が片奇るのは $\mathrm{z} / \mathrm{b}=2.6$ 程度の距離に達してから で，それは㓮方向に位相がずれた様相を示している。ヘリカ ルモードの振動に対心しているかと思われる．夕ブを装着し た場合，RE－3と同程度の双子渦が誘導されるが，両辺間の距離，すなわち巻き込まれた周囲気体の干渉距離が長く，その効果は $\mathrm{z} / \mathrm{b}=1.8$ 程度で衰退し，単一ジェットとして拡散して いる。しかし，タブに強制されて，凮方向には位相差が認め られなくなっている．また，タブによる渦系の非一様性によ り，やや混合が激しくなつているようでもある。

Fig． 11 Effect of tab on axial momentum flux；$M_{j}=1.48$
3．2軸方向運動量 図11に軸方向運動量の瞬時の分布を示す。流れの運動量がノズル出口での値からジェット の膨張によって回後する経過を示すもので，積分範囲は計算領域断面を選んである。推力評価の上で参考になろう．タブ非装着では，RE－1，RE－3の間に大きな差は生じていない。し かし，タブ装着の場合，図8，9からも予想されたように，混合過程の差による相違が顕著である。RE－1では，タブによ る影響はほとんど認められず，推力低下も少ないであろう。 RE－3では，フラッピングによる混合促進が抑えられので運動量回復はやや緩慢である。十分に膨張した段階でも，推力 はタブ非装着の場合より低下しているかと思われる。

なお， $\mathrm{z} / \mathrm{b}=5.5$ 以降で運動量比が急減しているが，流出境界の影響によるものである。

5．あとがき
不足膨張超音速ジェットに発生する分離呿波数スクリ一チ音とその抑制に効果的な夕ブの作用をN－S数値解析によって調査した。フラッピング振動を捕捉し，タブによる縦渦が ジェットを安定化させる流れ構造などをある程度具体的に示 すことができたが，数値解析上解決すべき諸課題も多数残さ れている。計算領域を効率的に拡張してジェット流出境界か らの影響を少なくすること，そのために，Euler 系の領域を重ねることも考慮される。超音速乱流混合を導入すること は，必要ではあるが，最も困難な課題である。

参考义献

［ 1］Kobayashi，H．，et al．，AIAA－93－4348（1993）．
［ 2］Kobayashi，H．，et al．，NCA－vol．17，Acoustic Radiation and Wave Propagation，ASME（1994）．
［ 3］Powell，A．，The Aeronautical Quarterly，vol．IV（1953－2）， 778.
［ 4］Seiner，J．M．，AIAA－84－2275（1993）．
［ 5］Tam，C．K．W．，AIAA－86－1866（1986）．
［ 6］Zaman，K．B．M．Q．，et al．，AIAA－92－3548（1992）．
［ 7］Zaman，K．B．M．Q．，et al．，Phys．Fluids，6－ 2 （1994）， 778.
［ 8］Reeder，M．F．，et al．，AIAA－95－0672（1995）．
［ 9］Mankbadi，R．R．，et al．，AIAA J．，36－ 2 （1998）， 140.
［10］Pilon，A．R．and Lyrintzis，A．S．，AIAA J．35－5（1998）， 783.
［11］Shen，H．and Tam，C．K．W．，AIAA J．36－10（1998）， 1801.
［12］Chakravarthy，S．R．and Osher，S．，AIAA－85－0363（1985）．
［13］Rizzi，A．and Eriksson，L－E，J．Fluid Mech．vol． 148 （1984）， 45.
［14］Thompson，K．W．，J．Computational Physics，vol． 89 （1990）， 436.

Numerical analysis of supersonic pulse jets

by
Ryuji ISHII, Yoshikuni UMEDA, Graduate School, Kyoto University and

Masatoshi YUHI, Kanazawa University

ABSTRACT

Unsteady circular jets are treated numerically. The time evolution of circular pulse jets is investigated systematically in a wide range of jet strength. Focus is placed on the jet evolution, in particular, the formation process of Mach disks in the middle stage and of shock-cell structures in the later stage. It is shown that unsteady Mach disks are realized at least temporarily for all sonic underexpanded jets, but they decay with time for weak jets. The vortex ring produced near the nozzle lip plays an important role in the formation of the shock-cell structure. Especially interactions between the vortex ring and the Mach disk connected with a strong second shock affect remark-ably the construction process of the first shock-cell. A few types of different construction processes of the first cell structure are found. It is also made clear that the Kelvin-Helmholtz instability along slip surfaces originating from the triple point at the outer edge of the Mach disk is responsible for the generation of large second vorticies which enroll the first vortex. This results in strong mixing of the jetting gas and the gas around the jet.

1. Introduction

Supersonic jets have been used in many research fields and also realized in many practical applications. Laminar supersonic jets are used in the aerodynamic levitation flow reactors. In kraft recovery boilers, supersonic jets are applied as sootblowers to remove the fireside deposit. They are used for gas atomization of melt metal to produce small metal powders and also for oxygen fuel flame spraying. At the lift-off of a rocket, unsteady supersonic jets are exhausted from nozzles just after the ignition. At the operation of an air bas in a car, an unsteady supersonic jet is applied. Furthermore, recently, it has been recognized that pulsed supersonic jets provide effective means to control the chemical energy release in variety of combustion system - as utilized in advanced concepts
for internal combustion engines. ${ }^{1}$

In the present paper, unsteady circular jets are treated numerically. Gas (air) is accelerated by a shock in a shock tube with a constant circular cross section and exhausted from the open end into a test chamber. So the jet strength is controlled by one parameter p_{4} / p_{1}, where p_{1} and p_{4} are initial gas pressures at the low pressure chamber and a high pressure one, respectively. The pressure ratios were chosen in the range from 2.0 to 50 . The basic flow characteristics of the unsteady jet are investigated systematically. Focus is placed on the jet evolution in the second and third stages. The KelvinHelmholtz instability and the generation of the second vortices are investigated in detail in relation to the formation process of a Mach disk. It will be made
clear that the Kelvin－Helmholtz instabili－ ty along the slip surface plays a very important role in the jet instability． The numerical results are compared with the experiments and good agreement is obtained between them．

2．Numerical Simulation

The numerical simulations were performed on a supercomputer Fujitsu VP－2600 at the Data Processing Center of Kyoto Universi $-t y$ ．The Euler equations for an axially symmetric flow were solved by a finite－ difference TVD scheme proposed by Chakravarthy and Osher．${ }^{2}$ The mesh number is 600×400 ．On the outer boundary and the downstream boundary，the ambient gas con－ dition is applied；$(p, \rho, u, v)=\left(p_{1}, \rho_{1}, 0,0\right)$ ， where ρ is the gas density，u the axial velocity and v the radial velocity of the gas flow．On the solid walls and the jet axis，the symmetric condition is applied． On the upstream boundary inside the shock tube，the shock condition（ p, ρ, u, v ）$=$ $\left(p_{2}, \rho_{2}, u_{2}, 0\right)$ is applied，where the quantities denoted by the subscript 2 are obtained through the Rankine－Hugoniot relations for a specified shock Mach number M ．

In the numerical simulation，the effect of the boundary conditions are responsible for serious artificial or unrealistic phenomena．This is because in the present case，the outer and the downstream bound－ aries do not correspond to the actual boundaries．Empirically it is well known that the downstream boundary can affect the numerical results relatively remark－ ably．Numerically it was confirmed that the effect of the outer boundary does not affect appreciably the jet evolution，if the axial length is taken more than 5 times the size of the duct radius．So the total radius of the computational domain is taken to be 10 ，where the nondimension－ al duct radius $L_{s}=1 / 2 D_{s}$ is taken to be unity．

Fig． 1 Effect of mesh size．

Fig． 2 Effect of downstream boundary．
Here we check first the effect of the downstream boundary．Fig． 1 shows the density contours of a jet for $p_{4} / p_{1}=$ 12.0 at $1140 \mu \mathrm{sec}$ ，where x and y are the axial and radial coordinates，respect－ ively，nondimensionalized by the duct radius $1 / 2 D_{s}=1 \mathrm{~cm}\left(D_{s}=2 \mathrm{~cm}\right)$ ．The non－ dimensional mesh sizes（ $\Delta x, \Delta y$ ）are set as （ $0.05,0.05$ ）．Only one difference between the jets a）and b）is the length of the downstream boundary from the upstream one． It was taken to be 15 in the case a）and 20 in the case b）．Obviously，both jet
structures are almost the same with each other for $0 \leqq x \leqq 10$ except for some weak pressure waves surrounding the jets．
In the present study，we can visualize and then investigate the jets only in the circular region with a radius $4(\mathrm{~cm})$ whose center is located at about $(x, y)=(4,0)$ ． This suggests that the 15 times of the duct radius is quite sufficient as the axial length of the computational domain to investigate reasonably the jet evolut－ ion up to time $1000 \mu \mathrm{sec}$ in the numerical simulation．

We will also check the effects of the mesh size on the numerical results．Here we note that a square mesh was used（ $\Delta x=$ $=\Delta y$ ）throughout the present paper．It is generally well known that the numerical results depend on the mesh size．So it is crucially important to see what kinds of phenomena we can predict by the numerical simulation．Figs．2－a）and $2-\mathrm{b}$ ）show the density contours of a jet for the pressure ratio $\mathrm{p}_{4} / \mathrm{p}_{1}=8.7$ at $351 \mu \mathrm{sec}$ ．As we can see，the both results agree quite well with each other．Only one difference bet－ ween the computational conditions is the mesh size $\Delta x(=\Delta y)$ ．In the former case， Δx is set at 0.025 and it is set at 0.05 in the latter case．From these results， we can expect that the strong phenomena such as jet boundary，expansion waves， shock wave and strong vortical structure can be well predicted in the unsteady pulse jets．Only the Kelvin－Helmholtz role－up and the resultant fluctuations depend appreciably on the mesh size．In what follows，the mesh size $\Delta x=\Delta y=0.025$ is taken as a reference mesil size．The present TVD－scheme can solve the one－ dimensional shock tube problem with 99.9 \％accuracy．A normal shock can be captur－ ed with 4 or 5 meshes．

3．Numerical results

It is well－known that the TVD scheme is very effective and powerful to simulate

Fig． 4 Diameter Mach disk diameter．

Fig． 5 Axial distance of Mach disk．
flow fields with shock discontinuities． This scheme can also be applied directly to the Navier－Stokes equations．But when the Navier－Stokes equations are used， appropriate mesh refinement is inevitable in local flow regions where the viscous effect is important．In the present study， the jet evolution is essentially unsteady and then it is almost impossible to guar－ antee a sufficient number of meshes in these local moving flow regions due to lack of capacity of the computer resources．

A sample of the jet evolution is shown in Fig． 3 for $p_{4} / p_{1}=11.8$ ．The solid lines and circles denote the numerical and ex－ perimental results，respectively．The center of the first vortex is clearly seen in both the numerical and experimental

Fig． 6 Radial distance of first vortex．

Fig． 7 Axial distance of first vortex．
jets at $\mathrm{t}=213 \mu \mathrm{sec}$ and $288 \mu \mathrm{sec}$ ．At t $=231 \mu \mathrm{sec}$ ，the first shock cell is elon－ gated by the reflected shock connected with the second shock．At $\mathrm{t}=408 \mu \mathrm{sec}$ ， the first shock cell shrinks by a few per－ cent．The jets have a few strong second vortices around the first vortex．They are convected around the first vortex faster and even reach upstream side of it．The shocks and slip lines are simulated very well．

We will investigate more systematically the characteristics of unsteady jets．For the time evolution of the diameter D_{M} and the axial distance X_{M} of the Mach disks are shown in Figs． 4 and 5，respectively． Obviously good agreement between the nu－ merical and experimental results is ob－ tained．The diameter D_{m} increases with
time after its formation for the strong jets $\left(p_{4} / p_{1}=25\right.$ and 50），decreases to a minimum value and then tends to increase very gradually to some quasi－steady value． In the jet for $p_{4} / p_{1}=11.8$ ，D_{M} decreases after the formation and becomes minimum at about $\mathrm{t}=250 \mu \mathrm{sec}$ and then begin to in－ crease．It is interesting that the jets for $\mathrm{p}_{4} / \mathrm{p}_{1}=11.8,25$ and 50 take their minimum diameters at nearly the same time $t \sim 250$ $\mu \mathrm{sec}$ ．It is also interesting that the jet for $p_{4} / p_{1}=8.7$ has an unsteady Mach disk temporarily but does not construct any quasi－steady Mach disk．The axial distance X_{M} experiences a weak overshooting at $t=$ $200 \sim 300 \mu \mathrm{sec}$ and then tends to decrease slightly to some quasi－steady value．

Next the motions of the first vortices $\left(X_{v}, Y_{v}\right)$ are plotted in Figs． 6 and 7， respectively，where（ X_{v}, Y_{v} ）denote visual centers of the first vortex．The identifi－ cation of the vortical center is very difficult experimentally．Agreement bet－ ween the numerical and experimental results is rather poor in a later stage． This trend is prominent for the weakest and the strongest jets $\left(p_{4} / p_{1}=2.9\right.$ and 50），respectively．In the former jet，any shock wave is not formed behind the first shock and then the jet evolution will be viscosity dominant．In the latter jet， very strong second vortices are generated and their motion will also be affected appreciably by the gas viscosity．

4．Conclusion

Unsteady circular jets were investigated
numerically in a wide range of the jet strength．After a sudden gas outflow， there are several stages in the subsequent time evolution of a sonic or supersonic underexpanded jet．The first stage is the diffraction of the first shock at the end corner．The second stage is the formation of an unsteady Mach disk or a normal shock．It was shown that the formation process of the Mach disk is not unique． Even in the jet which does not have a quasi－steady Mach disk，an unsteady Mach disk can be realized at least temporarily． The third stage is the formation of the first shock－cell structure．This stage is strongly affected by the presence of the first vortex and the Mach disk．As soon as the connection between the second shock and the reflected shock is interrupted， the shock－cell length becomes maximum and thereafter it tends to shrink to a certain asymptotic size．The jet with a strong Mach disk is very unstable and rapidly break up．The jet tip is folded back on itself and is entrained into the first vortex ring and soon later evolves to a fully－developed turbulent flow．It has been confirmed that the numerical results obtained by a TVD scheme for the Euler equations can predict successfully the construction process of the shock－cell． Especially the shock－cell with a Mach disk is remarkably well simulated quantitative－ ly as well as qualitatively．

References

1）A．L．Kuh1，H．Reinhenbach，P．Neuwald，R． E．Ferguson，and A．K．Oppenheim，Fluid Mechanics of a Planner Exothermic Jet． JSME ICFE－97，pp．955－959（1997）．

2）S．R．Chakravarthy，and S．Osher，A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws．AIAA Paper 85－0363（1985）．

NWT ジョブにおける処理性能の改善

 The Improvement of the Performance on NWT Jobs by Masako TSUCHIYA，Masahiro YOSHIDA，Takashi NAKAMURA
National Aerospace Laboratory
Akira FUJIOKA
Sanko Software Development Co．
Yasushi YAMAGUCHI
Fujitsu Limited

Abstract

NWT（Numerical Wind Tunnel）is a high performance parallel computer．It has served at the very high CPU utilization－rate．To make the best use of NWT we have investigated the behaviors of input／output（I／0）on NWT jobs， and have found that NWT jobs have a serious problem to deteriorate the performance．It is in the output process of Fortran unformatted sequential writing．We have found the scheme that improves the performance，and we recognize the importance of $\mathrm{I} / 0$ performance on NWT jobs．

In this paper we show the statistical and actual surveyed data of the I／0 performance on NWT jobs，and the details of the method to solve this problem．

1．はじめに

平成5年2月に導入した数値風洞（Numerical Wind Tunnel：NWT）は要素計算機（Processing Element：PE） にベクトル計算機を配置する分散主記篭型並列計算機シス テムである。NWTは大規模数値シミュレーションの計算 エンジンとして絶大な力を発揮し，航技研における先進的 な航空宇宙技術の研究開発に重要な役割を果たしている。

現在，NWT～のジョブ処理要求は増大の一途をたどり， システムの処理待ちジョブキューは常時，満杯状態を呈し ている。ちなみに平成10年では，システムのcpu秝働率は 90% に迫り，並列計算機システムのセンタ運用シス テムとしては比類のない高稼働率となっている。

NWTの運用では，日頃からユーザの個々のジョブにつ いて実効性能を高め，ジョブ・スルーブットの増大を図る種々な運用方策に取り組んでいる。

その方策の具体例を列挙すると以下のとおりである。
（1）入出力時間が長いジョブのチューニング
（2）低効率並列ジョブのチューニング
（3）低ベクトル化ジョブのチューニング

NWTジョブに対するこれらの方策はまだ順次進行中の ものもあり，その効果は明確な数字となって響いてきてな いが，実運用の中で実質的な利益を生み出した事例を多く確認している。

以上に示すチューニングを要するジョブは主に日々の膨大に発生するプロセス課金レコード，各種ログ情報ならび にシステム稳働情報等を分析した結果から抽出している。 また，システム運用担当者が日々のジョブ走行を監視する中で確認する場合も多々ある。さらに，NWTではシステ ムに網を掛け，積極的に効率の悪いジョブを発見し，とき には，このようなジョブの実行阻止を図っている。

NWTシステムの更なる高度有効利用を図るため，実行 ジョブ（NWTジョブ）の入出力性能について着目し，シ ステムの隘路ならびに改善すべき要因の調査を行った。こ の結果，NWTジョブの入出力において，最も利用の中心 となる書式なしFORTRANVコードの出力処理に性能低下を確認した。本報告では，NWTジョブの入出力性能 についての調査結果を示すとともにその中から確認された性能低下の要因と考えられるシステムの隘路に対する改善

策を提示し，その有効性を示す。

2．NWTの稼働実績

2．1ハードウェア構成概要
NWTを中核とする航技研の数値シミュレータシステム （NSシステム）のハードウェア構成概念図を図2．1に示す。

図2．1数値シミュレータシステムのハードウェア構成概念図

同図に示すとおり，NWTの中核部は2台のコントロー ルプロセッサ（CP），166台の要素計算機（PE），お よびそれらを相互接続するクロスバネットワーク（ XB B） のハードウェアから構成されており，フロントエンドプロ セッサ（FEP）のNWT－FEPとシステム記憶装置（S SU）を介して接続されている。PEの構成台数のらち1 62 台は 256 MB のメモリ容量を有し，残りの 4 台は 1 GBのメモリ容量を実装している。NWTはピーク性能2 80 GFLOPSの超高速処理性能を有する並列計算機シ ステムであり，そのハードウェアの処理性能を十二分に引 き出すために，大規模ジョブの数値シミュレーション処理 に専念し，ジョブ入出力等のフロントエンド処理はFEP が分担する。また，FEPには入出力装置および補助記憶

装置として磁気ディスク装置（転送速度：4．5MB／秒，同時ア クセスパス数：20），高速アレイ磁気ディスク装置（転送速度：36MB／秒），磁気テープライブラリ装置（転送速度：3MB／秒，同時アクセスパス数：4）ならびにカートリッジ磁気テ ープ装置（転送速度：3 KB ／秒）が接続している。

2．2NWTの稼働実績

平成5年度のNWT導入当初より現在までのNWTジョ ブの稼働実績を以下に示す。表2．1はNWTジョブの処理件数をジョブが使用するPE台数ごとに示したものであ る。表2．2はNWTジョブの処理に要した総CPU使用時間を表したものである。

表2． 1 NWTジョブの処理件数

	平成 5 年度	平成6年度	平成7年度	平成8年度	平成 9 年度
1 PE	42,121	51,109	51,194	75,384	81,599
$2-7 \mathrm{PE}$	8,136	7,030	13,414	16,209	35,098
8 －15PE	3,723	4,017	4,336	11,520	19,110
$16-31 \mathrm{PE}$	4,226	7,099	8,580	17,937	12,632
$32-63 \mathrm{PE}$	167	754	2,215	2,727	3,016
$64-166 \mathrm{PE}$	2,028	2,110	1,722	9,962	1,499
総处理件数	60,401	72,119	81,461	133,739	152,954

表2．2 NWTジョブのCPU使用時間

	平成5年度	平成6年度	平成7年度	平成8年度	平成 9 年度
1 PE	42，315	69， 059	75， 461	101，498	98，564
2－7PE	6，832	13， 083	34， 853	35， 423	62，757
8－15PE	14， 126	20， 846	37， 451	133， 446	243， 035
16－31PE	40，866	76， 102	156， 076	253， 544	384， 802
32－63PE	97	10，988	74， 130	53，507	124， 974
64－166PE	89， 157	133， 618	69， 793	255， 417	104， 611
総CPU 使用時間	193， 393	323， 695	447， 763	832， 836	1，018，743
CPU 稼働率（\％）	33.89	43.97	53.36	79．00	83.50

CPU 稼働率＝総 CPU 使用時間／電源投入時間＊100
表2．1と表2．2から，年度が進むごとに並列ジョブ が増大していることが読みとれる。航技研において，NW Tは最初に運用した並列計算機システムではあったが，導入当初から並列ジョブが徐々に増加している。NWTのユ ーザは不特定多数とはいえ，30人程度のユーザがシステ ムリソースのおよそ 9 割を使用するといら特殊性をもって いる。表中，64台以上の並列ジョブについては，そのジ ョブ処理量の推移に表れているように，これらのユーザの研究リズムに伴ったシステム利用サイクルに乎応し，NW Tジョブの処理量は増減している。NWTの運用ではこの ような特殊性を活かし，ビッグユーザをパイロットにして，新システム構築やシステムチューニング等の検討の基礎と

している。なお，平成8年1月のFEPの更新によりNW Tの処理性能が 2 割近く向上した理由にも呼応して，NW Tジョブ処理量の伸び率も飛矅的に増大した。しかし，1 PEの処理件数が増大した理由には，並列ジョブの増大と は異なるものがある。すなわち，更新前のFEPC゙処理さ れていたバッチジョブ（非並列ジョブ）が，更新後にNW Tの1PEジョブに回ったためと考えられる。ちなみに，従来FEPでは平成7年度においては約3万件のジョブを処理した。このことから，むしろ1PEジョブは減少の傾向にあることが明白であり，本来の並列計算機システムと して並列ジョブが C P U 寄与率を高めつつあるといえる。 また，1 PEジョブの中には，並列ジョブの結果の検証や パーフォーマンスを1PEジョブで確認するといった並列 ジョブ処理に必要なジョブも含まれている。

3．NWTジョブの入出カデータの流れ
NWTジョブはそのほとんどのものがFORTRANプ ログラムで記述されている。表3．1はNWTジョブが使用する入出カデータの種類を示す。また，NWTジョブが使用する入出力データの流れの概念図を図3．1に示す。 NWTは上記のファイルを直接的に格納する記憶装置を持 たないシステムである。ジョブ実行時に入出力するデータ の保存場所はFEPまたはVP2100の磁気ディスク装置上のファイルである。図3．1に示されるufsファイ ルシステムは一般のUNI X形式のファイルである。また， vf1ファイルシステムは大容量データの高速入出力を実現するファイル形式であり，磁気ディスクの入出力性能を上げるためにストライピング機能を使用し，1データは 32分割され複数ボリュームに同時転送される。

表3．1 NWTジョブの入出カデータの種類

処理フェーズ	入出力データの種類	転送方式
翻訳処理	FORTRANソースプログラム	NFS
	コンパイラの印刷出力情報	NFS
	オブジェクトモジュール	NFS
	リンケージエディタの印刷出力情報	NFS
実行処理	ロードモジュール	NFS
	実行時標準入力フフイル	NFS
	実行時標漼印刷出カファイル	SVIO
	実行時使用入出力ファイル（大規模）	SCFS
	実行時使用入出力ファイル（小規模）	NFS

表3．1および図3．1に示されるNFS（Network File System）はLAN接続されたUN I Xシステム間において よく使用されるファイル転送プロトコルである。NWTジ ョブ実行時のNFSによるデータ転送では，データはLA Nを経由してFEPとC P 間を移動する。このため，その入出力の性能はLANの通信負荷に大きく依存するので， NWTジョブでは小規模データの転送に限って利用する運用としている。

SCFS（Ssu Cashe File System）はS S UをFEPフ アイルのキャッシュとして使用し，NWTジョブからの大量の入出力を高速に処理することを目的に作られた機能で ある。さらに，NWTではジョブ実行時に大規模な入力デ ータの読み込み時間を短絔するために，ジョブが実行起動 される前に予め入カデータをS S Uに格納するプレステー ジングという機能を使用している。プレステージングされ た入力データがジョブ実行時にもS SUに存在すれば（S SUキャッシュがヒットするといら），改めてFEPのファ イルからS S Uへデータ転送するための入出力動作は発生 しないので，データ入力時間が非常に短縮できる。NWT では，S C F S を利用した大規模順編成ファイル，すなわ

ち，書式なしFORTRANレコードの利用がNWTジョ ブの実行における入出力処理の中心となる。

標準印刷出力データは直接には磁気ディスクファイルに出力しないで，いったん仮想的な出カイメージでS S Uに出力される。このときに使用されるS S U 記憶域をSVI O領域という。ジョブ実行終了時にS V I O領域の印刷出 カデータはrcpコマンドでFEPのufs ファイルに格納される。なお，ufsは一般のUNIXシステムで利用 されるファイル形式である。標準印刷出力としてS S Uの SVIO領域に出力する方式はNFSに比べて非常に入出力性能が高いので，ジョブ実行時間の短縮を図ることがで きる。

なお，VP2100のMS Pシステムより投入されるN WTジョブの入出力データは，ジョブがNWTで実行され る前または後の処理フェーズでFEPのファイルにいった ん格納される。この格納処理はMSPシステムとFEPの連苓機能を実現するMV P P プログラムが行い，ファイル はLANを経由して両システム間を移動する。

以上のことから，NWTジョブの実行時における入出力 データ転送の性能はS C F S およびNFSデータ転送の処理性能に依存するといらことが理解できる。このらち，本報告では最も利用の中心となるS C F S のデータ転送にお ける書式なしFORTRANレコードの入出力性能につい て述べる。
4．書式なしFORTRANレコードの入出力性能本章では，先ず実運用におけるNWTジョブの入出力性能がどのような状況であるかを示す。次に，テストジョブ により書式なしFORTRANレコードの入出力性能を実測した結果を示す。

4．1 NWTジョブの入出力性能実績

実運用における過去 2 ヶ月間の全NWTジョブについて， ジョブが使用したPEの台数ごとにまとめた入出力性能実績を表4．1に示す。表中のデータは各NWTジョブが使用した全てのPEに関するプロセス課金レコードから抽出 したCPU使用時間，入出力データ量ならびにプロセス経過時間に関する情報である。データ転送時間については正確な情報がプロセス課金レコードから抽出できないので，厳密には正確とは言えないが，プロセス経過時間とCPU使用時間の差をデータ転送時間と定義した。各ジョブの全 てのPEが入出力したデータ量の合計値をデータ転送時間

表4．1 NWTジョブの入出力性能実績

$\begin{aligned} & \text { ジョブPE } \\ & \text { 使用台数 } \end{aligned}$	$\begin{aligned} & \text { マスタPE } \\ & \text { CPU-TIME } \end{aligned}$	ファイルサイズ		入出力性能	
		最大值	平均値	最大値	平均値
（台）	（秒）	（MB）		（ MB / S ）	
1	5047	7012.8	91.3	215.3	5.7
2	1228	349.0	60.1	35.2	7.3
3	7244	325.8	78.8	17.4	3.1
4	143	13209.0	351.6	310.7	47.4
5	6355	197.7	97.7	18.4	5.2
6	6980	328.0	97.7	47.3	3.2
7	8422	102.5	60.9	4.5	2.5
8	4311	1197.9	133.4	100.8	7.5
10	8735	406.9	130.1	48.5	5.4
12	5854	475.8	117.1	12.5	3.1
13	1119	226.6	123.1	49.3	14． 1
14	10462	1339.0	84.0	26.2	3.9
16	5356	4375.4	143.1	60.0	8.3
17	11837	421.3	394.2	17.8	13.1
18	4180	226.6	140.0	38.6	10.5
19	383	226.6	147.3	38.9	11.6
20	5593	132.1	62.8	13.3	1.8
24	4839	701.6	659.8	39.1	20.8
28	7774	715.4	319.4	89.2	12.7
32	2997	1561.1	520.9	42.0	13.4
40	7394	2257.8	2032.2	93.1	26.3
64	7140	7752.7	1153.0	86.7	14.9
128	160	951.7	86.7	22.0	2.0
代表性能	4847	13209.0	199.3	310.7	10.0

で割った値を当該ジョブの平均データ転送速度とした。並列ジョブについては最初に並列プログラムをロードし，マ スタプロセスとなるブロセスを実行するPE（マスタPE という）のPE使用時間とプロセス経過時間を基に同様に算出した。このときの入出カデータ量はマスタPEおよび他の全PEについての入出力データ量を合計した値とした。

プロセス課金レコードでは，NWTジョブが実際に入出力したデータ量については表3．1に示すように入出力の種類ごとに詳細に分類できないので，NWTジョブの入出 カデータがどれだけのデータ量をどらいった方式で入出力 したかは全く不明である。このため，表4．1は実績とし て参考となるだけで，入出力性能を正当に判断•評価する材料として採用できない。しかし，表中の平均データ転送速度を一筧した場合，NWTジョブの入出力性能が非常に低いといら実感を得る。

以上の理由から，NWTジョブの入出力性能に関して，特に，書式なしFORTRANレコードの入出力性能につ いて調査するため，データ量や入出力方式を明確にしたテ ストジョブを実行した。以下にその実測結果を示す。

4．2テストジョブによる実測結果

テストジョブによる書式なしFORTRANレコードの入力性能および出力性能を実測した結果をそれぞれ表4． 2（1）と表4．2（2）に示す。この性能実測では，P Eを1台使用するジョブ（単一PEジョブ）とPEを 4 台使用する並列ジョブを実行し，サイズ512MBのファイ ルに書式なしFORTRANレコードを入出力した。なお，実行パラメータとしてFORTRANバッファサイズを6 00 KB と 8 MB の場合で実測した。

表4．2（1）書式なしFORTRANレコードの入力性能

テストジョブ	単一PEジョブ		並列ジョブ	
ファイルサイズ	512 MB		512 MB	
FORTRAN バッファサイズ	600 KB	8 MB	600 KB	8 MB
入力性能結果	124.8	240.3	81.0	120.0
入力性能結果	121.3	240.0	81.0	120.0
入力性能結果	122.3	238.3	82.0	119.3
入力性能結果	118.3	235.5	81.5	119.3
入力性能結果	121.0	235.3	80.0	118.3
入力性能結果	121.3	240.3	82.3	120.0
入力性能結果	116.5	229.5	79.5	118.0
入力性能結果	124.8	237.8	81.5	115.7
入力性能結果	121.3	239.5	79.3	118.3
平均値	121.3	237.4	80.9	118.8

入力性能：MB／秒
表4．2（2）書式なしFORTRANレコードの出力性能

テストジョブ	単一PEジョブ		並列ジョブ	
ファイルサイズ	512 MB		512 MB	
FORTRAN バッファサイズ	600 KB	8 MB	600 KB	8 MB
出力性能結果	13.9	10.5	15.60	9.90
出力性能結果	14.7	10.1	10.30	9.80
出力性能結果	15.8	11.6	14.30	11.70
出力性能結果	15.0	9.7	10.10	10.00
出力性能結果	15.6	9.5	10.60	9.90
出力性能結果	15.7	11.1	14.40	11.60
出力性能結果	14.8	11.5	13.00	11.50
出力性能結果	15.9	9.6	13.70	11.60
出力性能結果	15.9	10.9	11.90	11.90
平均値	15.3	10.5	12.66	10.88

出力性能：MB／秒
なお，FORTRANバッファとは，ジョブの入出力処理に使用されるデータの一時格納場所であり，ジョブ固有 の特定のメモリ領域に確保される。ジョブ実行時にプログ ラムから発生する入出力命令は即時には，実際の入出力動作を行わず，いったん入出力データをFORTRANバッ ファ領域に蓄える。バッファがいつぱいになった時点で実際の入出力処理を発生させる。NWTジョブでは，FOR

TRANバッファサイズはユーザが任意に指定できる運用 としている。また，システムの標準値は600KBとして いるので，ユーザが陽に指定しない場合には，省略値とし てこの値が設定される。

5．考察および改善策とその効果

本章では，先ず，表4．2（1）と表4．2（2）の実測結果から，NWTジョブにおける書式なしFORTRA Nレコードの入出力性能を評価し，性能劣化の要因とその改善策を示す。次に，改善策を講じた入出力方式によるテ ストジョブの実測結果からその有効性を検証する。
5．1 書式なしFORTRANレコードの入出力性能評価

入力性能については表4．2（1）から，以下のとおり評価できる。第1に，入力はS S Uのキャッシュ機能が有効に働き，どの実測結果の場合にも一様に高い性能が得ら れている。第2に，FORTRANバッファサイズは 8 M Bの場合の方が 600 KB よりも高い性能が得られている。 このことから，バッファはキヤッシュの管理単位である 8 MBの倍数が論理的によい理由が実測と符合している。第 3 に並列ジョブについてはどの実測結果も単一PEジョブ のそれより一様に性能が低い。これは，PE間データ転送等の並列ジョブのオーバヘッドによる遅延があるためであ る。

表4．2（2）から，出力性能については以下のとおり評価できる。第1に，出力はS S Uのキャッシュ機能が働 かず，どの実測結果の場合にも入力に比較すると一様に性能が低い。また，FORTRANバッファサイズを大きく しても有効でないことが結論できる。

5． 2 書式なしFORTRANレコードの出力性能劣化 の要因と改善策

テストジョブの実測結果から，書式なしFORTRAN レコードの出力について性能を劣化させる以下のような重大問題があることを確認した。

順編成ファイルのFORTRANレコード形式は，以下 のように実際のデータの前後にレコード長（len1，len2）が付加された形となる。

FORTRANライブラリはレコード毎に出力長をカウ

ントし，レコードを最後まで出力した後，先頭の長さを出力する。この先頭のレコード長の出力処理が磁気ディスク への書き戻し処理を待つため，実磁気ディスクの入出力性能になってしまう。

len1	データ	1 en 1	len2	データ	1 en 2
	1			3	
2			4		

5． 3 入出力性能改善策とその検証
改善策は，出力性能低下を招くレコード長（len1，len2）の書き戻し処理を極力減らすために，出力時に実データを出力する前に当該レコードの直前に出力されたレコードのレ コード長を予測値として予め書き込んでおく方式である。改善策を講じた出力処理を行ら場合は，レコード長の書き戻しはこの予測値が外れた場合にのみ行えばよいことにな る。

現状のシステム方式と改善策を講じた入出力方式による書式なしFORTRANレコードの出力性能を実測した。 その実測結果は表4．3に示すとおりである。同表に示す とおり，単一PEジョブのテストジョブを実行し，サイズ 120 MB のファイルに書式なしFORTRANレコード の出力処理を行った。なお，実行パラメータとしてFOR表4．3書式なしFORTRANレコードの出力性能

テストジョブ	单一PEジョブ ファイルサイズ			
FORTRAN バッファサイズ	600 KB			
入出力方式	現状			改善策
出力性能結果	14.7	61.0	15.4	89.1
出力性能結果	12.6	60.2	16.1	82.7
出力性能結果	15.0	52.9	14.7	78.9
策				
出力性能結果	12.8	60.8	15.4	84.2
出力性能結果	14.8	57.8	14.8	75.3
出力性能結果	12.8	58.5	14.2	84.3
出力性能結果	14.9	58.8	15.3	80.7
出力性能結果	13.7	60.4	15.5	72.0
平均値	13.9	58.8	15.2	80.9

出力性能：MB／秒
TRANバッファサイズを600KBと8MBの場合で実測した。
表4．3において，列（現状）は現状の入出力方式によ る実測結果である。列（改善策）は改善策を講じた入出力方式を使用してテストした実測結果である。列（改善策）

は，いずれも現状方式より高い性能が得られ，改善策が有効であることが検証できる。

6．おわりに
NWTジョブの入出力性能を正確に調査する上では，先 ずジョブから発生する各種の入出力に対するデータ量，入出力回数，入出力処理時間ならびに入出力の方式等，詳細 な入出力処理情報が必要となる。しかし，現在のUN I X システムでは，第4．1項に述べたとむり，システム機能 やッールからは必要とする十分な情報が得られない。NW Tのような並列計算機システムで，かつUNIXシステム においては不特定多数のユーザにサービスするセンタマシ ーンとしての歴史はまだ浅く，システムを運用管理する上 で有用なツール，ソフトウェアモニタ等はまだ十分整備さ れていない。このようなシステム環境のもとでNWTジョ ブの入出力処理性能を調查し，ジョブの実行時に最も利用 の中心となる大規模順編成ファイルの出力処理性能が非常 に低いことを確認した。また，出力性能改善策を提示し， その有効性を検証し得た。この改善策を実運用に供し，そ の有効性を調查する予定である。本テーマから，今後の計算機システム構築の検討に際しては，ソフトウェアおよび ハードウェアの両観点から高効率な入出力方式の設計が非常に重要であると考える。
おわりに当たり，計算機システムのハードウェアおよび ソフトウェアに関して多くの情報提供と貴重な討論を頂い た富士通（株）の松岡玄一氏，岡田信氏，坂本喜則氏に対 して感謝の意を表する。

CFDアプリケーションプログラムとNWTとの整合性について中村孝 ${ }^{1}$ ，吉田正廣 ${ }^{*}$ ，松尾裕 ${ }^{+1}$ ，高木亮治 ${ }^{+1}$ ，嶋英志 ${ }^{+2}$
 Suitabilities of between several CFD application programs and the NWT
 by
 Takashi Nakamura ${ }^{* 1}$ ，Masahiro Yoshida ${ }^{* 1}$ ，Yuichi Matsuo ${ }^{* 1}$ ，Ryoji Takaki ${ }^{{ }^{*}}$ ，Eiji Shima ${ }^{* 2}$

abstract
Several tests to evaluate the performance of NWT，which wasdeveloped for CFD research，have been conducted using some applicationprograms．

Abstract

Also，we have shown the suitability（adaptability）between NWT and PARAGON in solving two dimen－ sional Laplace equation by combining different numerical methods and parallelizations．The suitability is measured by the ratio to the amount of normalized transmitted data and the ratio to normalized transmission performance．Normalization here means that the total amount of calculation and the calculation performance are set equal to 1 ，respectively．Note that this is different from the definition of parallelization efficiency， and high parallelization efficiency does not necessarily mean high suitability． Here，we pick out several application programs used at NAL that have different solving，palallelization and grid generation methods，and discuss the suitability analyzing the characteristics，such as calculation burden，transmission size，number of transmission process and transmission pattern，the performance of single NWT vector PE and the performance of NWT inter－PE data transmission．

1．はじめに
我々はNWT（数値風洞）およびPARAGON上で多 くのアプリケーションプログラムおよびテストプログ ラムの性能評価を行ってきた。1），2），3），4，5），6），7），8）また，解法，並列化の違いによるプログラムと計算機の整合性 （適合性）について，二次元ラプラス方程式解法プログ ラムを用いて解析した。そこではプログラムの並列特性として全体処理量（演算と転送の処理量の和）に占 める転送量の割合と，全体演算性能（演算性能と転送性能の和）に占める転送性能の割合との間の比で整合性を示した。 ${ }^{9)}$

ここでは並列特性として，転送処理量を演算処理量 で正規化し，転送性能を演算性能で正規化した量を用 いて，それらの比で整合性を定義する。航技研で用い られている性質の異なるいくつかの典型的な CFD アプ リケーションプログラムを選んで，その並列特性量， すなわち，数値解法，格子形状，並列化手法，演算量， メモり使用量，転送量，転送回数，転送パターンにつ いて解析し，NWTとの整合性について考察する。この値により，或る問題に対しての，並列計算機との整合性を吟味する。

アプリケーションプログラムと計算機との整合性が

[^40]表せれば，事前にある程度の解析が可能であり，ベン チマークテストなどに活かすことができる。

2．NWTの特徴

NWTのPE（プロセッシングエレメント，要素計算機）はベクトルプロセサであり，内部ネットワークは高速クロスバネットワークである。ベクトルプロセサ は演算性能がベクトル長に左右され，その長さが長い ほど実効性能は高い。また加減算と乗算は同時に実行可能であり，その演算数が同程度であれば性能は高い。 NWTの転送にはパケットを用いているので，パケット を作る時間（ソフトウエアレイテンシ）が必要である が，転送量が多いほど転送性能は高くなる。実際の データは相当量多く，NWTでは1対1，多対多の転送時間はほぼハードウエア性能で実行される。 1 対多 （多対1）の総和などは，転送量が少ない（8バイトな ど）ので，ほとんどパケット生成時間で費やされる。 また演算の実効性能はNS3DプログラムによりPEを単体で測定した。この場合は700MFLOPS程度であった。 また間接アドレスを用いる演算性能は，行列積プログ ラムで測定すると，連続アクセスの場合は 1673MFLOPSとほぼハードウエアピーク性能である が，間接アドレスを用いると約400MFLOPSとさがり，実効性能が 25% 程度まで減少する。転送はテストプロ

プログラム		性能（MFLOPS）
NS3D		680～840
行列積	直接	1，673
	間接	374
```do k=1,n do j=1,n do i=1,n c(i,k)=a(i,j)*b(j,k)+c(i,k end do end do end do```		$\begin{aligned} & \text { do } k=1, n \\ & \text { do } j=1, n \\ & \text { do } i=1, n \\ & c(i, k)=a(i n x(i), j) * b(j, k)+c(i, k) \\ & \text { end do } \\ & \text { end do } \end{aligned}$

図1 NS3D単体性能と行列積に於ける間接参照


図21対1転送性能（MPIを用いた場合）

グラムを用いて，1対1，総和（多対1）について測定 した。図1にNS3Dを用いた場合の単体の性能と，行列積に於ける間接アドレスアクセス時の性能変化を示す。 また図2に1対1の転送性能を，図3に総和の転送性能を示す。

## 3．アプリケーションプログラムの特徴

## （1）NS3D

NS3D プログラムは，NWT 開発のためのベンチマー クプログラムであり，3次元ナビエ・ストークス方程式をTVDスキームにより空間離散化し，定常解を求め るものである。乱流モデルは使用していない。時間積分は AFI 法を用いている。このプログラムはメモリ使用量を抑えて，演算にトレードオフしたものであり，圧力や局所マッハ数などは必要な度に計算して求め， メモリには保存しない。また時間積分の行列解法は， サブ行列を直接消去する方法であり，演算量は相当に多い。並列化は領域分割で行っているので，分割方向


図 31 対多（総和）転送性能

に依存性のあるループが存在する。その方向を解く場合は，分割配置を転置して再配置し，演算後元に戻す方法を用いている。分割の転置再配置は全てのPEか ら全てのPEへ，分割された配列の自身に割り当てら れているもの以外の全てのデータの転送が必要とな り，転送の負荷は高い。3次元AFI法では，少なくと も2つのループに並列性が有り，一方をベクトルに他方を並列化に利用可能であり，NWTに適している。図4に転置転送の場合の転送量について示す。
（2）REACT3D
REACT3Dプログラムは大気圏再突入時などの物体回りの流れを解くもので，超高速での高温による実在気体効果（㹃離や反応）を考慮した3次元ナビエ・ス トークスプログラムで，実在気体効果として，7化学種， 2 温度モデルを用いている。乱流モデルは用いて いない。空間方向の離散化はTVDスキームを用い，時間積分は，LU－SGS 法を用いた定常解を求めるプロ グラムである。LU－SGS 法は基本的には一重ループの み並列化が可能であり，NWTではベクトル化と並列化の二つの方向に並列性を要求されるので，並列化に よりループを分割する事になり，ベクトル長が短くな る。ここでは並列化は領域分割でとしているので，依存性のある方向をも分割するので，収束性が悪化す る。ただし，並列化で得る時間との兼ね合いで，この場合は並列効果が現われている。この並列化では， データの転送は隣接するPEへのデータ転送のみで行 え， 1 次元分割では左右へ， 2 次元分割では上下左右 へのデー夕転送だけで良い。このプログラムは従属変数の数が多いので右辺の演算量は多いが，左辺の時間積分は対角化しているので比較的少ない。図5に1次元分割での，図6に2次元分割での転送量を示す。
（3）CMPR360
CMPR360プログラムはジェットエンジンのコンプ レッサの翼列の間の流れを解くもので，非定常解を求 める 3 次元ナビエ・ストークス方程式を用いたプログ


演算量：N／P＊F<br>転送量：N／P ${ }^{2} *(\mathrm{P}-1) * 2$

図4転置転送の場合の転送量


演算量：N／P＊F
転送量：$N^{2 / 3 * 2}$
（PE数に無依存）
図 5 一次元分割における転送量


演算量：N／P＊F
転送量：（ $\mathrm{N} / \mathrm{P})^{2 / 3} *_{6}$ （PE数に依存）

図 6 二次元分割に於ける転送量
ラムである。空間はTVDスキームで離散化され，時間積分は対角化ADIを用いているが，並列化は翼間流路をPEに割り当てる方法を採用しているので，転送は隣接する翼間および前後の翼列間で行われる。ま た，非定常現象の解析に必要な精度を保つために，左辺の時間積分にはニュートンイタレーションを用いて いる。図7にこのプログラムでの転送の様子を示す。 （4）ug3
ug3 プログラムは複雑形状回りの流れを解く3次元 ナビエ・ストークス方程式を用いたプログラムで空間 はTVDスキームで離散化され，計算格子は非構造格子を用いている。積分方法は有限体積法に基づいておう り，セルと辺，表面，頂点，セルの接合関係などを表 すデータが必要であり，メモリ使用量は格段に多い。 また，間接アドレス参照のため，メモリアクセス性能 が劣化する。時間積分はMF－SGS法を用いており，精度をあげるための内部反復は増えるものの，演算量は少ない。

これらのプログラム間の演算数，転送数，転送量を表1に示す。

## 4．整合性

図 8 に整合性の評価法について示す。ここで，Pは PE 台数，Nは全格子数，N／PはPE 当たりの格子数， Fは格子点当たりの演算数， $\mathrm{F} \times \mathrm{N} / \mathrm{P}$ は PE 当たりの演算数，Eは演算性能（FLOPS），Tは転送性能（ワード ノ秒）である。転送量LをF×N／Pで正規化したもの をL＊，転送性能Tを演算性能Eで正規化したものを T＊で表す。これらの比（ $\mathrm{L}^{*} / \mathrm{T}^{*}$ ）をとつて整合性と定義


図7コンプレッサ翼列での分割

する。ここで，整合性の値は分母が計算機の相対転送性能なので，値が小さいほど転送性能が優れているこ とを示している。反対にこの場合は演算性能が不足し ていると考えることもできる。どちらであるかは転送量の多少で決まる。
では，整合性はいくつこなればよいかという問題が生じる。ここでは，ハードウエアの物量に見合ったプ ログラムを整合性がよいとする。すなわち，演算器と ネットワークの両方を同時に上手に使うプログラムが整合性が高いとする。この場合の状況を図9に示す。 この整合性が1という事は演算時間と転送時間との処理時間が等しいことを意味し，理想的には演算時間と転送時間が完全にオーバーラップして実行可能であれ ば，転送時間を隠ぺいすることができる最大の転送時間ともいうことができる。ただし，並列化効率を図1 0 の様にとると，整合性が1とすると並列化効率は 0.5 となり，並列化効率の面から見ると転送が隠ぺいでき ない場合はかなり低いといえる。ここでは隠べいは議

$\mathrm{L}: ~ \mathrm{PE}$ 当たりの転送数（ワード） T ：転送性能（7ード／移
N ：格子点数 E：PE当たりの演算性能（演算／秒）
P ：PE台数 $\quad \mathrm{L}^{*}$ ：正規化された軽送数

N／PXF：PE当たクの演算数

図 8 整合性の定義


図9整合性を1とした場合の処理時間

論していないが，CFDなどの演算量の多いプログラム の場合は，ある程度の転送が隠ぺい可能である。

図11に転送と総和との間の整合性について各プログ ラムの様子を示す。これら数値を表2に示す。表では各プログラムの正規化された転送量をそれぞれパター ン別に示し，それぞれのNWTとの整合性を示す。ug3以外は総和は1回である。NS3Dとug3はかなり整合性が高い。その次に整合性が高いのがREACT3D とい える。CMPR360は非定常を追うプログラムであり，転

表1 各プログラムの特徴
PE台数：P

プログラム名	演算数（F）	格子数（N）	データ数（D）	総演算数	並列化	転送パタン	転送回数	転送データ数（L）
NS3D	10000	1，048，576	20	11009 M	1 次元領域分割	転置	$(\mathrm{P}-1)^{*} 2$	1228800
						総和	1	1
REACT3D	18060	31117	100	562 M	2 次元領域分割	隣接	11	1475520
						総和	1	1
CMPR360	3050	8524628	43	26000M	流路割り当て	隣接	4	41620
						総和	1	1
UG3	14380	53477	83	769M	1 次元領域分割	隣接	44	49977
						総和	43	64

送は隣接のみであり，転送の負荷はかなり小さいので整合性が低い。このプログラムではNWTの転送性能 は過多であるといえる。ug3の場合は間接アドレス演算による演算性能が低いことにより，整合性が大きめ にでている。

また，図12に示すように別の整合性も定義可能で ある。この定義では，処理量に見合った処理時間とし， この場合の整合性が 1 とすると，演算性能と転送性能 とが等しいことを意味する。すなわち図13で性能の傾きが等しいことを示す。

5．おうわりに
航技研で実際に研究に使われているCFDアプリケー ションプログラムの，解法，並列化の異なるプログラ ムに対してNWTとの整合性について示した。この例 では，NWT はいくつかのプログラムに対しても転送性能が高いことを示している。NS3Dは転送が転置型で あり，整合性が 0.5 程度で，かなり整合性があるのは，


$$
=\frac{\frac{\mathrm{N} / \mathrm{P} \times \mathrm{F}}{\mathrm{E}}}{\frac{\mathrm{~N} / \mathrm{P} \times \mathrm{F}}{\mathrm{E}}+\frac{\mathrm{L}}{\mathrm{~T}}}=\frac{\frac{\mathrm{N} / \mathrm{P} \times \mathrm{F}}{\mathrm{~L}} \frac{\mathrm{~T}}{\mathrm{E}}}{\frac{\mathrm{~N} / \mathrm{P} \times \mathrm{F}}{\mathrm{~L}} \frac{\mathrm{~T}}{\mathrm{E}}+1}=\frac{\frac{\mathrm{T}^{*}}{\mathrm{~L}^{*}}}{\frac{\mathrm{~T}^{*}}{\mathrm{~L}^{*}}+1}
$$

図10並列化効率との関係


図11各プログラムの整合性比較図


図13処理時間比で定義した場合の処理時間

このプログラムを元に設計したことによる。ただし，注意しなければならないのは，整合性が直ちに実行性能を表すわけではない。さらに，ここでは整合性に製造コストは考慮していない。

プログラム解析，計算機の解析により，整合性を予測することができる。それにより，整合性の高い計算機がコストパフォーマンスに優れているということが でき，ベンチマークテストの参考にすることができる。 また，計算機のアーキテクチャーに整合した数値解法，並列化が求められ，逆に，アプリケーションに整合し
た計算機が要求されるともいうことができる。
今後は前節で述べた定義，より現実的な製造に関わ る重みを付けた整合性のモデル，転送の隠ぺいを考慮 したモデル等を検討する必要があるとともに，CFDの別の種類のプログラム，例えばDNS やLES などのプロ グラムについても検討する必要がある。さらに，個々 のプログラムで整合性がとれていてもシステムとして見た場合，多くのプログラムが同時実行されているよ うな環境での整合性はどのように定義されるかは今後 の検討が必要である。

## 謝辞

この論文を書くにいたって，多くの方の御協力を頂 きました。ここに感謝致します。

## 参考文献

1）Iwamiya，T．，Fukuda，M．，Nakamura，T．，Yoshida，M． ＂On the Numerical Wind Tunnel＂，Parallel CFD＇93
2）Fukuda，M．，Yoshida，M．，Nakamura，T．，Iwamiya，T． ＂On The NAL Numerical Wind Tunnel and Its Perfor－ mances＂，5th International symposium on Computational Fluid Dynamics 1993
3）福田正大，吉田正廣，中村孝，村瀬丈夫，小山隆司「並列ベクトル計算機『数値風洞』による FFTプロ グラムの性能評価」，第47回情報処理学会全国大会， 1993
4）中村孝，吉田正廣，福田正大，村瀬丈夫，松崎達哉 「CFDプログラムによるNWTの性能評価」第11回航空機計算空気力学シンポジウム，航技研特別資
料，SP－22，1994
5）中村孝，吉田正廣：非圧縮NSコードによるNWT の性能評価。第12回航空機計算空気力学シンポジウ ム講演論文集，1994年12月，航技研 SP27
6）Takashi Nakamura，Toshiyuki Iwamiya，Masahiro
Yoshida，Yuichi Matsuo，Masahiro Fukuda，＂Simulation of the 3－Dimensional Cascade Flow with Numerical Wind Tunnel（NWT）＂Proceedings of the IEEE Super Computing 96， 1996
7）中村孝，吉田正廣，山崎裕之，「行列積における並列処理性能の評価」第14回航空機計算空気力学シン ポジウム講演論文集，1997年1月，航技研SP34
8）Gregory Coussement，Bruno Troff，Juliette Ryan，Paul Sagaut，山崎裕之，吉田正廣，岩宮敏幸「DNSコード の並列ベクトル化とその性能評価」第15回航空機計算空気力学シンポジウム論文集，1998年2月，航技研 SP37
9）中村孝，吉田正廣，山崎裕之，「並列計算の特性と評価」第 15 回航空機計算空気力学シンポジウム講演論文集，1998年2月，航技研SP37

# クラスライブラリによる並列化実時間可視化システムの構築 

白山 晋（高度情報科学技術研究機構），太田高志（日本原子力研究所）

Parallelized Real－Time Visualization System by a Design of a Data Class

by

Susumu SHIRAYAMA（RIST）and Takashi OHTA（JAERI）


#### Abstract

In order to develop a flow analysis system efficiently，it is important for a visualization system to keep independence from a flow solver．However，since a visual computing plays more important role to improve numerical methods，both flow and visualization systems have to exist together， especially on parallel computers．Moreover，real－time visualization system is helpful to analyze the flowfield．We propose one solution using a concept of a class library．


## 1．はじめに

計算流体力学（CFD）における可視化手法（技術）は成熟 し，可視化システムとして普及の段階にある。このため，可視化に対する研究は停滞しているようである。可視化手法は， データの存在位置の表示，データの接続情報の表示（格子線，格子面表示），グラフ表示，等値線，等値頜域，等值面，ベク トル表示，粒子追跡法の8種類に分類される。そえぞれにい くつかの変化形があり，また，組み合わせによる可視化がな されているが，核となる方法が確立しているために，組み合 わせ法やシステムの提示のみでは研究といらよりも作業とみ なされることが多くなっている。計算結果そのものの表示か ら，可視化をもとにした分野毎の解析（狭義の可視化翻訳） が主流となっていることも一般的な可視化手法，システムの研究の終焉が近いことを示しているのかもしれない。

ところが，近年，大規模計算から掃き出される巨大なデー タの処理に対して，既存の可視化システムの不備が指摘され はじめた。どのような不備があるのかについて明確な報告は ないのだが，計算機環境が分散並列訃算機へパラダイムシフ トしていくことから新たな可視化システムの構築が提案さえ ているようである。そうした風潮の是非はともかく，これを機に既存の可視化手法，システムを見直してみる。

先に可視化システムは普及していると述べたが本当だろう か？例えば，組織を単位とすえばその観察は正しい。しか し，個人を対象とすれば，誰もが使えるようなものとはなっ ていないようである．よって，可視化専任者の需要が高い。結果を解析する力のないものの可視化はただの作業とみなさ れても仕方がない，好ましいことではないが，そうした状況 を目にすることは多い。これを改善するにはソフトウェアと しての完成度を更に向上させることが必要である。ただし， この課題は教育による解析能力の向上，可視化技術の習得に よっても解決できるはずである。
技術的な面でみた既存の可視化の問題点を探ってみる。
A 可視化手法に不具合はないのか？
B データベースの萻積，検索技術等は完備して いるのか？
C 計算環境の変化に追従しているのか？
可視化手法の不備に関しては，可視化の精度からのもの［1］ と可視化操作に関連した不具合がある。数値解法と整合性の ある可視化手法（可視化精度），粒子追跡法における粒子発生点の選択手法（可視化操作）などを考察する必要があるだ ろう。
データベースの蓄積は可視化に関わらず，CFD 全体の問題 であるが，特に画像データの収集と検索が大きな問題である。

オブジェクトデータベース，データマイニング，数理的な考察からの特徴領域の自動抽出などが研究の対象となりそうで ある。
計算環境の変化というのは，一千万から一億自由度といつ た大規模計算が実現していること，並列計算環境，バーチャ ルリアリティ（VR）などの新しい可視化装置が普及しはじめ ていることから生じている．この変化に対応するためには

- 並列化可視化
- 実時間可視化
－ビジュアルコンピューティング
－多様化する計算システムに柔軟に対応するパラダ イム

を考察することが重要である。
本稿の目的な計算環境の変化に柔軟に対応する並列化実時間可視化システムの設計指針を示すことである。可視化シス テムの設計において重要な問題の一つにソルバーとの独立性 をどのように保つかということがある，ソルバー自身が開発途中である場合，可視化ライブラリをソルバーに組み入れる ことは，開発環境を制限することになり好ましいことではな い。一方で，ビジュアルコンピューティングによる支援環境 を取り入れないと開発効率が上がらないことは事実である。 この状況は並列環境であえばなおのことである。ゆえに並列環境ではソルバーと可視化システムを独立に構築し，相互を補完しあうといった仕組みを考えることは重要である。

一つの解決策としてクラスライブラリによる並列化実時間可視化システムを提案する。具体的にはソルバーと同一の データクラスを利用することが考えられる，特にそのデータ タラスがメモリのレベルで其有できれば，並列化及び実時間可視化を簡単に行うことができるだろう，そうでない場合で も可視化システムをクラスライブラリにすることによって従来型の可視化ライブラリの埋めこみによる方法などを含めて，様々なシステムに柔軟に対応する可視化システムを構築する ことができる。同一の構想で格子生成システムを作成すれば， プリポストとソルバーを同一の思想で設計することが可能と なり，プリポストを意識しないシームレスな実行環境を構築 できる．

## 2．理想的な可視化システム

前節の内容と多少重複するが，理想的な可視化システムに ついてまとめておこう．
－分散並列計算環境を含めてどんな計算機環境にも柔軟に対応できる

- 本計算部と独立である
- ビジュアルコンピューティングを容易に実現で きる
- 実時間可視化が実現できる
- ステアリングが実現できる
- 動画作成を含めた操作が容易である
- 機能追加が容易である
- データベースとのアクセスが自由である
- VRなどの新しい可視化装置に対応できる

これに特徴領域の自動抽出機能が加われば，しばらくの間，可視化システムを議論することはなくなるだろう．そのような可視化システムを構築するためには，ソフトウエア面で解析 システム全体の変革が必要になる。オブジェクト指向やエー ジェント指向が一つの考え方である。 Lかしながら，システ ム全体を変革することは資産（プログラム資産，プログラミ ング資産など）の利用といら面で難しいことは容易に予想で きる。そこで，どういつた概念が必要かを以下の節で示して いく，

## 3．データクラスの利用

## 3.1 データクラスの考え方

オブジェクト指向ではボトムアップ的な抽象化を行う。こ れを流体解析における場に適用したものが図1である。も ちろん，こうした分類には任意性があるし，実装まで考察の対象にすれば，データと流れ場の計算を方プセル化する方法 も有効である［2］．ここでは，本計算部と独立した可視化シス テムの構築がデータの分離により実現できることを強調した。独立に作られた本計算部と可視化部をカプセル化することは後で考えればよい。


図1．オブジェクト指向によるフィールドデータの抽象化

図1で重要なのはボトムアップ的な抽象化によつて，流れ場 を示すデータクラスをポインタとして示すことができる点で ある．ポインタの先にあるデータ構造は実体と接続情報を引 き出すことで確定する。並列化のためのデータであるとか，多重連結によるものである等はデータクラスが吸収し，ほと んどの可視化手法の実装は生のデータから幾何データを抽出

することに集中することで実現できる。また，データクラス のポインタに直接辿り着くことができるので，本計算部と同一のデータクラスであえば実時間可視化が容易に実現できる。

この考えを根底におけば，図2に示す統合的な解析システ ムの構築も可能となるはずである。この場合，ほぼ三つのデー タクラスを軸にシステムを構築すればよいことがわかる。そ れらは，
－格子や流れ場などのフィールドデータのクラス
－グラフィックスデータのクラス
－ビジュアルデータのクラス
ビジュアルデータのクラスとしては，可視化結果そのもの，生のデータ，外からのデータ（実験，観測，他の計算）を想定している。

これから先の議論はデータクラスが存在しているものとし て行ら．流れ場の解析システムにおけるデータクラスの詳細 な考え方は文献 3,4 を参照してほしい。


図2．データクラスを中心とした統合的開発環境

## 3.2 データクラスと計算機環境

計算機環境としては，PCやWSを含めた単一CPUのもの，共有メモリを用いた並列機，分散メモリによる並列機の三つ を考える。図3にソルバーからポストへのデータのながえを示した。図に示す様々な形態のらちいくつかのものはは具現化 されている。

ソルバーの実行環境と可視化処理の環境は，同一である場合，独立である場合の二通りを考えてある。また，並列機に おいては，可視化プログラムがソルバーとCPUを共有する場合，分散する場合の二通りを考慮する，データはメモリま たはディスクに存在するものとし，並列化I／Oによるデータ転送も考察の対象とする。図中の前処理は主としてデータ圧縮操作を示す。

並列化に着目していくつかの計算機環境を挙げておく，本計算部に可視化プログラムを搭載するものとしては，

- 計算と可視化を同一ノードで行うもの
- データを一ヶ所に集めて可視化処理を行うもの
－数䑺所の可視化専用ノードに対してデータを再分散して可視化処理を行うもの

が考えられる．これらの形態は本計算において可視化対象と なるデータの大きさによって使い分けられる。実際には計算 と可視化の負荷分散という立場で可視化サブシステムを用い る場合が多い。後述するように可視化処理の計算時間は本計算に比べて小さいことから，可視化サブシステムは本計算部 の $1 / 100$ 程度の計算能力のものを利用することが多い。本計算部と可視化サブシステムにはメモリを共有できる仕組みが あえば理想的だが，通常はファイルを介在することでデータ のやり取りが行われる。可視化のために並列サブシステムが利用されるのは，大規模計算によって得られたデータが一つの計算ノードの記憶容量を越える場合を想定してのことである。


図3．データのながえ

可視化対象データに着目しながらシステムをまとめると主と して三つのものとなる。
－生のデータ（本計算からのデータ）をファイル化 したシステム

- ソルバーの中に可視化関数を加えるもの
- 可視化計算環境にソルバーを埋めこむもの

現在最も広く用いられているシステムは，対象データを一旦 ファイル化してしまらものである。このシステムを用いえば計算プログラムと可視化プログラムを分離することができる。 しかしながら，実時間可視化に適さない，分散型並列機にお けるデータ収集の問題など，実時間，分散並列という点を強調する場合，可視化システムとして十分な機能があるとはい えない。また，近年の大規模計算が分散並列環境に移行しつ つあることから巨大ファイルの操作という問題が生じる。一方，ファイルを介在することなくビジュアルコンピューティ ングを実現したシステムとしては，ソルバーの中に可視化関数を加えるタイプのものと可視化計算環境（AVSなど）こソ ルバーを埋めこむらものがある．ソルバーに可視化関数を加え るものはソルバー自身の修正が必要になる。可視化計算環境 を利用するものでも，その環境に合わせたソルバーの修正を要求さえる。

ファイルを介在するシステムの考察から，ソルバーと可視化プログラムに共通するデータクラスを定義すれば，データ クラスの部分を除いてソルバーと可視化プログラムの独立性 を保つことができることがわかる。並列化はデータクラスで吸収する．データクラスヘのアクセスに関しては様々な方法 が考えらえるだろう，その点は実装の段階で効率的な方法を採用すればよい。ファイルを介在する場合はオブジェクトそ のものをファイルに書き出せばよい（ビジュアルデータクラ ス）．そうすることでオブジェクトデータベースの概念も利用できる。理想的にはメモリを共有できるような仕組みが実現できればよい，ファイルを利用してしまらと現在のシステ ムと変らないと指摘されるだろらが，データクラスといら概念を用いることで，様々な計算環境に柔軟に対応できるとい ら点を強調しておきたい。例えば，あるシステムムではファイ ルを介在する必要があるが，別のシステムではメモリを共有 できるとした場合，最小限のプログラムの書き換えで双方に対応する可視化システムを構築できる。

計算機環境としては画像表示装置まで考える必要がある。表示系（レンダリングと表示そのもの）まで含めると，生の データ，幾何データ，表示用グラフィックスデータ（ラスター型，ベクトル型）の三種類のデータを考える必要がある。特 に二番目と三番目のデータの配置がデータ圧縮や並列環境を考えた場合に重要となる。表示装置と幾何データの抽出やン ンダリングのための計算機は同一である場合と異なる場合の双方を考慮する必要がある。幾何データ，表示用グラフィッ クスデータをグラフィックスデータのクラスとして定義する ことで，可視化における幾何データの計算と表示を分離する ことができる。

## 4．システムの構築

可視化システムの設計に際して押さえておくべきことは，
1．可視化によって生じるデータ量と通信量

- どのようなデータがどの程度生じるか
- 大規模計算に対応できるか

2．可視化の計算時間
－もつとも普及している計算機でどの程度の可視化が可能なのか
－大規模計算に対応できるか
3．実時間可視化の可能性
4．可視化技術は十分なのか

- 比較，取り込み技術
- 並列化技術

である．

## 4．1データ量と通信量

実時間可視化，並列化可視化を含めたシステムを設計する場合，計算データ（生のデータ）から，幾何データ，表示用 グラフィックスデータがどのプロセスで生じるか，それぞれ のデータの配置，表示用グラフィックスデータの種類，可視化处理の種類を把握しておく必要がある。図4に可視化処理 のながれを示す。図中の仮のボクセル空間（データ）は，計算データを直交等間隔格子上で再定義したものと考える。こ のボクセルデータの生成に可視化処理のアルゴリズムを利用 する場合もある $[5]$ ．幾何データは領域設定等に再利用され ることもある。このため接続情報の作成が必要な場合が生じ る．このような幾何データは，二次的な処理を経て別種の幾何データを生成する。このため再帰的な定義のためのタグや接続情報もデータ量として見積もる必要がある。


図4．可視化処理のながえ

さて可視化によるデータ量を見積もつてみよう。三方向にほ ぼ同数の点である三次元データを扱う，総格子点数を $n$ とす ると次のようにデータ量を見積もることができる。
－ベクトル型
（a）点や線による可視化結果から
－格子図，ベクトル図，等値線図

$$
\left(n^{\frac{2}{3}}\right) * O(1)
$$

－仮想粒子による可視化
発生粒子数*積分ステップ数
（b）多角形による可視化結果から
－格子面図

$$
\left(n^{\frac{2}{3}}\right) * O(1)
$$

－等値面図

$$
\left(n^{\frac{2}{3}}\right) * 4 * \text { 枚数 } * O(1)
$$

－ラスタ型（イメージデータ）
画素数＊3bytes（例） $640^{*} 480^{*} 3$ ：約 1 MB
座標 $(x, y, z)$ ，流れ場の変数 $(u, v, w, p)$ の 7 変数が 1 个万格子点の訃算で得られたとすれば，一時刻あたり単精度で 280 MB のデータとなる．このデータから1枚の格子面と3枚の等値面を表示したとすれば，幾何データは約 2.6 MB となる。幾何 データはもっとも単純な圧縮（4bytesから2bytesデータへの変換）によって半分に，さらにポリゴンリダクションなどの
 を低速のLAN（10Mbps～100Mbps）で蹧送させるとすれば1秒程度である。また，比較的データが多くなる粒子追跡では， 1000 個の粒子を 1000 ステップ追跡した結果のデータが 4 MB であるから，この場合も 2 秒程度で転送ができる。一般的に はデータ量が固定されているラスタ型のものがデータの転送 をともなら可視化システムでは好まれる。640x480の解像度 であれば，常に1秒以下でデータが転送される。この形式は データの通信量を考ええば有利であるが，視点変換が重要に なる解析では幾何データを扱ら必要が生じる。例えば，大規模計算における流れの可視化を想定する場合は，全体的な現

象と局所的な可視化は関連するものの，データとしても見る と空間のコヒーレンスが良いとはいえず［6］，常に拡大縮小と いった操作が必要になる。また，小規模の粗い計算と大規模計算での可視化は手法として同じものを用いることになるの で可視化翻訳の部分にまで踏み込まなければ視点を固定した可視化を行らことは少ない。つまり，視点変更に対応するた めのシステムの柔軟性は重要な要素となる。数秒で幾何デー タが転送できる範囲では，表示系に三次元機能を持たせた方 が効率的であろう。

通信量の削减は可視化手法を問わず重要な問題である．削減のためには，
－一般的なデータ圧縮
1．生データの圧縮
2．画像データの圧縮（プリミティブ型）
3．画像データの圧縮（ラスター型）
－CG 技法の応用
1．ポリゴンリダクションの利用
2．テクスチャマッピングの利用
3．カリング処理など
等を考察する必要がある。ラスター型画像データの圧縮［7］， テクスチヤマッピング $[8]$ を取り入れた可視化システムは存在する。

## 4.2 可視化の計算時間

データ量と通信量に加えて，そのデータを生成するための可視化処理の計算時間を見積もってみる。もつとも普及して いる計算機でどの程度の可視化が可能なのかがわかえば図4 に示したプロセスをどういった計算機で行えばよいのかがわ かる。基淮となる計算機として，PentiumII 400 MHz のパソ コンを用いた。

可視化手法の中で計算時間を必要とする等値面処理とボ リュームレンダリング法を扱う。粒子法の結果を可視化対象 とする．ある物理量に対してそれぞれが局所分布をもつてい る $10^{4}$ 個の粒子を考える。個々の粒子の分布を直接表示する ことも可能だが，多くの場合は局所分布から場が形成されて いるので，はじめにその場を補助空間を利用して算出する。補助空間を $101 \times 101 \times 101$ の百万点の格子として場を計算し，三枚の等値面を描いたのが図5である。等値面はポリゴンで はなく三角形の枠を線として表示した。等值面探索に要した時間は 2.73 秒であった。


図5． $10^{4}$ 個の粒子に対する場の分布

次にボリュームレンダリングによって場を可視化してみる。 ボリュームレンダリングとしてはスライス法 $[5]$ を用いる．ス

ライスの数は150枚，ビクセル数は640x480である．計算に要した時間は，約 200 秒であった。


図6．ボリュームレンダリングによる場の分布の可視化

## 4.3 実時間可視化

本稿では理想的な実時間可視化を以下のように定義しておく。「計算しているプロセスがあるとすると，可視化のプロセ スがメモリに直接アクセスして，現在進行中の計算プロセス にインターラクティブに関与できるような可視化を理想的な実時間可視化とする」

実時間可視化はデータタラスの利用によつて実現が容易で あることは先述した通りである。 つまり，同じインスタンス を利用するだけである。計算パラメータのタラスを用意し， そのインスタンスを共有できるようにすれば，ステアリング処理も簡単である。

しかしながら，すべての計算システムでメモリへの直接的 なアクセス権が提供されているまりけではない。可視化システ ムを構築する場合は，この点を前もつで調べておく必要があ る．もし直接アクセスできない場合は，リアルタイム性は犠牲になるが，ファイルを介在させるとかっ，可視化ライブラリ を埋め込むなどの方法に切り替えればよい。ここでも可視化 システムの多様化が生じるが，オブジェクト指向の考えを用 いればその多様性を最小限のプログラム変更で吸収できる。

プロセス間でメモリ共有を許す計算環境（2CPU ハパソコ ン）で実時間可視化のための数値実験を行った。本計算のプ ロセスと可視化プロセスを同時実行し，フィールドデータと その属性（時間ステップ）の共有指定以外は本計算と可視化 は完全に独立している。 図7に結果を示す。


図7．実時間可視化の例

図の左に示す可視化の結果は可視化システムからの出力であ る。右は本計算からの数值解の収束履䄳などの出力である。

この例では，可視化の斥で，常に時間ステップを監視し，時間ステップが変化した時点で描画作業が開始されるといつた仕組みになっている。ただし，本計算に対するデバック作業 などでは同期をとる必要がないので，フィールドデータの格納されているメモリの状態をリアルタイムで表示することも可能である。

4．4並列可視化
分散並列環境下での大きなメモリを必要とする大規模計算を想定する。可視化作業で必要な変数の数と本計算に用い る変数の数は異なる。物体適合座標系を用いた三次元の差分計算では，座標値と一つのスカラー值を可視化作業でのもの とすれば本計算の1／4程度である。もし最大限のメモリを用 いた4つ以上のノードによる計算を行つた場合，可視化のた めのデータを一つの計算ノードに集めることができない。も ちろん，大規模計算というのは最大限のメモリを用いたもの ばかりではないし，座標値と一つのスカラ一値の数十倍の変数を使用した貄算であえば，一つのノードにデータを集める ことはできる場合もある，先述したように可視化処理時間の問題は小さいと考えられるので，生のデータを集める方法の方が効率の泉い場合も多い（可視化の並列化が不要といらこ と）．可視化に対して並列化が要求されるのは，可視化対象 データを分散して存在させなければならない場合である。

可視化手法の並列化と一般のエンピュータグラフィックス における並列化の違いは，計算データが空間を占めているこ とに起因する。このため独自の並列化手法が必要になってい る。並列化に対応した可視化システムは，計算データと表示用グラフィックスデータの配置に留意しながら設計される。

4．1節で示したように視点変更に対するシステムの柔軟性 は重要な要素であるために，分散記憶型の並列機に対する効率的な可視化を考えると，領域の指定と可視化対象となる領域の局在化のためにロードバランスが崩れることが問題とな る（図8）．但し，4．2節で示したように一般的な可視化手法 に関しては可視化に要する計算負荷はそれほど大きなもので はないことから口ードバランシングがそれほど重要な問題と ならない場合も多いことには留意すべきことである。


図8．1ロードバランシングの問題1


図8．2ロードバランシングの問題2

可視化手法の多くは要素単位での処理が可能である。この場合，各ノードでの幾何データ生成までは問題なく並列化がで きる。並列化に関する問題は，得られたデータから表示用の グラフィックスデータを生成するまでのレンダリング操作に おける隠線•隠面処理の段階で生じる。各ノードでzバッファ をもつピクセルデータを生成し合成する方法，表示用のグラ フィックスデータをベクトル型としてそえらを表示装置に送 ることでノード毎の隠線•隠面処理を回避する方法が考えら れている。

一部の粒子追跡法（図9）やボリュームレンダリングのよ らな計算空間全体を対象とするようなものに対しては効率的 な並列化手法を考えなければならない。隠面処理の効率的な並列化手法が見つかれば，ボリュームレンダリングの並列化 の問題はおこらない。結局，並列化にともなら大部分の問題 は，粒子追跏法と隠線•隠面の効率的な並列化処理法が提案 できれば解決できるはずである。著者の知る限りでは，現時点においてそのような処理法はない（提案はあるが効率面で問題がある）。


図9．粒子追跡法の並列化

## 5．データクラスの役割

フィールドデータのクラス，グラフィックスデータのクラス が決定すれば（フィールドデータのクラスは文献3，4のもの を用いる），システム構築において解決すべき問題は，デー タクラスに対する何種類かの可視化処理のクラスを定義する ことに㷌着できる。可視化処理のクラスの構造は，フィール ドデータのオブジェクトに働きかけてグラフィックスデータ のオブジェクトを生成するといつた単純なものでかまわない。 データクラスを用いることで，可視化処理のクラスにおいて全体のデータ構造を意識する必要がなくなる。また，フィー ルドデータのクラスで业列化は隠蔽されているので $[3,4]$ ，要素単位での可視化処理は並列化を意識する必要がない。この ため，メンバ関数として従来の手続き型の処理法を定義すれ ばよい。

可視化処理から画像表示系への移行に対してはグラフィッ クスデータのクラスを用いる。このクラスの導入により並列

効率の問題はあるが，データ圧縮，隠線•隠面処理を可視化処理とは独立に扱らことができる。また，表示装置に対する低存性の少ない可視化システムを構築することができる。

## おわりに

データクラスの導入により，様々な計算機環境に柔軟に対応できる可視化システムの設計が可能となる。

並列化は，要素単位のものはフィールドデータのクラス， グラフィックスデータのクラスが吸収するので新たに考える必要はない。問題は粒子追跛法の一部，ボリュームレンダリ ングなどの全計算領域を対象とした可視化手法における効率 の良い並列化手法の開発に集約できる。
実時間可視化といら意味ではメモリを覗くことができるシ ステムが望ましい。この仕組みはシステム運用の問題さえ解決できれば実現可能である。

グラフィックスデータのクラスを用いることで，データ通信量の削減，表示装置に対する依存性を可視化処理と独立に扱うことができる。
並列環境で大規模計算を扱ら場合は，不要なアルゴリズム の開発を避けるために，1PEの可視化処理時間を考慮した上 でのシステム設計及び可視化システムの実効性能の見積もり を行うべきである。

## 参考文献

1．Shirayama，S．，＂Several sources of errors in numer－ ical flow visualization techniques＂，AIAA－95－1714－ CP，Proceedings of the AIAA 12th Computational Fluid Dynamics Conference，SanDiego，CA，June， 1995.

2．城之内忠正，千葉 賢，＂ながれ計算Javaコンポーネ ント：flow beans＂，日本流体力学会年会＇ 98 講演論文集， July，1998，pp．419－422
3．Ohta，T．，＂Design of a Data Class for Parallel Scien－ tific Computing＂，Scientific Computing in Object－ Oriented Parallel Environments，Springer，1997， pp．211－217
4．Ohta，T．，＂An Object－Oriented Programming Para－ digm for Parallel Computational Fluid Dynamics on Memory Distributed Parallel Computers＂，Parallel CFD＇97
5．白山 晋，氽原邦郎，＂仮想粒子密度とボリューム・レン ダリングによる流れの可視化＂，ながれマルチメディ ア論文集 Vol．1，July， 1998
6．白山 晋，＂大規模計算とボリューム・ビジュアラ イゼーション＂，航空宇宙技術研究所特別資料SP－ 27，December，1994，pp．351－356
7．Doi，S．，et al，NEC Research and Development， Vol．37，No．1，1996，pp．114－123．
8．小山田耕二，＂VRMLを用いたCFD 結果の可視化技術＂，日本流体力学会年会’ 98 講演論文集，July，1998，pp．425－ 426

57 垂直板に入射する高温ジェットの数値シミュレーション<br>Numerical Simulations on High Temperature Jet Impinging Normally on the Wall<br>九州大学工学部航空工学科 麻生 茂•大城 智<br>Shigeru ASO，Satoshi OSHIRO<br>Dept．Aeronautics and Astronautics，Kyushu Univerisity，Fukuoka 812－8581，JAPAN<br>三菱重工業（株）長崎研究所 坂田展康•志田坦也<br>Nobuhiro SAKATA，Hiroya SHIDA<br>Mitubisi Heavy Industry，co，Ltd，Nagasaki Laboratory


#### Abstract

High temperature jet impinging on the wall sometimes become quite serious problems in launch－ ing the rocket from the ground．Several researches have been conducted by some authors ${ }^{1-3)}$ ． However，the flow mechanism have not been revealed sufficiently．The interacting flow fields of supersonic jet impinging on the wall are numerically simulated．The displacement between the nozzle exit and the wall is varied and the effects of the displacement on the interacting flow field are investigated numerically．The calculated flow patterns and pressure distributions show good agreements with experiments．


## 1 緒言

超音速噴流と平板との干渉はロケットの排気流が，反射板や地面，さらにはロケット本体に衝突する問題に関して，多くの研究が行われて いる。報告されている実験によると，壁干渉の流れ場の構造はノズル出ロのマッハ数，背圧に対するノズル出口の静圧比の他にノズル出口か ら壁までの距離に依存する。干渉の流れ場は一般に複雑になり，亜音速と超音速の混合頒域，衝撃波と膨張波との干渉領域，粘性による平板上の剥離領域，さらに衝撃波と平板の間の循環領域などいくつかの領域に分けられる（Fig．1）。本研究では作動流体を空気とした超音速ジェッ


図 1：Schematic diagram of the flow field
トの壁干渉についての数値計算を行い，実験結果と比較をすることを試みたので以下に報告

する。

## 2 計算方法

数値計算にあたつては，軸対称 Navier－Stokes方程式を用いた。直交座標系における保存型の軸対称 Navier－Stokes 方程式はベクトル形式で以下のように表される

$$
\begin{gather*}
\frac{\partial \boldsymbol{Q}}{\partial t}+\frac{\partial \boldsymbol{E}}{\partial x}+\frac{\partial \boldsymbol{F}}{\partial y}+\boldsymbol{H}=\frac{\partial \boldsymbol{E}_{v}}{\partial x}+\frac{\partial \boldsymbol{F}_{\boldsymbol{v}}}{\partial y}+\boldsymbol{H}_{\boldsymbol{v}}  \tag{1}\\
\boldsymbol{Q}=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
E
\end{array}\right), \boldsymbol{E}=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
(E+p) u
\end{array}\right) \\
\boldsymbol{F}=\left(\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
(E+p) v
\end{array}\right), \boldsymbol{H}=\frac{1}{y}\left(\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2} \\
(E+p) v
\end{array}\right) \\
\boldsymbol{E}_{v}=\left(\begin{array}{c}
0 \\
\tau_{x x} \\
\tau_{x y} \\
e_{4}
\end{array}\right), \boldsymbol{F}_{\boldsymbol{v}}=\left(\begin{array}{c}
0 \\
\tau_{y x} \\
\tau_{y y} \\
f_{4}
\end{array}\right)
\end{gather*}
$$

$$
\boldsymbol{H}_{v}=\frac{1}{y}\left(\begin{array}{c}
0 \\
\tau_{y x} \\
2 \mu\left(\frac{\partial v}{\partial y}-\frac{v}{y}\right) \\
f_{4}
\end{array}\right)
$$

$$
\begin{equation*}
e_{4}=\tau_{x x} u+\tau_{x y} v+\kappa T_{x} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f_{4}=\tau_{y y} v+\tau_{y x} u+\kappa T_{y} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{x x}=-\frac{2}{3} \mu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{v}{y}\right)-2 \mu \frac{\partial u}{\partial x} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{y y}=-\frac{2}{3} \mu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{v}{y}\right)-2 \mu \frac{\partial v}{\partial y} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{x y}=\tau_{y x}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
p=\rho R T \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
e=c_{v} T, \quad c_{v}=\frac{R}{\gamma-1}  \tag{8}\\
p=(\gamma-1)\left\{E-\rho\left(u^{2}+v^{2}\right) / 2\right\} \tag{9}
\end{gather*}
$$

計算にあたっては対流項を Harten－Yee の風上型TVDスキーム，粘性項を 2 次精度中心差分，時間積分はLU－ADI法により行った。境界条件 をFig． 2 に示す。壁面において等温壁，nonslip


図 2：Computational domain and boundary conditions
条件，流出条件は 0 次の外挿，雰囲気条件の物理量は無限遠方のそれに固定した。計算条件を Table－1に示す。数値計算はまずスロートから

表 1：Flow conditions

Inflow Mach number	1.0 （nozzle throat）
Stagnation temperature of jet	335 K
Stagnation pressure of jet	1 atm
Working gas（jet）	Air
Static temperature of ambient gas	300 K
Static pressure of ambient gas	9 Torr
Working gas（ambient）	Air
Dimensionless distance $(H / D)$	$3.7,5.6,6.8,7.4$

＊$H / D$ ：displacement between nozzle exit and wall／nozzle exit diameter

ノズル出口までの範囲で行った。ここで用いた ノズルのスロートにおける直径は 9.2 mm ，出口直径は 24.0 mm ，出口でのノズル形状の半頂角は12度，スロートからノズル出口までの直径は 35.8 mm である。次にこの計算結果ノズル出口における流入条件として衝突噴流の計算を

行った。ここで計算格子はFig．3に示すものを用いた。

（a）Domain of nozzle flow

（b）Domain between nozzle exit and wall

図 3：Computational Mesh

## 3 結果及び考察

まずノズル内部についての計算結果をFig． 4 に示す。それぞれ，（a）等圧線図，（b）等マッハ線図である。計算はスロート部において直線の音速線を仮定して行なった。ノズル内で流れは加速され，出口近傍では放射状に超音速流が得 られていることが分かる。このとき中心軸上の ノズル出ロマッハ数は $\mathrm{Me} \mathrm{e}=3.3$ ，静圧比 $\mathrm{pe} / \mathrm{p}$ $a=1.44$ となったので，ノズル出口での圧力よ

（a）Pressure contours

（b）Mach contours
（b）Mach contours

図 4：Calculated result in conical nozzle
り周囲の圧力が低いため不足膨張流となってい る。ノズル出口から壁の間の領域は，このノズ ル出口における計算結果を用いることにより行 なった。

次に $\mathrm{H} / \mathrm{D}=3.7, ~ 5.6, ~ 6.8, ~ 7.4$ における壁干渉流れ場について得られた計算結果と実験結果 との比較をFig． 5 からFig． 8 に示す。ここで （a）等密度線図，（b）は同じ条件下で得られた シュリーレン写真である。

H／D＝3．7（Fig．5（a））について考察する。こ のノズルからの流れは不足膨張流のためノズル端（ノズルリップ）から出た jet boundaryは， やや膨張する。またノズルリップからジェット内部への衝撃波（バレルショック）が計算でもと らえられ，実験結果とよい一致を示している。 ノズルから出た流れはやや膨張した後壁近くで収縮し，そのまま壁に入射するため強いプレー トショックが発生している。その壁からの位置 は実験結果とも良い一致を示している。またノ

（a）Density contours（calculated）

（b）Schlieren picture（experiment）

図 5：Flow pattern $(H / D=3.7)$
ズルリップから出たバレルショツクが中心軸上 で交差して生じるショックコーンがとらえられ ており，実験結果ともよい—致を示している。
$\mathrm{H} / \mathrm{D}=5.6$（Fig． 6 （a））の場合は $\mathrm{H} / \mathrm{D}=3.7$ に比べ壁との距離が広がるため，ジェットは一度収縮したあと再び膨張して壁に入射するため プレートショックの強さも弱くなっている。プ レートショックの壁からの位置は実験結果とよ い—致を示している。
$\mathrm{H} / \mathrm{D}=6.8$（Fig． $7(\mathrm{a}))$ ）場合は，更にノズル と壁との距離が広がりジェットは収縮のあと再 び膨張し続けているので壁に入射するときひ プレーとショックの強さは弱く，壁からの距離 も大きくなっている。またノズルリップからの バレルショック，その中心軸上での交差による ショツクコーンの形成は実験結果とよい——致を示している。

（a）Density contours（calculated）

（b）Schlieren picture（experiment）

図 6：Flow pattern $(H / D=5.6)$
$\mathrm{H} / \mathrm{D}=7.4$（Fig．8（a））の場合ば，ジェット が再び収縮したところでの壁への入射となるた め，プレートショックも強く，その位置は壁に近づく。またFig．9に壁上の圧力分布の計算結果と実験結果との比較を示す。 $\mathrm{H} / \mathrm{D}=3.7,7.4$ などジェットが収縮した部分での入射ととなる場合は，表面圧力は全体的に高く淀み点でピー クとなる。 $\mathrm{H} / \mathrm{D}=5.6,6.8$ ではジェット內の圧力 が低い部分でプレートショックが形成された入射となっているため衝突面の圧力は低くなり，分布は平坦になっていることが分かる。いずれ

（a）Density contours（calculated）

（b）Schlieren picture（experiment）

図 7：Flow pattern $(H / D=6.8)$

（a）Density contours（calculated）

（b）Schlieren picture（experiment）

図 8：Flow pattern $(H / D=7.4)$

## 4 結論

軸対称のNavier－Stokesの方程式を用い衝突
の場合も計算結果は実験結果とよい—致を示し ている。

噴流の流れ場を数値的に解くことにより，ノズ ルの出口と衝突版の距離によるジエットの構造


図 9：The comparison of calculated sur－ face pressure distributions with experiments （ $H / D=3.7,5.6,6.8$ and 7．4）

やプレートショックの位置，および平板上の圧力分布の変化をとらえることができた。超音速 ジェットでは内部の衝撃波の階層構造を持ち， ノズル出口から衝突板までの距離を大きくする につれ，表面圧力がしばらく減少した後に再び上昇する位置があることが分かる。また計算結果が流れのフローパターン及び表面圧力分布に おいて実験結果と一致を示していることは，こ こで行なった計算手法がこのような流れ場を十分捕えることができることを示している。

今後は，さらに淀み温度が高い場合での熱流束の見積もりが課題となる。

## 参考文献

［1］M．T．Stuerman，J．G．Love，＂Surface heat transfer from supersonic impinging jets＂， AIAA Paper 94－3071
［2］P．J．Lamont and B．L．Hunt，＂The Im－ pingement of Underexpanded，Axsymmet－ ric Jets on Perpendicular and Inclined Flat Plates＂；J．Fluid Mech．Vol．100，part 3， p471－551， 1980.
［3］N．Tsuboi，K．Hayashi，T．Fujiwara，K． Arashi，Y．Kodama，＂Numerical simulation supersonic jet impinging to flat plate＂，Pro－ ceedings of 5th Computational Fluid Dy－ namics Symposium，1991，pp．155－158（in Japanese）．

# HOPEの遷•超音速流空力設計C F D 解析 

伊藤良三＊1 山本行光＊2

# CFD Analysis of Transonic and Supersonic Flow around <br> HOPE for Aerodynamic Design <br> by <br> Ryozo ITO＊1 and Yukimitsu YAMAMOTO＊2 

## ABSTRACT


#### Abstract

Navier－Stokes flow simulations around HOPE－X（H－II Orbiting Plane－experimental）have been carried out to yield various useful data for its aerodynamic design．In this paper，two kinds of validation studies for the flow simulations are reported．First，the code to code validation was executed to test the reliability of the CFD codes． The two CFD codes used here are both based on the Reynolds averaged thin－layer approximated Navier－Stokes equations discretized by the finite volume method with a TVD upwind scheme．The results obtained by these codes are in good agreement with each other at angle of attack lower than 10 degrees．Second，flow simulations by one CFD code with different two grids were executed to estimate the grid dependence of the code．Grid dependence is small enough to use the CFD code for aerodynamic design．


1．はじめに
CFDによる遷•超音速流の解析は，21世紀初頭に打 ち上げ予定のHOPE－Xの空力設計に寄与してきている。

ここでは，これまでHOPE－Xの設計支援ツールとし て使用されてきた計算コードの信頼性を，二つの観点から評価した結果を報告する。

## 2．計算対象

HOPE－Xのブロトタイプのうち，07 HOPEと呼 ばれる形態（07 HOPE単体形態）と，その形状の胴体後端にロケットアダプタを付した形態（07 HOPE打ち上げ形態）について行った。両者ともに Body－flap を持た ない。

3．評価方法
－計算コード間比較
同一の計算格子を用いて，二つの異なるC F Dコードに よるCFD計算結果を比較した。

- 格子依存性
- つのC F Dコードを用いて，二つの異なる計算格子で の計算結果を比較した。

4．計算コード間比較
同一の計算格子を用いて，航技研で開発されたC F Dコ ード（以下，NALコード）と川崎重工で開発されたCF Dコード（以下，KHI コード）で計算を行い，両者の結果を比較した。両コードとも，薄層近似レイノルズ平均 Navier－Stokes 方程式を基礎方程式とし，乱流粘性係数は， Baldwin－Lomax の代数モデルで算出される。ここでは一様流の偏角 $\beta=0$ なので，流れ場が対称であるという仮定の もとで，機体の片側の流れ場だけが解かれる。詳細は参考文献を参照されたいが，主な特徴は以下の通りである。
NALコード

- 有限体積法
- 対流項にChakravarthyのTVDスキームを適用
- 時間積分は陰的近似因子分解法，局所時間刻み

K H I コード

- 非構造有限体積法
- 対流項に Chakravarthy－Osher のTVDスキームを適用
．${ }^{* 1}$ 大興電子通信株式会社 DAIKO DENSHI TSUSHIN LTD．
＊2航空宇宙技術研究所 National Aerospace Laboratory
－時間積分はLU—S G S ，局所時間刻み
4－1 計算格子
07 HOPE 単体形態の周りに全部で10個のブロック からなるマルチブロック格子（図1）が生成された。機体表面の格子点数は約 9 千，総格子点数は約 48 万である。胴体長を1としたとき機体表面法線方向の最小格子間隔は $5 \times 10^{-5}$ ，表面から外部境界までの距離は約 10 である。

07 HOPE 打ち上げ形態の周りに全部で 10 個のブロ ックからなるマルチブロック格子（図2）が生成された。機体表面の格子点数は約 1 万，総格子点数は約 54 万であ る。機体表面法線方向の最小格子間隔と，表面から外部境界までの距離は，単体形態のものと同じである。

これらの格子はK H I により生成された（以後これらの格子をKHI格子と呼ぶ）。

4－2 一様流条件
一様流条件は，07 HOPE単体形態については，マッ八数 $=0.9, ~ \operatorname{Re}$ 数 $=7.95 \times 10^{6}$ ，迎角 $\alpha=0 \sim 14$ 度である。 0 7 HOPE 打ち上げ形態については，マッハ数 $=0.6 ~ 2.0$ ， $\operatorname{Re}$ 数 $=2.03 \times 10^{6} \sim 6.48 \times 10^{6}$ ，迎角 $\alpha=0$ 度， 4 度である。

## 4－3 結果

図3に07HOPE単体形態のマッハ数＝0．9 での計算結果によるCL－$\alpha, ~ C D-\alpha, ~ C m-\alpha$ を示す。CD 算出の際のべ ース圧は，KHI での風試結果から推定された値を採用し ている。二つのコードの緃三分力は，迎角12度以上では あまり良く一致しないが，10度以下では非常に良い一致 を見せた。この迎角の範囲ではコードによる違いは風試の誤差の範囲内である。機体表面の圧力分布も二つのコード で良く一致している（図4）。
図5に，単体形態と，打ち上げ形態の単体相当部分から算出された CL の値を示す。実験値は打ち上げ形態のHO PE単体部分による値である（Body－flap off）。両形態にお いて，二つのコードによる結果は良く一致している。打ち上げ形態の単体相当部分による値は実験値とも良く一致し ている。

[^41]E単体形態周りにNALにより生成された格子（図6）で当コードによるCFD計算が行われ，その計算結果がKH I 格子によるもの（4節）と比較された。この格子は9個 のブロックから成り，機体表面の格子点数は約 9 千，総格子点数は約 65 万である。胴体長を 1 としたとき機体表面法線方向の最小格子間隔は $6 \times 10^{5}$ ，表面から外部境界まで の距離は約 2 である。一様流条件は $4-2$ と同じである。

## 5－1 結果

迎角10度以下では二つの格子での計算結果による CL $\alpha$ ，CD－$\alpha$ は風試の誤差の範囲内で良い一致を見せた（図 7）。ベース圧の処理に関しては4－3と同じである。Cm－ $\alpha$ も定性的には良く一致している。格子の違いが計算結果 に与える影響の小さいことがわかった。

機体表面の圧力分布（図8）についても同様のことが言 える。主翼後縁で压力分布が大きく違らのは，KHI格子 ではその部分で主翼を切り落としているのに対し，NAL格子では閉じている（図9）ため前者に比べて後縁で負圧 を発生しやすいためと思われる。
図10に，両格子による CLの値を示す。実験値は打ち上げ形態のHOPE単体部分による値である（Body－flap off）。マッハ数 0.6 と 2.0 での比較だけだが，両格子による値は良く一致している。

6．結論
NALコードの信頼性を調べるために，07HOPE形状周りの遷音速流のC F D 計算を行った。計算コード間比較と，格子依存性のチェックが行われた。
－計算コード間比較
迎角10度以下では二つのコードによる縦三分力の計算結果は実用上非常に良く一致し，コードの違いが計算結果に与える影響の小さいことがわかった。
－格子体存性
迎角 10 度以下では二つの格子での計算結果による CL－ $\alpha, ~ \mathrm{CD}-\alpha$ は実用上良い一致を見せた。 $\mathrm{Cm}-\alpha$ も定性的 には良く一致している。全体の格子点数や外部境界まで の距離が大きく違っていても，境界層の厚さ方向に十分 な数の格子点があり，境界層内で機体表面形状との直交性が十分に良ければ，計算格子の違いが計算結果に及ぼ す影響の小さいことがわかった。但し，主翼後縁の様な場所では，たとえそれが全体に比べて小さな部分でも，形状のモデル化には注意が必要である。

## 7．今後の展望

複雑な形状の計算に対応できる様にNALコードを改修 し，HOPEエレボン操舵形態の遷•超音速流の解析を行い， コードのさらなる性能向上をめざしたい。

## 謝辞

川崎重工（株）の嶋氏，花光氏，山蔭氏には，計算結果 や図の提供，また，いくつかの助言をして頂き，ありがと うございました。

## 参考文献

［1］橘，高梨，「複雑な形状の航空機まわりの流れの数値シ ミュレーション1，NAL SP－10，pp．195－199， 1989.
［2］嶋，「三次元非構造格子NSソルバーUG3」，NAL SP－ 22，pp．25－29， 1993.
［3］Baldwin，B．S．and Lomax，H．，＂Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow＂，AIAA paper 78－257， 1978
［4］Chakravarthy，S．R．，＂The Versatility and Reliability of Euler

Solvers Based on High Accuracy TVD Formulations＂，AIAA paper 86－0243， 1986.
［5］Chakravarthy，S．R．and Osher，S．，＂Numerical Experiments with the Osher Upwind Scheme for the Euler Equations＂，


図1 07 HOPE 単体形態の表面格子，対称面の格子


図2 07 HOPE 打ち上げ形態の表面格子，対称面の格子


図3 二つのコードによる 07 HOPE単体形態の CL－$\alpha, ~ \mathrm{CD}-\alpha, ~ \mathrm{Cm}-\alpha\left(\mathrm{M}_{\infty}=0.9, ~ \operatorname{Re}=7.95 \times 10^{6}\right)$


図4 ニつのコードによる 07 HOPE 単体形態主翼表面圧力分布（ $\left.\mathrm{M}_{\infty}=0.9, ~ \mathrm{Re}=7.95 \times 10^{6}\right)$


図5 二つのコードによるO7HOPE単体形態の07HOPE単体形態•打ち上げ形態のCL・マッハ数分布


図 607 HOPE 単体形態周りの格子（NAL格子）


図 7 二つの格子での，NALコー－ドによる $\mathrm{CL}-\alpha, ~ \mathrm{CD}-\alpha, ~ \mathrm{Cm}-\alpha\left(\mathrm{M}_{\infty}=0.9, ~ \mathrm{Re}=7.95 \times 10^{6}\right)$


図8 二つの格子での，NALコードによるO7HOPE単体形態主翼表面圧力分布（ $\mathrm{M}_{\infty}=0.9, ~ \mathrm{Re}=7.95 \times 10^{6}$ ）


図9 主翼後縁部分の形状の処理 KHI格子（左），NAL格子（右）後縁の厚さは約 0.01 （左）


図10 二つの格子での，NALコードによるO7HOPE単体形態•打ち上げ形態のCL・マッハ数分布

# 並列流体計算のためのオブジェクト指向フレームワーク 

## 太田 高志（日本原子力研究所）

# An Object－Oriented Framework for Parallel Computational Fluid Dynamics <br> by 

Takashi OHTA


#### Abstract

We propose an object－oriented approach for parallel computational fluid dynamics and designed an programming framework that realize the concept．The main concept of the approach is to separate a numerical scheme and data management tasks brought by a parallelization．Thus the framework allows to write a numerical scheme of a parallel computational fluid dynamics（CFD）code without concerning the parallelization．Many consideration are paid for improving the portability and the re－usability of the code． The framework presented here does not aim to be a low－level class library for a general use，but as being much close with an application field，CFD in this case，provides an infrastructure for building a complete code．The basic design and a framework for CFD are presented in this paper．The result suggests that the approach can benefit in various aspects of parallel computation of CFD．


1．はじめに
CFDで要求される問題対象がより現実的なものとなるに つれ，それを解くための計算モデルやアルゴリズムは複雑 なものとなる。同時に計算能力も，速度，メモリサイズと もに高い性能が要求され，並列計算が現実的な候補として考えられるようになったが，このことがさらにプログラム作成を困難なものとしている。ただ一つのプログラムを，定められた環境で決まった問題だけを対象とするような場合にはそれほど深刻なことではないかもしれないが，研究目的のために様々な計算手法，条件や，対象を変更するこ とが頻繁である場合，これは重大な問題となる。その度に プログラムを大幅に変更することになる上，一からの書き直しとなる場合も少なくない。また，並列計算についての一般的な知識と，特定の並列環境についての知識も要求さ れる上に，逐次計算用のプログラムを開発した後，それを並列化するという 2 重の開発段階を経なけれぼならない等 の，本来計算手法の研究や解析自体を目的としている場合 には目的外であるプログラム作成や書き換えに，より多く の時間が割かれるよらな状況となる。

我々は，これらの問題に対する一つの解答として，オブ ジェクト指向によるアプローチを提案してきた［1，2］。これ は，計算手法を並列実行のための処理と分離するようなプ ログラミングが可能となるような仕組みを与えるものであ る。このアプローチにより，流体の計算プロセスに関して は，非並列のようにプログラムを組みながら，そのコード を並列，逐次実行の両方にそのまま使用出来るなどの利点 を示した。しかしながら，これまで概念の提案にとどまっ ていたため，それに沿ったプログラムを作成するためには個別のアルゴリズムをどのようにその概念に当てはめるか といら分析が必要であり，従来の開発以上に手間がかかる ことになってしまう恐れがあった。そこで，今回我々は，今まで提案してきたアプローチにのっとったプログラムを作成するためのフレームワークを設計した。

フレームワークには流体の計算コードを作成するための殆どの部分がクラスライブラリとして用意される。独自の コード開発のためには，非並列計算のコードでの主計算部

分に相当するプログラムだけを書きいれればよい。これに より，非並列コードを開発するのと同じか，より簡易に， これまで提案してきた概念に沿って，並列実行可能なプロ グラムを開発することが出来る。
このフレームワークは以下の事を目的としている。

## －主計算と並列処理の分離

- コードのモジュール化による再利用性の向上
- 格子生成，可視化を含めた統合的，統一的な環境の横築
- 流体計算プログラム作成のためのインフラストラクチャ提供

オブジェクト指向による並列計算への試みは他にも行われ ているが［4］，それらと一番大きく異なっている点は，他の アプローチがオブジェクト指向による利点を，並列処理に関する部分を簡便に使いやすくするために用いているのに対して，ここでは計算部と並列処理を分離する構造を作る ために利用していることである。従って，ここで行おらと していることは，並列化を行ら際のサポートとなる低いレ ベルの機能を提供するライブラリではなく，計算プログラ ムの構造を規定するような土台を構成することである。本稿では，基本概念とフレームワークの概要，格子生成と可視化への応用について説明し，適用例を示す。フレームワ ークとして，差分法，有限体積法による，圧縮性，非圧縮性流体の計算を対象としたものを構築し，領域分割による並列化をサポートする。実装はC＋＋により行った。

## 2．基本概念

設計の指針は並列化処理に関した部分と純粋に計算のため の部分を分離することである。領域分割による並列訃算の モデルを考えてみると，計算と並列化の処理はどちらも同 ビデータを扱っているが，それらは互いに独立しているこ とが分かる。すなわち計算の処理はデータの値を参照した り変更したりという働きかけをしているが，並列処理はデ －タの構造自体に関わる操作を担当している。従って，デ ータのモジュールを操作対象としてこれらの処理を，それ ぞれ別のモジュール（クラス）として構成することが可能 である。このような分離を行うことによって，それぞれの

処理についてのプログラムを，ほぼ独立に開発することが可能となり，プログラムの開発，変更，再利用などにおい て非常な利点となる。

ところで，このような分離を行らにあたって，アルゴリ ズム自体の構成にも考慮を払わなければならない。従来一般に行われている並列プログラムの開発は，いわゆる並列化といらプロセスである。これは，ベクトル型のスーパー コンピュータにおいて行われていたベクトル化といら開発形態が，並列計算へそのまま持ち込まれているように思わ れる。すなわち，ベクトル化と同様にプログラム中で並列可能なループを調べ，そのつど並列化をするといらことが行われている。しかしながら，並列計算に適したプログラ ムの構成を考えたときに，ベクトル化という手法をそのま ま持ち込んだ方法が良いとは思われない。逐次計算のため に考えられたアルゴリズムの部分部分を並列化していくと いら方法では大規模並列などに対応するのが難しくなるの ではないだろうか。そうではなく，並列のプログラムはそ もそも並列に実行することを念頭に書かれるべきであろう。逐次実行のコードは元々並列のためのプログラムの1 C P Uで実行されるケースがそれに相当するような，並列化と はむしろ反対になるような設計が望ましいと我々は考える。

このことを念頭において計算処理の部分を設計する。す なわち，境界条件やデータ転送などに対して，共通に処理出来るよりなインターフェースを用意し，それにより逐次，並列実行に関わらない単一の計算部を構成するのである。 フレームワークはこれらの設計指針を実現するよらに構築 する。

3．フレームワーク
フレームワークの全体的な構成は図1に示すようである。 データクラスは，流体計算の場合では，格子や流れ場変数，境界条件の設定などを管理している。ソルバや格子生成，領域分割などの各処理において受け渡されるのは常にこの データクラスのオブジェクトである。特にソルバ（図1で は主計算）には，並列計算のための分割処理を経過するし ないに関わらず，常にデータクラスのオブジェクトが渡さ れる。逐次計算でも並列計算でも，データクラスとソルバ のインターフェースが同様になるような処理の抽象化を行 らことによって，このような構成をとることが可能になる。具体的には，物理的な境界条件と境界領域のデータ転送を，
「境界領域でのデータ操作」といら共通の概念で取り扱ら。領域の再編成では，データクラス内において，計算領域と それに対応した境界の処理がそれぞれの並列プロセスに相当したものになるように構成し直している。

以下に，フレームワークの詳細を個別に説明する。ここ


図1 フレームワークの基本概念

で最も核となるのは，計算手法が取り扱らデータ類を構成 するクラス（データクラス）と，それを利用するためのフレ ームワークである。データクラス（DataField）を利用する ためにFieldUserといら抽象クラスを用意している（図2）。 ソルバや前処理，可視化など，データクラスを利用する処理は，FieldUserを継承したクラスとして実現されている。
DataFieldがそれらのクラスを acceptすることで，それらの クラスからDataField内に存在する各変数類を使用すること が可能となる。一方，各機能からアクセスされる対象とな るデータクラスは図3のような設計となっている。これは，差分法などの計算などにおいて，単一の領域では対象とな る計算領域が複雑な場合格子を作成出来ず，複数の格子で全体を構成することがある。ここでは，そのような場合に あらかじめ対応するため，単一のデータクラスと，複数か らなるものを両方用意しておき，それらを共通の抽象クラ スから派生するようにしている（図3）。複合領域のクラ ス内部には，単一領域のデータクラスがリスト構造などに よって保持された形となっている。抽象クラスにおいて，外部から利用するときの共通なインターフェースを用意す ることで，利用する側からはそれが単一領域であろらと複合領域であろらと，抽象クラスのポインタを通して全く同様に操作出来る。これにより，データクラスを使用する各処理のクラスは，領域の構成に対応したものをその都度用意する必要なく，ただ一つのクラスを作成すれば済む。

次に，並列処理に関連したフレームワークを紹介する。先にも書いたように，ソルバは FieldUser の派生として作ら れており，DataField を常に扱うことになっている。従って，逐次計算であれば全領域を担らオブジェクトを，並列計算 であれば，そのソルバが担当する分割領域の情報を持つオ ブジェクトを構成することが出来れば，ソルバはそれを受


図2 データクラス使用の仕組み


図3 データクラスの構成


図4 境界領域の取り扱い
け取って計算することが出来る。これを可能とするため， データ転送を境界条件の一部とみなし，それらを統一的に境界領域でのデータ処理のプロセスとして扱らことにする。図 4 に示すように，共通の抽象インターフェースから様ヶ な境界領域での処理を実行出来るようにする。図の例では共通のapply というメソッドが定義されているが，個々のブ ロセスではその内部に独自の処理を定義する。これを使用 する際は，共通インターフェースだけ用いればよく，従っ てソルバからは並列処理において生じるデータ転送も内部 に隠され意識する必要がない。例えば図4内にあるプログ ラム例のように，境界処理をまとめてリスト構造などで保持することで，物理的な境界条件もデータ転送もまとめて扱らことが出来る。どのプロセスをどの境界領域に対して実行するかといら情報はデータクラスで保持する。

このような設計をした上で並列計算のために必要なのは，個々のプロセスにそれぞれ対応したデータクラスのオブジ エクトあてがらことである。図5に例を示す。全計算領域 が 2 つの格子であるとき，それぞれの格子に対する境界の特性は右上に示されるようになっているとする。それぞれ を $2 \times 2$ に分割して，それらを個々の並列プロセスに担当 させることを考える。P2 と表された領域では，分割の結果境界での処理が左下のように与えられるべきである。従 って，並列計算に際しては，全領域に与えられた境界処理 の定義と分割情報から，個々の分割領域に与えられる境界処理を編成しなくてはならない。この作業は，手作業で各分割した領域を生成し，適切な境界をそれぞれに設定して いくことも出来る。しかしながら，大規模計算になれぼそ れだけで多くの分割領域を扱わねばならないし，それぞれ の領域の整合性などの管理も大変なものとなるだろう。ま た，図の例のように領域が複合されたものとなると，さら


図5 領域分割と境界処理の再構成

に複雑になっていく。そこで，このフレームワークではそ のような領域分割の管理をするクラスを設けて，そのよう な作業を担当させることにする。例えばこれは以下のよう に使用する。

> FieldGenerator* generator = new FieldGenerator; GeometryManager manager; manager.set(generator); manager.setDecompositionSize(ndiv1, ndiv2); datafield = manager.getField(processid);

ここで，GeometryManager が領域分割を担当するものであ り，最終的にソルバが受け取る DataField のオブジェクトが得られる。内部での領域情報の再構成は，対象が構造格子 であろうと，非構造格子であろらと，何らかの分割のアル ゴリズムが設定された時点で自動的に行らことが可能であ る。このような仕組みで，領域分割の詳細を隠蔽すること が出来，それぞれの問題毎に領域分割の詳細を考慮して計算データを用意する必要なく，非並列計算時と同様の全領域に関する情報のみの用意だけをすればよい。これらのフ レームワークにより，計算の全体の流れとして従来の逐次計算と同じように，全計算領域の構成と主計算処理のプロ グラム作成といら作業で並列計算を実行出来るようになる。

次にこれまで述べたメインとなるフレームワークをサポ ートするフレームワークを紹介する。まず，計算結果の入出力に対するサポートである。通常，格子データや，計算条件，計算結果などはそれぞれ個々の入出力フォーマット が設定され，それに従って入出カルーチンが作成され，プ ログラム内の各変数にそれぞれ適切に受け渡されるように される。ここでは，計算に必要なデータはデータクラスと してまとめて扱っていることから，入出力についてもクラ ス全体を保存，復元する仕組みを作る方が取り扱いが非常 に便利であるし，統一的な操作を得ることが出来る。その ために，保存をする必要のあるクラスのために，Serializable という抽象インターフェースクラスを用意した。必要のあ るクラスは，これを継承することでデータ保存と読み込み のためのファイルアクセスを行らインターフェースを与え られ，その中で自分を復元出来る十分な情報を読み書きす るためのメソッドの詳細を用意する。これらのクラスは ObjectWriter と ObjectReader といらクラスを介してファイ ルへ入出力される。この機能により，計算のどの段階でも， クラスを対象とした操作を行うだけにすることが出来る。 すなわち，計算結果をファイルから読み込んで計算を続け る場合でも，計算結果を含むがータクラスを復元し，その オブジェクトに対して操作が行われる。他にも，機能の追加が同様の抽像クラスによる新たなインターフェースの追加によって行われる（図6）。並列計算に伴うデータの転送 は，浮動小数点などのデータ一つ一つを転送したりするの ではなく，クラス全体を送受信することが出来ればプログ ラム作成が非常に簡単になると同時に可読性が非常に高ま ることになる。このような仕組みを与えるために，上と同様にしてSerializableMP というクラスが用意される。また，後の節で触れることになる可視化システムなどでの利用を考え，共有メモリを介したアクセスを可能とするため，
Sharable，SMP（Symmetric Multi Processing）などでの利用のためのスレッドをサポートするための，Thread という抽象クラスを用意した。

さて，並列実行に際しては，このフレームワークではM


図6 抽象クラスによる機能の付加
P I やP VMといった，既存の並列化ライブラリを使用し ている。様々な並列ライブラリが存在しているために，特定の環境に依存したものではなく，どの環境でも実行出来 るような可搬性のあるものとしたい。そのため，並列ライ ブラリを直接使用するのではなく，抽象インターフェース を設定し，それを用いることによって様々な環境に対応出来るようにした。具体的には図7に示すように ParalleIInterface という抽象クラスを設定し，個別の並列環境を直接用いる実装は，それらを継承したクラスとして実琴される。境界の処理など，並列環境を利用しなくてはな らないクラス類においてこのようなインターフェースを利用する場合，個別のライブラリのルーチンを直接㭔ぶので はなくParalleIInterfaceに設定されたメソッドのみを用いる ようにする。これにより，それらのモジュールと，最終的 にはプログラム全体を特定の並列環境に依存したものでは なく，可搬性のあるものとすることが出来る。
以上に紹介したようなプログラム類でフレームワークは


図7 並列環境への抽象インターフェース
構成されているわけであるが，流体のプログラムの構成を考えたとき次のことに気づく。すなわち，圧縮性，非圧縮性など対象の物理系が異なっていても，プログラムの枠組 みにおいて，格子の構造など流れ場の変数が異なるだけで， その仕組みは共通なものが多い。ここでは，C＋＋に特化 したものではあるが，クラステンプレートという機能を用 いて，重複した枠組みで変数セットのみが異なっているも のについて一つのクラスで扱えるようにしている（図 8）。例えば，CmpFlow を圧縮性流体の変数クラス，IncFlow を非圧縮性流体の変数クラスとすると，それぞれに対応した データフィールドのオブジェクトは，DataField＜CmpFlow＞， DataField＜IncFlow＞のようにして生成することが出来る。こ こで，DataField＜Type＞といらのがクラステンプレートにあ たるもので，Type に設定した型に置き換えたオブジェクト

を生成することが出来る。ここで，DataField とは流体計算 で扱ら変数類を集めたものとしているが，具体的には格子 データ，流れ場変数，境界の設定情報などが含まれる。従 つて，流れ場変数の種類が異なるだけで後の部分は共通で ある。これらをそれぞれの個別のクラスとして実装するこ とは面倒であると同時に，フレームワークの変更があった場合に，全ての同様の機能を担当しているクラスを変更し なくてはならないことを意味する。クラステンプレートを採用することによって，そのような問題が解消出来ると同時に，プログラム構造が同じで変数セットだけが異なるよ らな，新たな問題に対するプログラムを簡単に同じフレー ムワークを利用して構築することが出来るようになる。


## 図8 クラステンプレートの使用

最後に，これまで説明されたフレームワークを利用して，個別の計算スキームによるプログラムを開発する際に，従来の逐次プログラムと同様の開発程度で済むように，計算 の主アルゴリズムの部分のみをモジュールのような形で組 み込む枠組を設計した。独自のスキームは，図9に示すよ らな枠組みの中で，Scheme というクラスを継承して書かれ ることになる。ここでは run といらメソッドのみを実装す れぼよく，具体的にはその中に，データクラス内の変数を用いて従来逐次プログラムで行っていたのと同じように計算のアルゴリズムを書けばよい。並列実行における個々の プロセスでの領域管理などは，フレームワークが面倒を見 るので，ここで考慮する必要は無い。さらに，独自の境界処理などを加えたい場合には，同檥にして，境界処理プロ セスを作成する。結局，独自の計算コードを開発する際に は，従来と同じ内容のプログラミングのみが必要である。

以上のように，基本概念のところで述べた設計指針を達


図 9 オリジナルスキームの導入

成するために，様々なフレームワークを規定している。こ れを用いてプログラムを書くといらことは，フレームワー クの規定に拘束されるということであるが，一方，それに従らことで，それがもたらす利点を享受することが出来る。 しかしながら，このフレームワークでは個々の計算スキー ムの，コード全体との関連においての枓組みを規定しては いるが，内部の実装においてはデータクラスで設定された変数類を使用することになるもののオブジェクト指向的な ライブラリの使用を強要するのではなく，従来のような書 き方で行らように配慮している。

## 4．格子生成と可視化

前節で述べたデータクラスを核として，前処理と後処理も設計することにより，統一的な思想の基に計算の全環境を構築することが出来る。すなわち，前処理はデータクラス のオブジェクトを作成するプロセスであり，計算の結果も同じくデータクラスのオブジェクトとしてあるために，後処理はそのオブジェクトを用いて可視化を行うものとなる。
前処理は通常，格子生成を指すが，ここではそれは DataField のオブジェクトを生成する仕組みのなかに取り入 れられる（図 10）。FieldGenerator がオブジェクトを生成す るのを管理する。通常の格子生成に相当する部分は GeometryDesigner が担当し，ここに各座標値の定義などが設定される。複数領域による格子などは，それぞれ単独領域を担当する Designer を領域の数だけ用意すればよい。領域間の関連などは Generator の中で管理する。また，境界で の処理内容を設定すること，格子点中心かセル中心の計算手法にあった Field の作成などもここで行われる。格子をデ ータとして保存するのではなく，このような形で生成の手法を含めてクラス化しておくことによって，再利用に関し ての自由度が非常に高まることになる。また，このような仕組みをとることの意味がもら一つある。韭常に大きな格子点数の領域による計算を行ら場合を考えてみよう。これ をデータファイルとして保存している場合，例えば分散メ モリ環境であれは，計算機全体のメモリサイズは十分であ ったとしても，一つのノードのメモリの上限で計算サイズ が規定されてしまらといったことが起こる。もちろん，デ ータの読み込みかたを工夫するか，始めから分割しておく などによって回避することは出来るだろうが，個々の計算領域の度にそのようなことをするのは不便であり，逐次計算と並列計算で異なった仕組みを用意しなくてはならない ことになる。ここでは，Designer の中の格子生成のメソッ


図10 前処理のフレームワーク

ドにおいて，領域定義の一部だけを生成出来るように格子点の定義を設定しておく。生成に際しては，
GeometryManager が FieldGenerator を通して，Generator内の各 Designerに領域分割による担当部分を設定し，各並列プロセスにおいて担当部分の領域のみがデータとして生成されることになる（図11）。これにより，分散環境におい ても格子生成や読み込みに関して特別な注意を払うことな く，逐次処理と同じような処理の流れで大規模な計算を実行することが出来る。


図11前処理の流れ
可視化についても同様に大規模計算に対応する事が要求 されるが，ここでは一つの形式に固定したシステムを構築 するのではなく，様々な運用形態を柔軟に構策するような システムを考えている。すなわち，最も単純には，データ として保存された計算結果を読み出して可視化をすること になるが，大規模データに対応するために可視化プロセス も並列化することや，さらには同時可視化への要求という ことが考えられるだろら［3］。可視化のツールを構築する䄞 に，以上の様々な運用形態を適宜構成出来るように，可視化のカーネル及びそれらと操作対象となるDataFieldを結び付ける仕組みをフレームワークは与えるように考えている。

## 5．適用例

以上までに説明してきたフレームワークによって，具体的 なプログラムの概観は以下のようになる。

Paraliellnterface＂pi＝new InterfaceToMpi；
pi－＞initialize（ argc，argv，nprocess ）；
FieldGenerator＂ $\mathrm{g}=$ new FieldGenerator；
g －＞initialize（）；
g－＞setGridSize（gs1，gs2）；
GeometryManager gm＝new GeometryManager；
gm－＞set（g）；
$\mathrm{gm} \rightarrow$ setDecompositionSize（ds1，ds2）；
DataField ${ }^{\mathrm{f}}=\mathrm{gm} \rightarrow$ getField $(\mathrm{pi}->\mid \mathrm{d}())$ ；
Solver ${ }^{\text {＇s }}$ olver $=$ new Solver；
Scheme＊scheme＝new Scheme；
solver－＞set（scheme）；
field－＞accept（solver）；
solver－＞initialize（）；
solver－＞setParalielinterface（pi）；
solver－＞setParameter（．．．．）；
solver－riun（nloop）；

## ObjectWriter writer；

writer．set（storename）；
writer＜＜field；
まず，並列環境へのインターフェースを生成し，計算対象 となる DataField のオブジェクトを，全領域分のサイズなど のパラメータを指定して用意する。GeometryManager によ る領域分割に関連した処理を行い，各並列プロセスにおい て担当する DataField を生成する。計算については Solver といら枠組みに実際の計算アルゴリズムを実装する Scheme を登録する。ソルバには並列ライブラリへのインターフェ ースを登録し，計算の各種条件を設定する。ここで，計算対象であるDataFieldのオブジェクトにソルバを連携させる こと（field－＞accept（solver））によって，ソルバが DataField内の変数を使用出来るようになり，計算が実行される。最後に，DataField のオブジェクトがファイルとして保存され る。逐次実行を行ら場合は，Parallellinterfaceと GeometryManager に関する数行を削除するだけである。そ の際，Scheme やSolverのクラス類，その中に書かれる計算 プログラムには何らの変更も必要のないことに注意して欲 しい。

ここでは実際に，ソルバー，スキームとして，構造格子上で 2 次元オイラー方程式を，有限体積法，MUSCLス キームにより解くプログラムを組み込んだ。計算結果を図 12，13に示す。並列化による計算速度向上を見る為に，分散メモリ型計算機の1ノードでも実行出来る格子サイズ の計算を行った。計算はIBM R S $6000 /$ SP（48） ード）と日立のSR2201（64ノード）によって行っ


図122次元オイラ一方程式の計算結果


向上率

図13 並列実行による計算速度向上率

た。並列化ライブラリとしてはMPIを使用している。結果はいずれもほぼ線形に近い形で台数効果が得られている。多ノードで向上率が落ちてきているのは，計算サイズが小 さい為と考えられる。フレームワークは，大粒度の並列プ ログラムを作成し並列効率の良いものとするサポートを， その設計思想から行っていると言えるが，実装するアルゴ リズムが良くなければ台数による向上率ももっと低いもの となるだろう。このフレームワークはあくまでも構成を支援するためのもので，性能が内部のアルゴリズムによると いらのは，他のアプローチと全く同じである。

## 6．まとめ

並列計算プログラムのためのフレームワークをオブジェク ト指向により構築した。その並列プログラムの実現のため の基本方針は，並列可能な部分の自動並列化ではなく，プ ログラム全体を並列プログラムとして構成するような枠組 みを与え，その中で，流体計算のためのアルゴリズム部分 と，並列実行のための様々な処理を分離することである。従って，計算手法部分においてはオブジェクトを駆使した プログラミングを行らよりも，従来の逐次プログラムをそ のまま行らようにし，それをフレームワークでサポートし て並列実行するような仕組みを考えている。しかしながら，逐次実行のためのアルゴリズムをそのまま埋め込めるとい うことではなく，並列実行と逐次実行において処理が共通 になるようなアルゴリズムの抽象化を行うことが必要であ る。例えぼ，陽解法や，陰解法でもSORなどによるもの を，領域分割によって並列化するものに関しては，逐次実行のアルゴリズムをそのまま用いることが出来る。このよ らにすることで，並列化を意識しないプログラム作成と，同一のコードを逐次，並列，両方の環境で使用出来ること などの利点を得られることが出来る。これらの利点は，連成計算などのより複雑な計算対象に対しての並列計算など を考えたときにさらに顕著になるだろら。以上のようなブ ログラミングのための便宜と同時に，並列環境でなくては出来ないような大規模計算のサポートというものを念頭に おいている。これは大規模なデータを容易に計算で扱える ようにする仕組みを前処理と合わせて設計するのに併せて，結果を処理する後処理も統一的な設計で行うことを行って いる。また，オブジェクトとして格子生成や計算結果をデ ータベース化するなどの，より広範な計算のための基盤を構成する可能性も考えている。

## 参考文献

1．Ohta，T．，＇Design of a Data Class for Parallel Scientfic Computing＂，Scientific Computing in Object－Oriented Parallel Environments，Springer，1997，pp．211－217
2．Ohta，T．，＂An Object－Oriented Programming Paradigm for Parallel Computational Fluid Dynamics on Memory Distributed Parallel Computers＂，Parallel Computational Fluid Dynamics，North－Holland，1998，pp．561－568
3．白山晋，太田高志，「クラスライブラリによる並列化実時間可視化システムの構築」，航空宇宙数値シミュ レーション技術シンポジウム＇98
4．Wilson，G．V．and Lu，P．，Parallel Programming Using C＋＋， MIT Press， 1996

石垣 博＊望月宗和＊

Fluid Flow and Heat Transfer in Rotating Curved Pipes

Hiroshi ISHIGAKI and Munekazu MOCHIZUKI<br>National Aerospace Laboratory，Kakuda Research Center．

The fluid flowing in rotating heated curved pipes is subjected to three body forces：centrifugal，Coriolis and buoyant forces．Fully developed laminar flow in heated rotating coiled pipes is investigated through similarity arguments and computational studies．The thermal boundary conditions at the wall are uniform wall heat flux axially and uniform wall temperature peripherally．Flow and heat transfer characteristics are elucidated for the case when they are governed by four parameters：Dean number，Prandtl number，body force ratio and buoyancy parameter．Detailed structures of velocity and temperature fields are shown for wide range of these parameters．Computed results on the friction factor and the mean heat transfer rate are also given．

## 1 緒言

回転体内部に流路を設け，流体を流して椧却する回転機械の泠却問題では3つのモード，すなわち（I）直流路が回転軸に平行な場合（平行回転），（II）直流路が回転軸に直交している場合（直交回転），（III）曲流路が曲率中心のまわりに回転している場合（回転曲管），が基本的に重要である。著者はこれらす心てのモードについて，流れと熱伝達の特性を系統的に解明している。本報告はモード（III）についての ものであり，浮力が作用しない場合についてはロス ビー数が大きい場合の流れ特性 ${ }^{(1),(2)}$ と熱伝達特性 ${ }^{(3)}$ ， およびこれらにおよぼすロスビー数の影響（4）につい て既に報告した。

曲管がその曲率中心のまわりに一定角速度で回転 するとき，管内を流れる流体には管の曲率による遠心力，管の回転による遠心力とコリオリの力が同時 に作用する。さらにたとえば大形発電機などでは回転による遠心力が $10^{4} g$ にも達するので，管壁と流体 のあいだに温度差があると遠心浮力の影響が顕著に あらわれる。このときには3種の体積力が同時に作用し，流動伝熱特性はさらに複雑になる。

浮力が作用する回転曲管内層流についての研究と

[^42]して，かなり以前のMiyazaki の解析がある ${ }^{(5),(6)}$ 。この解析は主流と回転が同方向の場合（正回転）につい て，差分法による数値解を求めたものであるが，回転および浮力の効果がきわめて微弱な場合しか適用 できず，また使用したパラメータ群も物理的に正し いものではない。

さてこの流れの体積力効果は曲率，回転，加熱の三つから成るから，極限状態として静止曲管と回転直管の二つの強制対流および平行回転直管の複合対流の合計三つの流れをもつ。このうち，前二者につ いては曲率バラメータ入とロスビー数Roがともに大 きい場合に定量的相似性（アナロジー）が成立し（層流については文献（7）－（10），乱流については文献（11）， （12）），著者の回転曲管内流れの研究はこのアナロジ一に基礎をおいたものである。また平行回転直管の複合対流については文献（13），（14）でその流動伝熱特性を明らかにした。

本研究では著者の相似理論を適用して標記の問題 に対する相似パラメータを導いた ${ }^{(15)}$ 。その結果，こ の流れは入とRoが大きくてその影響が無視できれば， ディーン数 $K_{L C}$ ，ブラントル数 $\operatorname{Pr}$ ，体積力比 $F お よ ひ ゙ ~$浮力パラメータBの四つのバラメータにより支配さ れることが明らかになった。少なくとも4つのバラメ ータにより支配されるこの流れの全容は複雑•多岐に

わたる，遠心浮力が作用する回転曲管内複合対流の相似性の議論は既にまとめてあるので（15），ここでは流動伝熱場の構造と実用的に重要な圧力損失と熱伝達について述心゙る。なお熱的境界条件は軸方向に熱流束一定，周方向に壁温一定とする

## 2．主な記号

```
\(B\) : 浮力パラメータ = \(=K_{L B}^{2} /\left(\operatorname{Pr} K_{L C}^{2}\right)\)
\(F\) : 体積力比 \(=\lambda / R o\)
\(K_{L B}\) : 水平直管複合対流の層流特性数 \(=\sqrt{R a_{H}}\)
\(K_{L C}\) : 曲管の層流特性数 (ディーン数) \(=\operatorname{Re} / \sqrt{\lambda}\)
\(P r\) : プラントル数 \(=\nu / \alpha\)
\(R a_{H}\) : 回転レイリー数 \(=R \Omega^{2} \beta q_{w} d^{4} /(\nu k \alpha)\)
Re: 主流のレイノルズ数 \(=w_{m} d / \nu\)
Ro: ロスビー数 \(=w_{m} / \Omega d\)
B : 体積瞦張係数
\(\lambda \quad\) : 曲率パラメータ \(=R / d\)
```


## 3．基礎式と数値解法

図1に示すように，曲率中心まわりに回転する曲管に固定して円環座標系 $(r, \theta, \phi)$ をと ，速度成分を $(u, v, w)$ ，温度 $T$ とする。曲管は $0^{\prime}-y^{\prime}$ 軸の末わりに一定の角速度 $\Omega$ で回転するものとし，回転方向が主流方向と同じ場合（ $\Omega>0$ ）を正回転，逆の場合 $(\Omega<0)$ を逆回転と呼ぶ，一般に回転機械では回転半径が大 きいので，入が十分に大きい $(\lambda \gtrsim 8)$ と仮定すれば，管軸距離 $z=R \phi$ として円筒座標 $(r, \theta, z)$ に変換でき る。曲管壁が管軸方向に熱流束一定，周方向に壁温一定の条件で加熱されているものとし，管内の流れ は定常，非圧縮性層流で，速度場，温度場ともに完全に発達した状態にあるものとする。またBoussinesq近似を導入して密度変化は浮力項でのみ考慮し，粘性係数などの物性値は一定と仮定，重力による浮力 は無視する。


図1 回転曲管の座標系

このとき加熱曲円管内の完全発達層流の基礎方程式は次のようになる。

$$
\begin{equation*}
\frac{\partial}{\partial r}(r u)+\frac{\partial}{\partial \theta}(v)=0 \tag{1}
\end{equation*}
$$

$u \frac{\partial u}{\partial r}+\frac{v \partial u}{r} \frac{\partial v^{2}}{\partial \theta}-\frac{1}{r}=-\frac{\partial p^{*}}{\rho}+\frac{w^{2} \cos \theta}{R}+2 \Omega 2 u \cos \theta$

$$
+R \Omega^{2} \beta\left(T_{\Psi}-T\right) \cos \theta+\nu\left(\nabla^{2} u-\frac{u}{r^{2}}-\frac{2}{r^{2}} \frac{\partial v}{\partial \theta}\right)(2)
$$

$u \frac{\partial v}{\partial r}+\frac{v}{r} \frac{\partial v}{\partial \theta}+\frac{u v}{r}=-\frac{1}{\rho r} \frac{\partial p^{*}}{\partial \theta}-\frac{w^{2} \sin \theta}{R}-2 \Omega 2 w \sin \theta$

$$
+R \Omega^{2} \beta\left(T_{w}-T\right) \sin \theta+\nu\left(\nabla^{2} v-\frac{v}{r^{2}}+\frac{2}{r^{2}} \frac{\partial u}{\partial \theta}\right)(3)
$$

$u \frac{\partial w}{\partial r}+\frac{v}{r} \frac{\partial w}{\partial \theta}=-\frac{1}{\rho} \frac{\partial p^{*}}{\partial z}-2 \Omega(u \cos \theta-v \sin \theta)+\nu \nabla^{2} w(4)$

$$
\begin{equation*}
u \frac{\partial T}{\partial r}+\frac{v}{r} \frac{\partial T}{\partial \theta}+w \frac{\partial T}{\partial z}=\alpha \nabla^{2} T \tag{5}
\end{equation*}
$$

ここに $\mu$ は動粘性係数，$\alpha$ は温度拡散係数であり，ラブ ラシアンは次式で与えられる。

$$
\nabla^{2} \equiv \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

また $p^{*}$ は実際の圧力 $p$ から回転遠心力場の作用によ る平衡圧力を引いた換算圧力である。

$$
\begin{equation*}
p^{*}=p-\frac{1}{2} \rho \Omega^{2}(R+r \cos \theta)^{2} \tag{6}
\end{equation*}
$$

完全発達流では $\partial p / \partial z$ は一定となる。

$$
\begin{equation*}
-\frac{\partial p^{*}}{\partial z}=C \tag{6a}
\end{equation*}
$$

さらに軸方向熱流束一定で加熱したときの温度場の完全発達条件より

$$
\begin{equation*}
\frac{\partial T}{\partial z}=\frac{d T_{b}}{d z}=\frac{4 q_{w}}{\rho c_{p} w_{n} d} \tag{6b}
\end{equation*}
$$

均温度，$q_{w}$ は壁熱流束，$w_{m}$ は管内平均流速である。
計算は全管断面について行い，境界条件を次（よ うに与えた。

$$
r=d / 2: u=v=w=0, T=T_{w}
$$

しかし計算結果の等高線はすべて $x$ 軸に関して対称 であったので， 85 の等高線は半断面のみについて示 してある，数値計算ブログラムはPatankerの著書 ${ }^{(16)}$ を参考にして作成したもので，著者らの一連の研究 に用いているものである。有限体積法，スタガード格子，べき乗スキーム，SIMPLE法によっている。速度場，温度場ともに発達している場のエネルギー式 の計算方法は Kays \＆Crawfordの著書 ${ }^{(17)}$ を参考にし た。格子点は $r$ 方向 $32, \theta$ 方向 53 点をとり，$\theta$ 方向はほ ゞ等間隔，$r$ 方向は壁近傍で密な不等間隔にとった。

## 4．流動伝熱場の相似性 ${ }^{(15)}$

緒言でも述バたように，この流れは三つの流れを極限としてもつので，三通りの無次元化が可能であ る。このうち曲管流と直交回転管内流のあいだには アナロジーが成立するので，実質的には二つと考え てよい。

浮力が小さいときを想定して曲管内流れを基準に とれば，Bが小さいときの無次元基礎式が得られる。浮力パラメータ $B=K_{L B}^{2} /\left(\operatorname{Pr} K_{L C}^{2}\right)$ は流体にはたらく浮力と遠心力の比をあらわし，$B \rightarrow 0$ とおけば回転曲管内強制対流の無次元式となる。 $B=0$ のときの速度場は温度場から独立で，Prに無関係であり，軸速度場のパターンは $K_{L C}$ のみによって決まる。温度場は $\operatorname{Pr}$ によって大きく異なり，（i）Pr $\ll 1$ のときは二次流 れのない直管強制対流場に相似，（ii） $\operatorname{Pr} \approx 1$ とときは軸速度場に相似，（iii） $\operatorname{Pr} \gg 1$ のときは二次流線 $\psi$ に相似となる。
つぎに他方の極限である平行回転直管内複合対流 を基準にとれば，Bが大きいときの無次元基礎式が得られる。この式で $B \rightarrow \infty$ にすれば平行回転直管内複合対流の無次元式となる。この流れでは速度場で はなく温度場がPrに独立になる。Prの影響は速度場 に大きくあらわれ，速度場 $\check{\omega}$ のパターンは（ i ） $\operatorname{Pr} \ll 1$ のときには二次流線 $\psi$ に相似，（ii）$P r \approx 1$ のときには温度場に相似，（iii）Pr＞＞10ときには二次流れのな い直管強制対流のポワズイユ分布に相似となる。
浮力が作用する曲管内の流動伝熱特性は上に述心゙ た二つの極限の中間状態になり，Bの値を増加させ ると $B=0$ の特性から $B=\infty$ の特性へと変化してい

く，したがって $K_{L C}, F$ を一定にとり $B$ を増加させると軸速度と温度場のパターンは次のように変化する。 （i） $\operatorname{Pr} \ll 1$ では軸速度場は $K_{L C}$ の値により決末るパ ターン（ $K_{L C}$ が小さければ粘性流型，$K_{L C}$ が大きけ れば境界層型）から $\downarrow$ に相似なバターン八と変化す る，温度場は直管強制対流場の分布から $K_{L B}=K_{L C}$ $\sqrt{\operatorname{Pr} B}$ より決まるバターンに移行する。（ii） $\operatorname{Pr} \approx 1$ で は軸速度と温度場は常に相似である，（iii） $\operatorname{Pr} \gg 1$ で は軸速度場は $K_{L C}$ によって決まるバターンからボワ ズイユ流れのパターンに変化し，温度場は $\psi$ に相似な バターンから $K_{L B}$ によって決まるバターンに移行す る。

## 5．速度場と温度場の基本構造

浮力パラメータBによる流動伝熱場の構造変化の例として正回転 $(F>0)$ の計算結果を示す。図2（a）－ （d）は $K_{L C}=50, F=2, \lambda=20$ に固定し， $\operatorname{Pr}=0.01$ ， $0.7,7,10004$ 種の流体について，軸速度 $w$ ，二次流線 $\psi$ ，温度 $T$ の無次元等高線分布が $B$ O増加とともに どひように変化するかを示したものである。左端ひ $B=0$ は回転曲管内強制対流を示し，$w$ 分布は $K_{L C}=$ 100 で決まるバターン（粘性流形）をとり，Prによっ て変化しない。他方Tの分布はPr＝0．01では放物面分布， $\operatorname{Pr}=0.7$ では $w$ 分布と相似， $\operatorname{Pr}=100$ では2ヶ所に極値をもつ $\psi$ に類似した分布になっている。

参考のため右端には水平直管複合対流（ $B \rightarrow \infty$ ） ）分布を示した。このときの $K_{L B}$ はその隣の分布と同 じ値を与えているので，同一条件における直管（ $\lambda \rightarrow$ $\infty)$ の分布に相当する．．このとき $T$ 分布は $K_{L B}$ の値に


図2 浮力パラメータ $B$ による等高線の変化 $\left(K_{L C}=100, F=2, \lambda=20\right)$

よって決まるパターンをとり，Prにはほとんど関係 しない。他方，wの分布は前節で述バたようにPr＝ 0.01 では $\psi, ~ P r=0.7$ では $T, ~ P r=100$ では放物面分布にそれぞれ相似になっている。
$B$ の有限値の分布を見る。 $F>0$ のこの場合には管曲率による遠心力，回転によるコリオリカおよび加熱による遠心浮力が同一方向（ $x$ 方向）にはたらき， 3種の二次流れの方向が同じになって重畳されるので，二次流れの逆転現象は起きない。Pr＝0．01の場合の $w$ 分布の変遷を見ると，$\tilde{w}$ は $K_{L C}=100$ の一つの極値 が分岐して極大値が二つのパターンになり，$B \rightarrow \infty$ の流線に相似なバターンに漸近する。またTは放物面分布から，$K_{L B}=71$ の値で決まるパターンに漸近 していく。
$\operatorname{Pr}=0.7$ の場合には，$w$ と $T$ のパターンはつねにた がいの相似性を保持しながら変化し，分布の様相も $K_{L C}$ で規定されるパターンから $K_{L B}$ で規定されるバ ターンハと変化していく， $\operatorname{Pr}=7,100$ の場合には $\operatorname{Pr}=0.01 \sigma w$ とは逆に，Bが増加するにつれてT分布の2つの極値が一つに縮退する現象がおきる。
$P r=100$ では $K_{L B}$ が非常に大きな值になっても，極限形の対称バターンにはなかなか近づかない。また これ以上の大きな $K_{L B}$ の値では，数値計算が不安定 となって収束解が得にくくなる，現実にも $K_{L B}$ の値が非常に大きくなれば，層流状態が維持できず，非定常 あるいは乱流状態になると思われる。逆回転（ $F<0$ ） の場合の計算結果については文献（15）を見て頂きた い。

## 6．管摩擦係数と平均ヌッセルト数

文献（1）－（4）では次のような無次元数 $K_{L}$ を使用す れば，浮力が作用しない回転曲管内の層流強制対流 の管摩擦係数と平均熱伝達率の計算結果，実験値が よく整理できることを示した。

この変数を用いて整理した浮力が作用する管摩擦係数の計算結果 $(P r=0.7)$ を図3に示す。図中の実線は純強制対流の半経験式 ${ }^{(2)}$


図3 回転曲管複合対流の管摩擦係数 $(P r=0.7, F=2)$


図4 管摩擦係数；純強制対流から純複合対流八 $O$ 遷移 $(P r=0.7)$


図5 回転曲管複合対流 $O$ 平均ヌッセルト数 $(\operatorname{Pr}=0.7)$


図6 平均ヌッセルト数；純強制対流から純複合対流八ひ遷移（ケr…0．7）

$$
\begin{equation*}
f_{F} / f_{0}=0.0899 \sqrt{K_{L}}\left(1+12.4 K_{L}^{-0.701}\right) \tag{8}
\end{equation*}
$$

破線は曲率と回転の影響がない平行回転管の複合対流の半経験式 ${ }^{(14)}$ に $B=200$ を代入したものである。

$$
\begin{equation*}
f_{B} / f_{0}=0.0249 \sqrt{K_{P B}}\left(1+24.7 K_{P B}^{-0.45}\right) \tag{9}
\end{equation*}
$$

ただし，$K_{P B}=K_{L B} P r^{-5 / 4}, f_{0}=R e / 16$ ．回転曲管 の条件 $F$ を一定にして，加熱条件 $B$ を増加させていく と，（8）から（9）に遷移していく様子がわかる。この遷移の様子を別の角度から見るため，$f_{F}, f_{B}$ を用いて整理したものを図4に示した。

平均ヌッセルト数についての計算結果を同じ様に。整理した結果を図5，6に示す。ここで

$$
\begin{gathered}
N u_{F} / N u_{0}=0.145 \sqrt{K_{P}}\left(1+7.15 K_{P}^{-0.827}\right), \\
N u_{B} / N u_{0}=0.0404 \sqrt{K_{L B}}\left(1+6.71 K_{L B}^{-0.316}\right) \\
\text { ただし } K_{P}=K_{L} \sqrt{P r}, N u_{0}=48 / 11 \text { である } .
\end{gathered}
$$

## 引用文献

（1）石垣博，機論，58－561，B，（1993），1494－1591．
（2）Ishigaki，H．J．Fluid Mech． 329 （1996），373－388．
（3）石垣博，機論，61－582，B，（1995），672－678．
（4）石垣博，機論，62－597，B，（1996），1788－1794．
（5）Miyazaki，H．，Int．J．Heat Mass Transfer，14（1971）， 1295－1309．
（6）Miyazaki，H．，Trans．ASME，J．Heat Transfer， 95 （1973），64－71．
（7）石垣博，機論，58－550，B（1992），1661－1667．
（8）Ishigaki，H．，J．Fluid Mech． 268 （1994），133－145．
（9）石垣博，機論，59－561，B（1993），1486－1493．
（10）石垣博，機論，61－585，B（1995），1782－1789．
（11）石垣博機論，60－576，B（1994），2736－2741．
（12）Ishigaki，H．，J．Fluid Mech． 307 （1996）， 1.
（13）石垣博，機論，59－560，B（1993），1094－1100（正誤表，59－564，B，2600）．
（14）石垣博，機論，61－585，B（1995），1612－1619．
（15）石垣博，機論，63－606，B（1997）， 513.
（16）Patankar，S．V．，Numerical Heat Transfer and Fluid Flow，（1980），113－1．37，Hemisphere．
（17）Kays，W．M．\＆Crawford，M．E．，Convective Heat and Mass Transfer 2nd ed．（1980），90－98．

# 61 円筒容器内の定常な軸対称渦崩壊の数値的研究 

岩津 玲磨 ${ }^{A}$ 児山 秀晴 $B$

# Numerical study of steady axisymmetric vortex breakdown in a cylindrical container with rotating upper lid 

by

Reima IWATSU and Hide S．KOYAMA


#### Abstract

Numerical study was conducted on the axisymmetric steady vortex breakdown of incompressible viscous fluid within a cylindrical container with rotating upper lid．The roational Reynolds number $R e$ and the container aspect ratio $h$ are the governing phyisical parameters．By varing Re and $h$ ，regions of no separation bubble，one，two，up to three bubbles were reported in the past experimental studies．In the present numerical study，finite difference method was employed，carefuly devised grid systems with different grid points density and the time increment were utilized and thorough parametric study was conducted．As a result of the computational effort，regime－diagram（Re，h） of steady vortex breakdown which is hitherto obtained only by experimental visualizations，is fully numerically reconstructed in the parameter ranges of $R . e<4000$ and $h<3.5$ ．Present regime－diagram for the steady－solutions exhibits good agreement with the diagram obtained experimentally by Escudier．Good agreement of the critical Re values of vortex breakdown for various $h$ ，ranging from $1.3 \leq h \leq 3.5$ ，estimated by the present computation，using the axisymmetric governing equations confirms that the steady vortex breakdown within the cylindrical container configulation is actually axisymmetric．Further plots on the flow field is presented which are expected to reveal the detailed quantitative infomation on the breakdown bubbles not clearly indicated in the past experimental studies．


## 1 はじめに

渦崩壊現象は，三角翼の特性に関連して研究されてきた が［1］，最近では流路内または容器内で発生する渦崩罗現象 について，工学的応用の見地から興味が集まっている［2－ 12 ］。とくに一定角速度 $\Omega$ で回転する上（または下）蓋を持つ円筒容器内の流れは，半導体製造装置に相当する流れ の問題があるため，重要視されている。

この円筒容器内の流れに対してEscudier［8］は綿密な可視化実験を行い，二つのバラメータ Re，$h$ の値に対して， $R e<4000, h \leq 3.5$ の範囲で崩壊渦の発生する領域を調べ，これを $h-R e$ 平面上の曲線で仕切って表した。た だし，ここでReはレイノルズ数 $R e=R^{2} \Omega / \nu, h$ は円筒容器の半径 $R$ に対する高さ $H$ の比，アスペクト比 $h=$ $H / R$ である。

Escudier［8］が実験で求めた渦崩壊発生の限界曲線によ ると，このパラメータの範囲において，複数個（最大 3 個 まで）の崩壊渦か観察されること，この個数はアスペクト比 $h$ に大きく左右されること，レイノルズ数がアスペクト $h$ に応じたある値を超えると流れが非定常になることが示 されている。

過去の数値計算による研究［9－12］は，これらの点につ いて定性的に Escudier の実験結果と一致するような結果 を得ている。

[^43]Lugt と Abboud［9］は円筒底面を加熱する場合に，温度場 の流れ場に及ほす影響について調べ，対称軸上の圧力と流速を図示した。Lopetz らは一連の計算［10，12］によって， Escudier の可視化実験を定性的に再現し，さらに非定常な崩壊渦内外の質量のやりとりを，力学系の理論で説明しよ うとした［12］。また，Brown とLopez［11］は非粘性のメ カニズムによって渦崩壊を説明しょうと試みている。

これらの数値計算のいずれもが軸対称の方程式を仮定 していることは，Escudier［8］が指摘している，非定常流 の領域でも渦崩壊がほとんど軸対称に発生するという実験観祭に基ついている。しかし軸対称であるかどうかについ ては，議論があり，実験では渦崩壊に先立ち染料にスパイ ラル状のパターンが見られることがあると指摘されている ［13］。ただしHourigan ら［13］は渦崩壊が軸対称におこる と考えているようである。

比較的最近 Gelfgat ら［14］は軸対称の流れについて $1 \leq$ $h \leq 3.5$ の範囲で線形安定性解析をおこない， $1.8<h<$ 3 の範囲ではEscudier の実験とよく一致する結果を得てい る。アスペクト比の大きい $3 \leq h \leq 3.5$ の範囲では計算値 と実験値に明らかな食い違いが見られ，Gelfgat らはこれ を，円周角方向の不安定性によるものと推測している。な お， $1 \leq h \leq 1.8$ の範囲で生じる渦崩壊は定常なので， この䱿囲での安定性に関するデータは［8］には報告されて ない。

渦崩壊が発生する原因については，3通りの説明が考え られている［1］。この系に関しては，考えているバラメータ

範囲ではスパイラル状渦崩壊は発生しないことと，安定性 の業失にともなっては渦崩壊が発生していないことをもと にすると，Brownと Lopez［11］のような説明が説得力を持ってくることになる可能性がある。

渦崩壊の発生条件としては，経験的に swirl angleを用 いた条件が知られている［1］。Brown とLopez［11］は，旋回流の軸近くで負の（逆符号の）渦度をも 3 流体部分があ ることが，その下流で逆流を引き起こすために必要である とし，それを，経験則と似た形でswirl angleと helix an－ gleの関係式として示した。しかし，残念ながら，この関係式はここで扱う流れに対しては常に成り立つので，渦崩壊の判別条件としては働いてくれない。

したがって，渦崩壊の発生条件を調べるためには解を直接計算することが必要である。過去の数値的研究［9－12］ は，いずれもパラメータ空間（h，Re）の中の少数の限られ た代表点について計算をおこなったものだった。これまで に求められている渦崩壊発生の限界曲線 $[1,15]$ は実験的に得られたもので，これを数値計算によって再現した計算例 はない。そこでここではまず，系統的にパラメータースタ デイを行って，数値計算によって渦崩壊の限界曲線を求め ることを目的とした。計算と実験によって得られた限界し イノルズ数 $R e_{c}$ がどの程度一致するのかという点に，特に注意を払った。

## 2 計算方法

## 2.1 支配方程式

非圧縮性粘性流体の方程式を円筒座標系で表わし，軸対称性を仮定した。 $(r, z)$ 面内に流れ関数 $\psi$ を定義して，

$$
\begin{equation*}
u_{r}=-\frac{1}{r} \frac{\partial \psi}{\partial z}, u_{z}=\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{1}
\end{equation*}
$$

$\varphi$ 方向の渦度を $\omega$ とする。

$$
\begin{equation*}
\omega \equiv \omega_{\varphi}=\frac{\partial u_{t}}{\partial z}-\frac{\partial u_{z}}{\partial r} \tag{2}
\end{equation*}
$$

流れ関数 $\psi$ と渦度 $\omega$ に関する以下のような方程式采を得 る。

$$
\begin{equation*}
\frac{1}{r} \frac{\partial^{2} \psi}{\partial z^{2}}+\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \psi}{\partial r}\right)=-\omega \tag{3}
\end{equation*}
$$

$\frac{\partial \omega}{\partial t}+r u_{r} \frac{\partial}{\partial r}\left(\frac{\omega}{r}\right)+u_{z} \frac{\partial \omega}{\partial z}-\frac{1}{r} \frac{\partial u_{\varphi}^{2}}{\partial z}=\frac{1}{R e}\left(\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial r \omega}{\partial r}\right)+\frac{\partial^{2} \omega}{\partial z^{2}}\right)$
$\frac{\partial u_{\varphi}}{\partial t}+u_{r} \frac{1}{r} \frac{\partial}{\partial r}\left(r u_{\varphi}\right)+u_{z} \frac{\partial u_{\varphi}}{\partial z}=\frac{1}{R e}\left(\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial r u_{\varphi}}{\partial r}\right)+\frac{\partial^{2} u_{\varphi}}{\partial z^{2}}\right)$
解法は，$\Psi-\Omega$ 法によった。長さ，速度，庄力はそれぞれ $R, R \omega, \rho(R \omega)^{2}$ に関して無次元化した。采を支配するパラ メータは，レイノルズ数 $R e=R^{2} \omega / \nu$ と円筒容器のアス ペクト比 $h=H / R$ の 2 となる。

空間方向は，2 次精度の差分表式で離散化し，時間方向には，1 次のオイラー陽解法を用いた。渦度方程式は， red－and－black－SOR 法で解いた。

## 2.2 境界条件

計算を行なった領域と境界条件を図1に示す。渦度の境界条件には，1 次精度の外挿を使った。境界上の点 $P$ にお ける渦度の値は，境界より 1 格子内僛の点 $Q$ での $\psi$ の値 より導きだされる。


Fig．1．Boundary condition．

$$
\begin{gathered}
\omega=0, u_{\varphi}=0, \psi=0 \\
(r=0,0 \leq z \leq h) \\
\omega_{P}=\frac{2\left(\psi_{P}-\psi_{Q}\right)}{r(\Delta z)^{2}}, u_{\psi}=0, \psi=0, \frac{\partial \psi}{\partial z}=0 \\
(z=0,0 \leq x \leq 1) \\
\omega_{P}=\frac{2\left(\psi_{P}-\psi_{Q}\right)}{r(\Delta r)^{2}}, u_{\psi}=0, \psi=0, \frac{\partial \psi}{\partial r}=0 \\
(r=1,0 \leq z \leq h) \\
\omega_{P}=\frac{2\left(\psi_{P}-\psi_{Q}\right)}{r(\Delta z)^{2}}, u_{\psi}=-r, \psi=0, \frac{\partial \psi}{\partial z}=0 \\
(z=h, 0 \leq x \leq 1)
\end{gathered}
$$

初期条件は，各 Re，$h$ とも流体が静止状態であるとし，時刻 $t=0$ で突然上蓋が回転を始めるものとした。計算は

$$
\begin{equation*}
\max \left(\left|\psi_{i j}^{n e w}-\psi_{i j}^{o l d}\right|\right) \leq 5 \cdot 10^{-7} \Delta t \tag{6}
\end{equation*}
$$

の条件が満たされる時刻 $T_{F}$ まで時間積分した。上述の条件が満たされると，解は準定常状態に達したものと判断し て，計算を終了した。

計算はパラメータ空間 $(1.2,1000) \leq(h, R e) \leq$ $(3.5,3000)$ で $h$ は 0.1 刻み，Reは 10 刻みで行った。

## 3 計算結果

## 3.1 格子依存性

計算には，計算時間の節約と格子依存性の確認のため に，パラメーター Re，hの値によって，表1に示す，格子点数 nx m の異なる 6 種類の格子を使い分けた。これら は，tanhで作った不等間隔直交格子になっている。r方向の最小格子幅は格子 A が約 0.008 で格子 C が約 0.004 である。 $z$ 方向の最小格子蝠はすべての格子で，どの $h$ に対しても約 0.004 から約 0.008 の値になっている。

Grid	A	B	C	D
$n \times m$	$41 \times 81$	$81 \times 81$	$81 \times 161$	$81 \times 241$
Grid	E	F		
n $\times \mathrm{m}$	$81 \times 321$	$121 \times 321$		

Table． 1 Grid system．
図2に，どのパラメータ（h，Re）でどの格子を用いたのか を模式的に示す。


Fig．2．Grid systems plotted in（ $h$, Re）plane．
本計算に先立って，それぞれの格子によって結果がどの程度影響されるのかを調べた。1例を表2に示す。表2中 の $N$ は渦崩壊によってできた渦の個数を示している。こ の表によれば，$(h, R e)=(2,2000)$ において格子 A 上の解は，格子点数を 4 倍にした格子 C 上の解と流れ関数の最大値で $3.0 \%$ しか違わないことがわかる。

Grid	$T_{F}$	N	$\psi_{\max }$	$\psi_{\min }$
A	233.18	2	$7.937 \cdot 10^{-3}$	$-2.627 \cdot 10^{-5}$
B	513.31	2	$7.712 \cdot 10^{-3}$	$-6.563 \cdot 10^{-5}$
C	612.50	2	$7.700 \cdot 10^{-3}$	$-7.002 \cdot 10^{-5}$

Table． 2 Grid dependency of steady solutions．

$$
R e=2000, h=2.0
$$

以下にもう少し詳しく解を比較することにする。本節では この先，流れ関数の最大値 $\psi_{m a x}$（最小値 $\psi_{m i n}$ ），，渦崩壊 のおこった場合にはよどみ点の位置 $z_{1}, z_{2}, \cdots$ 崩壊渦の個数 $N$ を格子依存性のチェック項目として用いることにす る。ここでは，発生した渦を上流側から $1,2,3$ の番号で数 え， 1 つの渦に付随する 2 個のよどみ点 $z, z^{\prime}$ のうち上流側の $z$ 座標を $z_{1}, z_{2}, z_{3}$ で表すものとする。

流れ関数の最大値 $\psi_{\text {max }}$ を図 2 の隣接する格子の間で比較した結果を表3に示す。表3には，同じh に対してReをRe $e_{\min }$ から $R e_{\text {max }}$ の範囲で変化させたと きの誤差 $E\left|\left(\psi_{B m a x}-\psi_{A m i n}\right) / \psi_{A m i n}\right|$ などの最大最小値 $E_{m a x}, E_{\text {min }}$ が記してある。これによると $\psi_{\text {max }}$ の誤差は隣接する格子間で $2.3 \%$ だった。比較の結果によると， $R e_{\max }$ で誤差が最大値をとることが多かった。

Grid	A，B	A，C	B ，D	D，E	E，F
$h$	2.1	1.95	3.1	3.3	3.5
$R e_{\max }$	1800	2050	2460	2800	3040
$R e_{\min }$	1700	1850	2500	2680	2850
$E_{\max }$	2.3	2.3	1.3	1.6	0.34
$E_{\min }$	2.1	2.0	1.3	0.48	0.26

Table． 3 Error of $\psi_{\max }(\%)$ ．
次に，よどみ点の位置 $z_{1}, z_{2}, z_{3}$ を同じデータについて比較した結果を表4に示す。Reの範囲は同じなので表か らは省略してある。よどみ点の定義は，対称軸上 $r \rightarrow 0$ に おいて $\psi$ が正から負へ符号を変える点である。よどみ点の

位置 $z$ の添え字は上流から数えたよどみ点の番号である。計算では，境界から 1 格子内側の線上で $\psi$ の符号を調べ， $\psi$ の値をもとに線形補間して $z$ 座標の値をもとめた。誤差 が大きいのは，渦崩罗の限界点 $\left(h, R e_{c}\right)$ 付近においてであ る。発達した崩壊渦に対する誤差はどの格子間においても数 \％以内であった。

Grid		$\mathrm{A}, \mathrm{B}$	$\mathrm{A}, \mathrm{C}$	$\mathrm{B}, \mathrm{D}$	$\mathrm{D}, \mathrm{E}$	$\mathrm{E}, \mathrm{F}$
$h$		2.1	1.95	3.1	3.3	3.5
$z_{1}$	$\max$	12	7.5	12	16	3.4
	$\min$	0.76	0.030	7.1	0.27	2.1
$z_{2}$	$\max$		5.5	5.7	47	3.7
	$\min$		0.88	5.4	1.6	1.8
$z_{3}$	$\max$				4.9	3.7
	$\min$				3.0	0.89

Table． 4 Error of $z$ coordinate of the stagnation points，$z_{1}, z_{2}$ and $z_{3}$（\％）．

また次に，崩罣渦の個数 N の結果をもとに作った図を図 3 に示す。図2に示した格子の使い分けは模式図であっ て，各格子上で計算した結果を図3にはすべて示してあ る。したがって図3には同一の $h$ に対して 2 個以上の限界点 $R e_{\mathrm{c}}$ がプロットされている。前に述べたように，渦崩壊 の限界レイノルズ数 $R e_{c}$ は 10 毎の値で求めてある。発生 した渦の個数によってこれを $R e_{c 1}, R e_{c 2}, \cdots$ のように区別 することにする。図2より，格子 $\mathrm{A}, \mathrm{B}$ の $\operatorname{Re}_{c 1}$ は $h \leq 2$ に対して，格子 $\mathrm{A}, \mathrm{C}$ の $R e_{\mathrm{c} 1}$ は $h \leq 1.4$ に対して一致するこ とがわかる。格子 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ の $R e_{c 2}$ は $h \sim 2$ 付近でほほ一致 する。格子 $\mathrm{B}, \mathrm{D}$ の $R e_{c 1}, ~ R e_{c 2}$ は $h=3.0,3.1$ に対して 20以内で一致する。格子 $\mathrm{D}, \mathrm{E}$ の $R e_{c 1}, R e_{c 2}, R e_{c 3}$ は $h=3.3$ において 20 以内で一致する。なお，格子 C の $R e>2500$ に印された限界点は非定常解に対するものである。


Fig．3．（ $h$, Re）diagram．Comparison of $R e_{c}$ obtained on grid systems with different grid resolution．

以上の結果から，これらの解は，本研究の目的のために は充分，格子に無依存であると考えることができる。そこ で3．4節以降では図2に模式的に示した格子上の解を格子 に関係なく連続したデータとしてあつかうことにする。

## 3.2 時間刻みへの依存性

代表的な数ケースについて，時間刻み $\Delta t$ を変えた計算を行い，得られた解を比較した。例を表5に示す。ここ

ではよどみ点位置 $z_{1} / h, z_{2} / h$ を目安としている。定常解は $\Delta t$ にあまり影響されないことが確認できる。そこで，以下の計算では，$\Delta t$ の値として，格子 $\mathrm{A}, \mathrm{B}$ の一部で 0.02 ，格子 C，D で 0.01 ，格子 E，Fで 0.004 を用いた。

$\Delta t$	$T_{F}$	N	$z_{1} / h$	$z_{2} / h$
0.02	392.42	1	0.3523604	0.4622801
0.01	371.95	1	0.3530887	0.4611532
0.005	371.10	1	0.3530040	0.4611898

Table． 5 The effect of $\Delta t$ on the stagnation points． $R e=1200, h=1.5$ ．Solutions are obtained on grid A．

## 3.3 定常解への収束

準定常状態への収束にかかった時間 $T_{F}$ は $R e, h$ の値によって異なり，低 Re で $T_{F} \sim O\left(10^{2}\right)$ ，高 Re で $T_{F} \sim O\left(10^{3}\right)$ を要した。Lopez［10］は $1.5 \leq h \leq 2.0$ ， $1000 \leq R e \leq 2000$ の範囲で $500 \leq T_{F} \leq 700$ であったと述べている。本計算の $T_{F}$ は上の値とも実験［1］とも矛盾 しない値である。なお，時刻 6000 をこえても準定常状態 に達しなかった解は，非定常の可能性があると判断して，以下の結果からは除外してある。

渦崩罣の限界点に近いパラメータを取る数ケースについ ては，静止状態以外の初期値から出発して定常解に至る計算をおこなった。結果はすべて静止状態の初期値から出発 して得られた定常解と実質的に同じであった。よって，こ こで調べた範囲では履歴を示す解は得られなかった。

## 3.4 定常解

渦崩壊はパラメータ（ $h, R e$ R $)$ が限られた値を取るときに発生することが知られている（図4Escudier の可視化実験結果参照）。図4によると， $1.2 \leq h<2.0$ で渦の個数 N はたかだか1 である。この範囲の $h$ から $h=1.5$ の場合を選んで，図5にこのときの流れの様子を示した。紙面の都合で $R e=1100$ の場合のみを示した。 $h=1.5$ の場合， $R e=1070$ で崩壊渦が発生し，渦はReの増加とともに成長し，Re～1300～1400で最大の大きさになり，その後収縮してRe＝2020で消滅する。渦の形はRe の増加とと もに図5に示されるような楕円形から，上向きにゆがんだ円弧形に変形する。崩壊渦の発生位置 $z_{1}$ は Re の増加とと もに上流側へ移動する。


Fig．4．（ $h$, Re）diagram obtained by Escudier＇s experimental visualization［1］．Horizontal line and small squares indicate the stability limit of steady flows．


Fig．5．Contour plots of（a）stream function，（b）vorticity and（c）$u_{\phi}$ ．Re $=1100, h=1.5$ ．Contour values for $\psi$ are $\psi=\psi_{m i n}(i / 10)^{3}, i=0, \ldots, 10, \psi_{\max }(i / 10)^{3}, i=1, . ., 10$. Similar for $\omega . u_{\phi}=u_{\phi \max }(i / 20), i=0, . ., 20$ ．
$2.0 \leq h$ では 2 個の朤壊渦ができうる。この範囲の $h$ か ら $h=2.5$ の場合を選んで，図6に流れの様子を示した。 $h=2.5$ の場合 $R e=1830$ で $z \sim 0.6$ 付近に 1 個目の渦が発生し，Re＝1860で $z \sim 1.4$ 付近に 2 個目の渦が生じ る。さらにReを増加させると Re $\sim 2700$ で解は非定常に なる。


Fig．6．Similar plots to Fig．5．$R e=1995, h=2.5$ ．
$3.25 \leq h \leq 3.5$ では 3 個の崩壊渦ができうる。この範囲の $h$ から $h=3.3$ の場合を選んで，図 7 に流れの様子を示した。 $h=3.3$ の場合，Re＝2680で最下流の $z \sim 2$付近に渦3が発生し，Re＝2700で最上流の $z \sim 0.8$ 付近に渦1が発生，Re＝2740で $z \sim 1.6$ 付近に渦 2 が発生する。

（a）
Fig．7．Similar plots to Fig．5．Re $e=2750, h=3.3$ ．

前述のように渦の番号は全てが同時に存在したときの上流側からの順番で呼ぶことにする。渦3はRe＝2780で

消滅する。Re～3000で流れは非定常になるため，計算 は定常解が得られる範囲でうち切った。

図5－7と類似の結果は $[9,10]$ にも揭載されており，定性的な傾向は一致する。そこで，以下において定量的に本計算結果と実験結果［15］とを比較することにする。

図8－11にはReによるよどみ点の位置 $z / h$ の変化を異 なるアスペクト比 $h=1.5,2.0,2.5,3.0$ に対して示す。よ どみ点の位置の値は，容器の高さ $h$ によって規格化してあ る。 $h=1.5$ の場合，本計算では， $1070 \leq R e \leq 2010$ で渦が発生した。そこで図 8 の点列は，左端と右端が崩壊渦発生の，それぞれ下限と上限の限界点に対応している。そ してその間のReについてよどみ点の位置のReによる変化が，連続的に上流側へ移動していることを示している。図中には実験値［15］も同時に表示してある。ここで得られ た値と実験値の一致は極めて良い。


Fig．8．Location of the stagnation point $z$ as a function of Re．$h=1.5$ ．


Fig．9．Similar to Fig． 8 except $h=2.0$ ．
図 9 の 2 本の曲線群は，下が前壊渦 1 ，上が崩壊渦 2 に対応している。計算は解が定常になる範囲だけを行ってい るので，渦1に対する曲線は解が非定常になるRe～2500付近でうち切られている。限界曲線（図4）を見ると流れ が非定常になったあとでも渦が存在し続けることがわかる が，よどみ点の位置が時間的に変動するようになるので図 9にはそれらのデータをプロットしていない。一方，渦2 に対する計算値は，この渦が現れるReの全域，1800 $\leq$
$R e \leq 2260$ をカバーしている。


Fig．10．Similar to Fig． 8 except $h=2.5$ ．


Fig．11．Similar to Fig． 8 except $h=3.0$ ．
図10，11に示す $h=2.5,3.0$ に対するよどみ点位置の $R e に$ 関する変化は，いずれもReを増加させて非定常に なったところで計算をやめているため，各曲線群の右端は定常解の限界を示している。これに対して，左端はReの変化に対する渦発生の限界点を表している。


Fig．12．Location of the stagnation point $z / h$ as a function of Re for various values of $h$ ．B1，B2 and B3 in the inset indicate bubble 1,2 and 3 respectively．

図 12 に本計算で得られたよどみ点位置 $z / h$ の値を $h=$ $1.5,2.0,2.5,3.0,3.5$ に対して示す。よどみ点位置の値は Reの増加とともに減少し，異なる $h$ に対する値の点列で あっても，Reの減少関数であるようなある曲線に漸近し ているように見える。


Fig．13．Length of recirculating region $L$ ．
また，再循環領域の大きさ $L$ を図 13 に示す。再循環領域の大きさの定義は 1 つの渦に伴う $r=0$ 上の 2 個のよど み点の位置 $z, z^{\prime}$ の差 $L=z^{\prime}-z$ ，すなわち軸上での渦の $z$方向の長さである。実験の可視化によってこの大きさを特定することには，染料の拡散，容器と流体の屈折率の違い などが原因して，困難が伴う。数値計算によれば，実験よ りも再循環領域が小さいうちに剥離の発生を捉えることが できる。それ以外の点に関しては，今回の計算による $L$ の値は実験［15］によって得られた値とほぼ良く一致する。


Fig．14．（ $h, R e$ ）diagram of vortex breakdown for steady solutions obtained by the present numerical study．

最後に渦崩壊発生の限界曲線を図14に示す。 $h=1.9$ に対する $R e_{\mathrm{c}}(=2750)$ は非定常解のものであるが，安定性の境界のすぐ上（Reの大きい俱）に位置するため，図に入れておいた。渦の生じるRe．の値は，［1］と $3 \%$ 以内で一致する。

## 4 まとめ

円筒容器内渦崩壊の問題を，数値計算によって調べた。 その結果は，実験による測定ときわめて良く一致し，数値計算の信頼性と同時に，実験の信頼性を確かめることが できた。よどみ点の位监，再循環領域の大きさなど，流束数値計算で調べられていなかった点に関しても定量的に調 べ，対応する実験データがある場合にはそれらと比較をおう

こなった。比較の結果は良い一致をみた。殊に，渦崩壊の発生 $R e_{c}$ が計算によって充分な精度で予測できることを示 すことができた。この結果はこの円筒容器内の渦崩壊現象 が軸対称で発生していることを示すものと考えられる。今後は，渦崩壊の発生の条件を，Brownと Lopezが提案し ている判定条件以外の方法で簡便に説明できるかどうかに ついて検討してみる予定である。

本研究の一部は文部省科研費基盤研究B（2）（09558049） の補助を受けて行った。Jae Min HYUN 教授には有益な議論と助言を感謝する。

## 参考文献

1 Hall，M．G．，＂Vortex breakdown，＂Ann．Rev．Fluid Mech． 4 1972，pp．195－218．

2 Beran，P．S．and Culick，F．E．C．，＂The role of non－ uniqueness in the development of virtex breakdown in tubes，＂J．Fluid Mech． 242 1992，pp．491－527．
3 Keller，J．J．，＂On the interpretation of vortex breakdown，＂to axially symmetrical and three－ dimensional compressible flows，＂Phys．Fluids 6 （4）1994，pp．1515－1523．
4 Lopez，J．M．，＂On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe，＂Phys．Fluids 6 （11）1994，pp．3683－3693．
5 Keller，J．J．，＂On the practical application of vor－ tex breakdown theory Phys．Fluids 7 （7）1995， pp．1695－1702．
6 Bar－Yoseph，P．，Roesner，K．G．and Solan，A．， ＂Vortex breakdown in the polar region between rotating spheres，＂Phys．Fluids A 4 （8）1992， pp．1677－1686．
7 Arkadyev，A．，Bar－Yoseph，P．and Solan，A．，＂Ther－ mal effects on axisymmetric vortex breakdown in a spherical gap，＂Phys．Fluids A 5 （5）1993，pp．1211－ 1223.

8 Escudier，M．P．，＂Observations of the flow produced in a cylindrical container by a rotating endwall，＂ Exp．Fluids 2 1984，pp．189－196．
9 Lugt，H．I．and Abboud，M．，＂Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid，＂J．Fluid Mech． 179 1987，pp．179－200．
10 Lopez，J．M．，＂Axisymmetric vortex breakdown part 1．Confined swirling flow，＂ 221 1990，pp．533－ 552.

11 Brown，G．L．and Lopez，J．M．，＂Axisymmetric vor－ tex breakdown Part 2．Physical mechanisms，＂ 221 1990，pp．553－576．
12 Lopez，J．M．and Perry，A．D．，＂Axisymmetric vor－ tex breakdown Part 3．Onset of periodic flow and chaotic advection，＂ 234 1990，pp．449－471．
13 Hourigan，K．，Graham，L．J．W．and Thompson， M．C．，＂Spiral streaklines in pre－vortex breakdown regions of axisymmetric swirling flows，＂Phys．Flu－ ids 7 （12）1995，pp．3126－3128．
14 Gelfgat，A．Yu．，Bar－Yoseph，P．Z．and Solan，A．， ＂Stability of confined swirling flow with and with－ out vortex breakdown，＂J．Fluid Mech． 311 1906， pp．1－36．
15 Fujimura，K．，Koyama，H．and Hyun．J．M．，＂Time－ dependent vortex breakdown in a cylinder with a rotating lid，＂J．Fluids Eng． 119 1997，pp．450－453．

# 周期的圧力勾配を付加した平行平板間非定常乱流のDNS 

○ 本間 圭介（東理大院）河村 洋（東理大）松尾 裕（航技研）

# Direct numerical simulation of an unsteady turbulent channel flow driven by a temporary sinusodidal pressure gradient 

Keisuke HONMA（SUT），Hiroshi KAWAMURA（SUT）and Yuuichi MATSUO（NAL）


#### Abstract

With aid of the recent development of computers，various direct numerical simulations（ DNS ）of turbulence are performed．Although the turbulence itself is unsteady in nature，the mean flow is assumed steady in most of the DNS＇s．This is because the DNS of the turbulence with an un－ steady mean flow requires more computational effort to obtain a stable statistical average．In the present study，a temporally sinusoidal pressure gradient is imposed on the turbulent channel flow． Comparison with the results of DNS for the steady turbulent channel flow reavels that the turbu－ lence quantites such as the reynolds shear stress change appreciably．Production and dissipation terms near the wall are obtained and compared for the acceleration and deceleration periods．The transient change of turbulent structures during the cycle is visualized and found to be remarkable．


## 1 緒言

現在まで数多くの乱流現象をDNSにより行っ てきているが，そのほとんどが定常乱流の解析に限 られており，非定常乱流の解析は例が少ない。そこ で，本研究では流れ方向（X方向）に時間的に周期的圧力勾配を付加した平行平板間非定常乱流のDN Sを行い，流れ及び乱れの時間的変化について検討 し報告する。

## 2 計算手法と計算条件

計算領域は図1に示すように，チャネル半幅を $\delta$ として，流れ方向 $\left(x_{1}, \mathrm{x}\right)$ に12．88，壁垂直方向 $\left(x_{2}, \mathrm{y}\right)$ に $2 \delta$ ，スパン方向 $\left(x_{3}, z\right)$ に $3.2 \delta$ としている。


Fig． 1 Computational domain
基礎式は，チャネル半幅を $\delta$ ，壁面摩擦速度 $u_{\tau} s$ で無次元化をすると，以下のようになる。添え字sは定常（式（3）において $\mathrm{A}=0$ とする）状態を示す。連続の式：

$$
\begin{equation*}
\frac{\partial u_{i}^{+}}{\partial x_{i}^{*}}=0 \tag{1}
\end{equation*}
$$

運動方程式：

$$
\begin{align*}
& \frac{\partial u_{i}^{+}}{\partial t^{+}}+u_{j}^{+} \frac{\partial u_{i}^{+}}{\partial x_{j}^{*}}=-\frac{\partial p^{+}}{\partial x_{i}^{*}}+\frac{1}{R e_{\tau s}} \frac{\partial^{2} u_{i}^{+}}{\partial x_{j}^{* 2}}+P_{x}^{+}  \tag{2}\\
& P_{x}^{+}=A \sin \frac{2 \pi}{T^{+}} t^{+}+1.0  \tag{3}\\
& A=12.0  \tag{4}\\
& T^{+}=6.0  \tag{5}\\
& u_{\tau *}=u_{\tau s} \times \sqrt{\frac{1}{2 R e_{\tau s}}\left(\frac{\partial \overline{u^{+}}}{\partial y^{*}} l_{0}+\left.\frac{\partial \overline{u^{+}}}{\partial y^{*}}\right|_{2 \delta}\right)}  \tag{6}\\
& R e_{\tau *}=\frac{u_{\tau s} \delta}{\nu} \times \sqrt{\frac{1}{2 R e_{\tau s}}\left(\left.\frac{\partial \overline{u^{+}}}{\partial y^{*}}\right|_{0}+\left.\frac{\partial \overline{u^{+}}}{\partial y^{*}}\right|_{2 \delta}\right)} \tag{7}
\end{align*}
$$

主流は，周期的圧力勾配，式（3）により左から右 に駆動されており，流れ方向とスパン方向には周期境界を施している。 ここで，式（3）中のAは振幅で1．0の値は定常状態（A $=0$ ）の時の平均圧力勾配である。振幅，Aは 12.0 と し，周期の $T^{+}$は．0とした。これは，逆流の生じな い範囲で，ある程度の非定常効果がでるように定め たものである。また，各時刻における壁面摩擦速度 $u_{\tau *}$ ，レイノルズ数 $R e_{\tau *}$ は，式（6），式（7）のように求 めた。

数値解法は表1に示すように，Kawamura（1995） のグルーブで提唱し比較検討したコンシステント スキームを用い，時間進行はフラクショナルステッ プ法に依り，対流項には2次精度Adams－Bashforth法，粘性項にはCrank－Nicholson法を用いた。格子数

Table 1 計算条件

グリッド		スタッガード グリッド
Coupling Algorithm		Fractional Step 法
時間進行	粘性項（y 万向）	三次精度 Crank－Nicolson 法
	その他	二次精度 Adams－Bashforth 法
スキーム	対流項	三次中心差分（Consistent）
	粘性項	二次中心差分
境界条件		Periodic（x，z 方向），   Non－slip（ y 方向）
格子数		$256 \times 128 \times 128$
計算領域		$12.8 \delta \times 2 \delta \times 3.2 \delta$
可視化領域		$6.4 \delta \times \delta \times 1.6 \delta$
空間解像度		$\begin{aligned} & \Delta x^{+}=9.0, \Delta z^{+}=4.5 \\ & \Delta y^{+}=0.2 \sim 5.75 \end{aligned}$
レイノルズ数		$R e_{r s}=180$

は $256 \times 128 \times 128$ として，数値計算は航技研の並列計算機NWTを用いて行った。また，統計量には一周期 を16分割した位相平均を用いた。

## 3 結果及び考察

3－1 平均流速分布 Fig． 2 に圧力勾配の変化を示す。一周期を16分割にし，乱流統計量は各々の位相に おいて15周期分のアンサンブル平均を取っている。 レイノルズ数は，定常状態でKim（1987）によって計算されていた，Re $e_{\tau}=180$ とした。また，チャネル全幅で積分した平均流速（バルク平均流速）もFig． 2 に示 す。これより，平坞流速の最大，最小の位置は圧力勾配の最大，最小の位置からずれた結果となってい る。次に，各位相内でアンサンブル平均した平均流速分布をFig． 3 に示す。これは各時刻の壁面摩擦速度 $u_{\tau *}$ により無次元化を行い，図中の番号はFig． 2 中の番号と一致する。これより，加速期間においてはチャ ネル中央で減速期間のピーク値より平らな分布を示 すことがわかる。また，これを片対数表示にした図 をFig．5に示す。この表示によれば，全体として定常状態における対数速度分布よりも高い値を示して いる。Fig．6は，壁面摩擦係数 $C_{f}=2 \tau_{w} / \rho{\overline{u_{m}}}^{2}$ を各位相での $R e=\overline{u_{m}} 2 \delta / \nu$ に対して示したものである。こ れより，壁面摩擦係数，$C_{f}$ は定常状態におけるDean （1978）の式：$C_{f}=0.073 R e_{m}^{-1 / 4}$ の周囲にあり，加速期間において $C_{f}$ は減少し，減速期間になって徐々に増加するが，全体的には定常状態に対する式よりは小 さい値を示すことがわかる。

3－2 乱流エネルギー 次に，Fig．6に各位相での乱流 エネルギー分布を示す。これより，乱流エネルギー は定常状態の値と大きな違いが見られる。すなわち，加速期間において，壁近傍で乱流エネルギーのピー－ ク値は增加している。しかし，減速期間においては，

壁近傍の乱流エネルギーは減少し，ピーーク値の位置 が壁から離れた位置に存在することがわかる。

他方，Fig．8に示す各時刻における $u_{\tau *}$ で無次元化 をした $\mathrm{k} / u_{\tau *}{ }^{2}$ は，加速期間でむしろ小さい。この理由 を考えるためレイノルズ剪断応カー $\overline{u^{\prime} v^{\prime}} / u_{\tau *}{ }^{2}$ を Fig． 9 に示す。この図では，加速期間でレイノルズ応力は小さい。ここで，全剪断応力

$$
\begin{align*}
& \tau_{\text {total }} / \rho u_{\tau *}^{2}=-\overline{u_{*}^{+^{\prime}} v_{*}^{+^{\prime}}}+\frac{d \overline{u_{*}^{+}}}{d y_{*}^{+}}  \tag{8}\\
& =1-1 / \operatorname{Re}_{\tau *}\left(P_{x *}^{+} y_{*}^{+}-\int_{0}^{y^{+}} \frac{d \overline{u^{+}}}{d t^{+}} d y^{+}\right) \tag{9}
\end{align*}
$$

をFig． 10 に示す。加速期間では，速度勾配項 $P_{x *}^{+}$は大 きくなるが，壁近傍では，加速項 $\int_{0}^{y^{+}} \frac{d u^{+}}{d t^{+}} d y^{+}$は小さ いため，レイノルズ剪断応力は小さくなる。逆に，減速期間では，速度勾配項 $P_{x *}^{+}$は負になり，全剪断応力は大きくなる。よって，レイノルズ剪断応力も大 きくなる。

この点をさらに調べるため，Fig．11～Fig． 18 に加速期間及び減速期間における乱流エネルギー収支を示した。これより，加速期間では，たしかに乱流工 ネルギーの生成が非常に小さくなっていることがわ かる。以上のように，加速期間では，一種の「層流化」と呼ばれる現象が発生し，これによって，乱流 エネルギーが相対的に減少しているといえる。

一方，減速期間では，生成項は大きくなり，それ にともない，Fig． 8 に見たように乱流エネルギーも相対的に大きくなっている。

3－3 乱流構造の可視化 Fig．19～Fig．22に瞬時の低高速領域及び低圧領域を加速期間と減速期間におい て，可視化した図を示す。この図において，加速期間において，低高速ストリークは非常に引き延ばさ れた構造を示しており，流れ方向の全領域に達して いる。これは，本計算においては，流れ方向につい ては，周期境界条件を十分に満足する計算領域を確保できてはいないことを示している。この点につい ては，今後，計算領域をさらに拡大する方向で改善 する予定である。一方，減速期間においては，乱流構造が小さく部分的に分割されている。そして，ス トリーク構造は見られるが短いのがわかる。また，壁近傍だけでなく中央付近にまで乱流構造が見られ る。以上の点については，今後，渦構造との関連で， さらに検討する必要がある。


Fig． 2 Dependence of wall shear stress on Reynolds number


Fig． 3 Mean－velocity profiles normalized by $u_{\tau s}$


Fig． 4 Mean－velocity profiles normalized by $u_{\tau *}$


Fig． 5 Mean－velocity profiles normalized by $u_{\tau *}$


Fig． 6 Dependence of wall shear stress on Reynolds number


Fig． 7 Tuebulent energy normalized by $u_{\tau s}$


Fig． 8 Tuebulent energy normalized by $u_{\tau *}$


Fig． 9 Reynold shear stress normalized by $u_{\tau *}{ }^{2}$


Fig． 10 Total shear stress normalized by $\rho u_{\tau *}{ }^{2}$


Fig． 11 Budget of turbulent kinetic energy in the accel－ eration period（phase1）


Fig． 12 Budget of turbulent kinetic energy in the accel－ eration period（phase3）


Fig． 13 Budget of turbulent kinetic energy in the accel－ eration period（phase5）


Fig． 14 Budget of turbulent kinetic energy in the accel－ eration period（phase7）


Fig． 15 Budget of turbulent kinetic energy in the decel－ eration period（phase9）


Fig． 16 Budget of turbulent kinetic energy in the decel－ eration period（phase11）


Fig． 17 Budget of turbulent kinetic energy in the decel－ eration period（phase13）


Fig． 18 Budget of turbulent kinetic energy in the decel－ eration period（phase15）


Fig． 19 High and low speed streaks in the accelara－ tion period．white：low pressure region，dark－gray：low speed region，light－gray：high speed region


Fig． 20 High and low speed streaks in the decelara－ tion period．white：low pressure region，dark－gray：low speed region，light－gray：high speed region


Fig． 21 High and low speed streaks observed from $z$ di－ rection in the accelaration period．white：low pressure region，dark－gray：low speed region，light－gray：high speed region


Fig． 22 High and low speed streaks obseved from $z$ di－ rection in the decelaration period．white：low pressure region，dark－gray：low speed region，light－gray：high speed region

$$
\begin{aligned}
& 4 \text { 記号表 } \\
& p^{+}=p / \rho u_{\tau s}{ }^{2} \\
& p_{*}^{*}=p / \rho u_{T_{*}}{ }^{2} \\
& R \epsilon_{\tau_{s}} ; \text { Reynolds number of steady state }=u_{\tau_{s}} \delta / \mathrm{J} \\
& R e_{T *} \text {; instantaneous Reynolds number }=u_{\tau *} \delta / \nu \\
& t^{+}=u_{T s} t / \delta \\
& t_{*}^{+}=u_{\tau *} t / \delta \\
& u^{+}=u / u_{\tau} s \\
& u_{s}^{+}=u / u_{\tau s} \\
& u_{*}^{+}=u / u_{r *} \\
& u_{T s} \quad \text {; friction velocity of steady state }(\mathrm{A}=0) \\
& u_{r_{*}} \text {; instantaneous friction velocity } \\
& x_{i}^{*}=x_{i} / \delta \\
& y^{+}=u_{\tau s} y / 1 / \\
& y_{*}^{*}=u_{T *} / 11 \\
& <>\quad \text {; avereged over channel section }
\end{aligned}
$$

## 参考文献

Dean，R．B．，1978，Journal of Fluids Engineering，Vol．100，pp．215－ 222.

Kawamura，H．，1995，in：The Recent Developments in Turbulence Research．International Academic Publishers，pp．54－60．

Kim，J．，Moin，P．，Moser，R．，1987，Journal of Fluid Mechanics， Vol．177，pp．133－166．

# 翼まわり流れの差分法による LES 

松尾裕一＊

# Large－Eddy Simulation of Flow around Airfoil using a Finite Difference Method 

by<br>Yuichi MATSUO＊


#### Abstract

A basic study has been made toward practical Large－Eddy Simulation（LES）of flow around airfoil． Here，we are aiming at furnishing basic technologies related to numerical methods and subgrid－scale（SGS） modelings for LES，and developing practical LES technologies by attempting LES of flow around airfoil． In this paper，numerical method，grid system，initial／boundary condition are carefully examined．As the first test case，we choose a NACA0012 airfoil without sweep，and performed LES computations on a high－ performance parallel supercomputer NWT at NAL with／without a SGS model．Numerical results are compared，and several critical issues to be improved in the future are disscussed．


## 1．はじめに

LES（Large－Eddy Simulation）は，格子サイズ以下の渦を モデル化することで高レイノルズ数流えを精度良く解析する実用的な方法として当初スタートしたように認識しているが，そ のマインドとは裏腹に実用にはまだ遠いという印象があった。 しかし，ここに来てLES の研究発表•成果をあちこちで目に するようになり，解析対象も多様化して，実用化に向けての努力が急ピッチで展開しているように見受けられる。

その理由について 2 つの指摘がある［1］．一つは言らまでも なく計算機環境が飛躍的に進歩したことである。並列計算機 の出現により計算速度が向上し，LESが比較的容易になった。並行して，PC，WSの低廉化と一般への普及が進み，以前なら大型機でのみ可能だった処理環境が容易に実現できるように なったことも（LES のように本質的に非定常結果を扱わねば ならない場合には）大きな要因と思われる。もら一つ注目すべ きは，LES の方法論が質的に進展したことである。LESでは粗い格子で高いレイノルズ数を扱らために数値解法には特段の注意が必要であるが，高精度で安定かつ適切な計算法 $[2,3]$ が出現し始めている．また，ダイナミック・モデルに代表される LES モデリングの進展［4］にも顕著なものがある．ダイナミッ ク・モデルは，数値解の情報の一部をモデルに動的に反映させ るところに特徴があるとされる。このような一種の自己適応と いら考え方は今までになかったものであり，閉塞気味の CFD研究分野に新たな視点を持ち込んだ点で特筆されると思ら。

このように進境著しいLES であるが，我々の最大の関心は，「LESは真に実用的な流体解析ツールになったのかっあるいは なり得るのか？」といらことにある。実用化という視点で捕ら えたとき，今の LES にはまだまだ克服すべき挑戦的な課題が残されていると思う。

航技研では現在，次世代超音速機及び宇宙往還機に関する 2 つの大型プロジェクトを推進している。いずれも実験機の研究開発を中核としているが，CFD はいろいろな局面で設計•評価のための重要な解析ツールとなっている。現在，各種の

[^44]CFD ツールがあるけえども，実状はどれも十分な信頼性検証 が行われているわけではない。これには，流体力学が乱流とい ら未解決問題を含むためやむを得ない面もあろら，しかし，実験機といえどもCFDを実際の開発の現場に適用する以上，そ の信頼性について使う側の納得の行くまで透明化し，かつ高度化のための努力を継続的に行らことがそれを提供する側の義務 であると考える。DNS は最も正確な評価法として有効である が，レイノルズ数の壁は現状では如何ともしがたい。そこで，「LES が既存のCFD 技術に対する一種の警鐘の役割を果たす ことができないだろらか？」これが我々が LES に期待する一 つの立場である。

一方，上の先進航空宇宙機の開発が成功裏に終わるかどうか は，従来避けて来た遷移，剥離，渦拡散，燃焼等の流体現象の利用•活用に踏み込むことができるかにかかっているとの指摘 があり，そのためには，これらの複雑な現象の本質的な解明，高度な制御が重要である。 ᄂかるに，現状の乱流モデリングを用いたアプローチではこうした現象に対し十分精度良い解を与 えることができず，DNS も無論不可能である，「果たしてLES は？」これが我々がLESに期待している理由の第二である。
本研究は，こらした背景を踏まえ，LESを実用流れに適用 するための計算法及びモデルに関する基盤技術を整備するとと もに，航空宇宙分野の基本要素である「翼」に対する大規模 LESを試みることでLES の実用化技術を確立することを目指 している。ここでは，その最初の試みとして行った計算法及び格子の検討と単純形状「翼」に対する計算結果等について述べる。

## 2．翼まわり流れのLESについて

「翼」は航空宇宙の基本要素であり，「翼」の空力特性の把握•向上は特に航空機の性能向上，技術革新へ直接的に繋が るため極めて重要である。穏やかな流れ（剥離なし，衝撃波 なし）の翼の揚抗力は，現在のCFD 技術（レイノルズ平均式 と乱流モデルを用いたRANSアプローチ）でもかなり正確に予測できるが，少し条件が厳しくなると途端に精度が悪くな り，最大揚力点やダイナミックストールの予測等は未だ自信が ない。そこでLES の登場となるわけだが，LES といえじ多大

表1 翼流れのLES／DNS の研究事例

著	者	対象翼型	$R e$	計算領域	LES モデル	計算法（空間／時間）	格子点数	格子の細かさ
Kaltenbach［5］	NACA4412	$1.64 \times 10^{6}$	全体	ダイナミック	FDM2 $/ \operatorname{Imp2}$	$638 \times 79 \times 48$	$\Delta x+=110-405$	
Jansen［6］	NACA4412	$1.64 \times 10^{6}$	全体	ダイナミック	FEM $/ \operatorname{Imp} 2$	800 万要素	$\Delta x, \Delta y, \Delta z<5$	
Huai［7］	DFVLR	$2.73 \times 10^{6}$	上半前部	ダイナミック	FDM4／RK3	$326 \times 49 \times 33(1)$	$461 \times 61 \times 49(2)$	
Liu［8］	Joukowsky	$0.67 \times 10^{6}$	上部のみ	DNS	FDM6／RK4	$361 \times 45 \times 41$		
松尾（1998）	NACA0012	$1.5 \times 10^{6}$	全体	スマゴリン	FDM3／RK3	$363 \times 65 \times 65$	$\Delta x^{+}=25-510$	

注1）「ダイナミック」はダイナミックモデル，「スマゴリン」はスマゴリンスキーモデルを表す。
注2）FDM2 は 2 次精度差分，FEM は有限要素法，Imp2は2次精度陰解法，RK3は3次精度ルンゲクッタ法を表す。

な計算機リソースを要求するために，翼流れの LES に関する研究事例はあまり多くない。Kaltenbach ら［5］は，翼まわり全体について 240 万ほどの格子点数で解き，後縁付近での剥離予測に成功している。Jansen［6］は同じ問題を有限要素法で解いている。一方，Huai ら［7］は， $45^{\circ}$ 後退翼の LES を試 み，横流れ不安定による遷移について調べている。翼の上半部 の一部のみを計算領域とし，2領域に分けて詳細に解いてい る．彼らの計算は格子の細かさという点では最高である。Liu ら［8］は，高次精度差分でDNSを行い遷移を解いている。表 1 はこれらの研究事例をまとめたものである。これらの研究 から，格子はある程度以上細かく取る必要があること，乱れ の発生あるいは境界条件に特別の注意が要ること，等がわかつ て来ている。しかし，一種の試行錯誤の域を出ておらず，方法論的に一定の方式を確立するまでには至つていないようである。

## 3．計算法について

ここでは，航空宇宙への適用を念頭に置くとともに，開発期間を短縮する意味で既存のコードをできる限り活用することと して，Matsuo 5［9］の圧縮流のコードを基本にした。上述の ように「翼」のLESの方法論自体がまだ発展途上であること に鑑み，議論が少々冗長になるが，計算法の重要なポイントに ついて触れてみたい。
（1）基整式と定式化
圧縮性ナビエ・ストークス方程式

$$
\left\{\begin{array}{l}
\dot{\rho}+\left(\rho u_{j}\right)_{, j}=0  \tag{1}\\
\left(\rho u_{i}\right)+\left(\rho u_{i} u_{j}+p \delta_{i j}-\mu S_{i j}\right)_{, j}=0 \\
(\dot{\rho e})+\left(\rho h u_{j}-u_{i} \mu S_{i j}-k T_{, j}\right)_{, j}=0
\end{array}\right.
$$

を基礎式とする。ここで，諸量の定義•用法は慣用に従うもの とするが，

$$
\begin{aligned}
& \rho e=\rho C_{v} T+\frac{1}{2} \rho u_{i}^{2} \\
& h=e+\frac{p}{\rho} \\
& p=\rho R T \\
& S_{i j}=u_{i, j}+u_{j, i}-\frac{2}{3} \delta_{i j} u_{l, l}
\end{aligned}
$$

などの関係に注意する。式（1）にLESフィルタを施し，密度変動成分を消去するために質量加重平均の概念を導入すると， フィルタリングされた基礎式は

$$
\left\{\begin{array}{l}
(\dot{\bar{\rho}})+\left(\bar{\rho} \tilde{u}_{j}\right)_{, j}=0  \tag{2}\\
\left(\bar{\rho} \dot{\tilde{u}}_{i}\right)+\left(\bar{\rho} \tilde{u}_{i} \tilde{u}_{j}+\bar{p} \delta_{i j}-\tau_{i j}-\overline{\mu S_{i, j}}\right)_{, j}=0 \\
(\dot{\rho} \tilde{e})+\left(\bar{\rho} \tilde{h}_{u_{j}}-\mathcal{Q}_{j}-\overline{u_{i} \mu S_{i j}}-\overline{k T_{, j}}\right)_{, j}=0
\end{array}\right.
$$

となる。ここに

$$
\bar{f}=\int_{D} f\left(x^{\prime}\right) G\left(x, x^{\prime}\right) d x^{\prime}, \quad \tilde{f}=\overline{\rho f} / \bar{\rho}
$$

であり（ただしGはフィルター関数），また，

$$
\tau_{i j}=-\bar{\rho}\left(\widehat{u_{i} u_{j}}-\tilde{u}_{i} \tilde{u}_{j}\right), \quad \mathcal{Q}_{j}=-\bar{\rho}\left(\widehat{h u_{j}}-\tilde{h} \tilde{u}_{j}\right)
$$

である．$\tau_{i j}$ はサブグリッドスケール（SGS）応力項， $\mathcal{Q}_{j}$ はサブ グリッドスケール熱流束項である。ここで，非圧縮流における LES の定式化と整合させるために

$$
\mathcal{T}_{i j} \equiv \tau_{i j}-\frac{1}{3} \delta_{i j} \tau_{l l}, \quad \varpi \equiv \bar{p}-\frac{1}{3} \tau_{l l}, \quad \vartheta \equiv \widetilde{T}-\frac{1}{2 C_{v} \bar{\rho}} \tau_{l l}
$$

なる量をそれぞれ導入する。このとき，

$$
\begin{aligned}
\bar{\rho} \tilde{e} & =\bar{\rho} C_{v} \widetilde{T}+\frac{1}{2} \overline{\rho u_{i}^{2}} \\
& =\bar{\rho} C_{v} \widetilde{T}+\frac{1}{2} \bar{\rho} \tilde{u}_{i}^{2}-\frac{1}{2} \tau_{l l} \\
& =\bar{\rho} C_{v} \vartheta+\frac{1}{2} \bar{\rho} \tilde{u}_{i}^{2}
\end{aligned}
$$

また，

$$
\begin{aligned}
\varpi & =\bar{\rho} R \widetilde{T}-\frac{1}{3} \tau_{l l} \\
& =\bar{\rho} R \vartheta+\left(\frac{R}{2 C_{v}}-\frac{1}{3}\right) \tau_{l i} \\
& =\bar{\rho} R \vartheta+\frac{3 \gamma-5}{6} \tau_{l l} \\
& \simeq \bar{\rho} R \vartheta
\end{aligned}
$$

となるから，あ，$\vartheta$ を擬似的な圧力，温度とみなせば計算上は特別な措置は必要ない。 さらに，粘性項の摠乱の寄与を無視す れば，フィルタリングされた基礎式は最終的に

$$
\left\{\begin{array}{l}
(\dot{\bar{\rho}})+\left(\bar{\rho} \tilde{u}_{j}\right)_{, j}=0  \tag{3}\\
\left(\bar{\rho} \tilde{\tilde{u}}_{i}\right)+\left(\bar{\rho} \tilde{u}_{i} \tilde{u}_{j}+\varpi \delta_{i j}-\mathcal{T}_{i j}-\mu \widetilde{S}_{i, j}\right)_{, j}=0 \\
(\dot{\bar{\rho}} \dot{e})+\left(\bar{\rho} \tilde{h} \tilde{u}_{j}-\mathcal{Q}_{j}-\tilde{u}_{i} \mu \tilde{S}_{i j}-k \vartheta_{, j}\right)_{, j}=0
\end{array}\right.
$$

となり，SGS 項を除いて平均量のみで表される。ここで，局所平衡を仮定し勾配拡散モデルを導入すればSGS 項は

$$
\begin{equation*}
\mathcal{T}_{i j}=\mu_{t} \widetilde{S}_{i j}, \quad \mathcal{Q}_{j}=\frac{\mu_{t} C_{p}}{P r_{t}} \vartheta_{, j} \tag{4}
\end{equation*}
$$

と表される。ここに，$\mu_{t}$ は渦粘性，$P r_{t}$ は乱流プラントル数で ある。
（2）SGS モデル
SGS モデリングの進展は近年著しく，冒頭でも触れたように各種の改良モデルが提案されている。しかし，ここでは研究の スタートといら意味で基本的なスマゴリンスキーモデルに壁減衰関数を併用したものを用いた［10］．このモデルでは渦粘性は

$$
\begin{equation*}
\mu_{t}=\rho\left(C_{s} \Delta\right)^{2} \sqrt{2 \widetilde{S}_{i j} \widetilde{S}_{i j}} \tag{5}
\end{equation*}
$$

で与えられる。ただし，$\Delta=(\Delta x \Delta y \Delta z)^{1 / 3}$ であり，$C_{s}=$ $C_{s 0}\left\{1-\exp \left(\eta^{+} / 25\right)\right\}$ である。 $C_{s 0}$ はいわゆるスマゴリンス キー定数で 0.1 を用いた。
（3）計算スキーム
基整式は物体適合座標系に変換し差分法で解いた。SGS モデ
 の離散化にはもともとのコードでは3次精度風上のTVD型ス キームを用いていたが，TVD スキームは極値のところで1次 に落ちて精度的に望ましくないと考え，安定性のため衝軗波が生じない条件を設定することにして，TVD リミターをはずし全空間で3次精度が保たえるようにした。時間積分には3次精度のルンゲクッタ法を用いた。
（4）境界条件と初期条件
境界条件は，翼面ではすべりなし断熱条件，遠方では一様流乱れなし条件，出口では物理量の外挿条件，スパン方向には周期条件を課した。計算ではまずレイノルズ平均法で定常解を求 めた後，それに $1 \%$ 振幅の微小な一様な乱れを重ねたものを初期条件として LES 計算をスタートさせた。
（5）計算法のチェック
計算法の精度や安定性を確かめるために，ブラジウス境界層に おけるTS波の成長の問題を解いてみた。図1に計算の概要を示 した。平板上に発達したブラジウス境界層に対し，前縁から少し距離を置いた位置に $v(x)=A U_{\infty} v_{w}(x) \sin (\omega t),\left(x_{1} \leq x \leq x_{2}\right)$ なる吹き出し吸い込み式の擾乱を注入する．ただし，$v_{w}(x)=$ $\sin (\theta)(1-\cos (\theta)), \theta=2 \pi\left(x-x_{1}\right) /\left(x_{2}-x_{1}\right)$ であり，各値 として，$M_{\infty}=0.5, R e_{L}=10^{5}, x_{N}=3.3, y_{\max }=0.15, \omega=$ $10\left(F=\omega \cdot 10^{4} / R e_{L}=1\right), A=0.03, x_{1}=0.91, x_{2}=1.11$ を設定した［11］．格子には $260 \times 65$ の十分細かいものを用い，境界層内に 30 点以上が入るようにした。


図1 ブラジウス境界層におけるTS波の発達の計算
図2は，$y=0$ 及び $y=0.01$ の高さ位置における垂直方向擾乱速度成分の $x$ 方向の瞬時分布を示したものである。TS波は下流に向かつて線形的に発達するはずであるが，ここで は下流に向かって不規則に発達している様子が見られる。こ れは，本計算では出口に簡単な外挿条件を用いたために，そ こで波が反射しその反射波がTS波と重なったためと推測さ れる。よって，この計算自体に改善の余地が認められる。し かしながら，擾乱自体が不自然に減衰しているわけではな い。この結果から，数値粘性が過度にききすぎていることは ないと判断して，今回は上で述べた計算法を採用することとした。


図2 垂直方向擾乱速度成分の瞬時分布

## 4．格子について

計算対象は，ここでは断面形状が上下対称（NACA0012）で後退角のない三次元翼（図3参照）とした。これは，最初の試みと して，できるだけ単純な流れを扱いたかったこと，格子生成を容易にしたかったこと，に主に因る。図3に計算に用いた格子を示 した。トポロジーはC型とし，外周はコード長の3倍の位置に設定，ウエークでは上下の格子線を一致させた。スパン長はコード長の半分とした。計算領域は，ここでは全翼まわりとした。格子 は，代数的な方法で発生させ，格子サイズは $363 \times 65 \times 65$ とした。格子間隔は，コード長を単位長として次のように設定した。流 れ方向 $; \Delta \xi_{\text {average }}=0.005, \Delta \xi_{\max }=0.012, \Delta \xi_{\min }=0.0006$ ，垂直方向；$\Delta \eta_{\min }=0.00001$ ，スパン方向；$\Delta \zeta=0.0031$ ．こ れをレイノルズ数 $1.5 \times 10^{6}$ を想定し，ウオールユニットで表 せば $\Delta \xi^{+}=25-510, \Delta \eta^{+}<1, \Delta \zeta^{+}=132$ になる。境界層中には 40 点以上入るようにした。表1によれば，ここで用い た格子サイズは他の計算に比べてそれほど見劣りするものでは ないことがわかる。よって今回はこの格子を用いることとした。


図 3 計算格子

## 5．計算結果と考察

計算条件は，$M_{\infty}=0.5, \alpha=2^{\circ}, R e=1.5 \times 10^{6}$ とした。計算は航技研の高速並列計算機「数値風洞」で行い，全領域を 4 つの小領域に分割し，各領域を個々の要素計算機に割り付ける ことによって並列化した。時間刻みはクーラン数がほぼ1とな るよらに設定 $\left(\Delta t \sim 10^{-4}\right)$ し，計算は $20 T$（ $T \equiv c / U_{\infty}, ~ c: ~$ コード長）まで行った，トータルな計算時間は1ケース約100時間を要した。ここでは主に計算が問題なく終了することを確認するに止め，統計量の解析は行わなかった。また，比較のた めにLES モデルを用いない計算（擬似的な DNS）も行った。

図 4 は，いくつかのスパン断面におらける擾乱成分に関する瞬間的マッハ数分布をLES モデルなしの場合とありの場合とで比較したものである。LES モデルを入れた場合には，乱れ成分 が少ないように見える。

（a）LES モデルなし

（b）LES モデルあり
図4 瞬間的な擾乱成分のマッハ数分布

図 5 は，流れ方向渦度成分の瞬間的な等値面をLES モデル なしの場合とありの場合で比較したものである。図（a）から，最大翼厚点付近から乱れが発生しているのがわかる。乱れの統計的性質は別途検剖が必要ではあるが，初期乱れが種になつて最大翼厚点以後の逆圧力勾配のために乱れが継続的に生産され ている，という説明が乱れ発生のシナリオとしては有力である う，この乱れが数値振動でないことは，圧力や密度の分布が滑 らかであることをもつて確認した。ところが，図（b）のLES モ デルを入れた場合には，このような乱れの発生の在り方が一変 し，最大翼厚点付近の乱れの発生がなくなっている。この原因 として，SGS モデルの渦粘性の効果で初期乱れが減衰してし まったことが推測される。乱えを継続的に発生させるにはこの付近からある種の人工的な乱れを注入する等の工夫が必要と思 われる。

（a）LES モデルなし

（b）LES モデルあり
図5 瞬間的な流れ方向渦度成分の等値面


図6 コード位置 $x / c=0.6$ における渦粘性分布

図 6 は，コード位置 $x / c=0.6$ のミッドスパンにおける渦粘性の分布を壁からの距離に対してプロットしたものであり， RANS の結果とLES の結果を比較した。境界層の厚みが違 らので分布のピーク位置がシフトしているが，LES の渦粘性 のピーク値が RANSに比べて意外に大きい。前の図にあった LES で乱れが減衰してしまった一因がこの辺りにあるものと予想される。

図 7 は，いくつかのコード位置（ $x / c=0.1,0.3,0.5,0.7,0.9$ ） における壁近傍（境界層厚の約 $5 \%$ 高さ位置）の流れ方向速度変動成分の時間変動をLES モデルのない場合とある場合 とで比較しプロットしたものである。LES モデルがない場合には， $30 \%$ コード位置付近から後万で継続的に変動成分が見られる。これに対し，LES モデルを入れた場合には，変動自体が小さく，しかも計算の途中から変動成分が発生して いる， $30 \%$ コード位置付近の乱えは小さい，途中経過を調べ た結果，これはウェークに生じたケルビンヘルムホルツ不安定の変動が上流に伝わって来たものであるらしいことがわかった。

## 6．課題と今後の展開について

本研究で問題になっている主な点を整理するとともに，その対処法について考えているところを述べたい。
（1）計算スキームについて
LESでは，粗い格子で高いレイノルズ数を扱わねばならな いので，安定かゝ数値粘性の少ないスキームが望ましい。とり わけ，SGS 粘性そのものが小さいので，数値粘性がSGS 粘性 を隠蔽してしまわないよう注意が必要である。また，解を非定常的に追跡しなければならないので精度のある時間積分法が要求される。また，統計量を得るためにはかなり長時間にわたる


図7 流れ方向速度成分の時間履歴

積分が必要であり，その間保存特性が崩れないことが重要であ る。さらに，実用への適用を意識した場合には，形状適合性，堅牢性，初期境界条件の設定の容易さ等が要求される。このよ うに，LES 計算法の持つべき要件は現在の CFD 技術にとつ て極めて厳しい。
非圧縮の分野では，特に保存性に注意した高次精度の差分 スキーム［3］が検討され始めている。圧縮流においても基本的 にその路線で行くのが良いだろうという考えから，ここでは TVDリミターをはずし全領域で高次精度を保つことを試みた わけであるが，実はよどみ点付近で不安定な挙動を示したた めに，その付近ではTVDリミターを使わなければならなかつ た。従って，もつと安定性を保つ高精度スキームが必要と考え ており，ENO スキーム，コンパクトスキーム，Padeスキー ムなどの適用を考えている。

一方，時間積分については，時間刻みが最小格子幅に支配さ えるので極めて小さい値となり，トータルな計算時間が嵩んで しまった。これは格子点を増やしたときには深刻な問題となる だろう，LESでは，非定常的に計算を進めなければならない ものの，実は DNS ほどの時間精度は必ずしも必要ない。従つ て，実用上はLESに適した時間積分法を開発する余地が残さ えていると思ら。
（2）SGS モデルについて
今回用いたスマゴリンスキーモデルは代表的な SGS モデル であるが，良く知られているように低レイノルズ数で層流解へ漸近しない欠点がある。よって，本来は層流であるべき低レイ ノルズ数においても渦粘性が発生し，それが乱れの発達を妨 げ，ここで得られたような乱れが少ない結果を導いたといらこ とが一面ではできると思う。従って，スマゴリンスキーモデル を，遷移を伴うような「翼」流れへ適用するのは本来的に無理 があるといえる．この点，ダイナミックモデル［4］は，層流解 へ漸近するだけでなく，壁近傍での減衰関数も必要ないので，物理的にはより優れた性質を備えており，早晚ダイナミックモ デルへ移行するのが望ましいと考えている。

一般座標系におけるSGS モデルの適用は検証例が少ないの でしばらくは試行錯誤で行くしかないと思っている。前述した定式化において，モデリングの簡素化のために幾つかの項は省略してしまったが，DNS データとの比較から省略できないと の指摘もあり，高速における圧縮性の効果の考慮と並えで，こ れをどうモデリングに反映させて行くかは要検討である［12］．
（3）格子について
ここでは，表1に示したように，他の研究との比較の上 で「翼」のLESとして抙色ないであろうと思われる最低限程度の格子点数を用いてみた。しかしながら，計算は問題 なく流れたものの乱れに関しては妥当な答えが得られてい ない。Cabot［13］によれば，壁近傍の構造を解像するには， $\Delta x^{+}=60, ~ \Delta z=15-20$ 程度の細かさが必要であるとして おり，こうした意見を眿まえ格子の解像度とか最適配分につい ては注意深い検討が必要である。
格子点総数については数値風洞の能力からずればかなり余裕がある。ちなみに計算法に変更のないまま能力いつぱい使ったとすれば $7 \times 10^{7}$ 点の点数を取ることが可能である。時間積分法を改善しない限りこの数字が現実的でないことは上の計算時間からもわかるが，ともかく容量的にそのような点数の計算が可能なのは事実である。かつてChapman［14］ が彼のCFDに関する将来予測のペーパの中で，全翼ま わりの LESに必要な格子点数をレイノルズ数が $10^{7}$ のと き， $2 \times 10^{7}$ と見積もっている。この数字はすでに我々の視野 の中に収まっており，本研究の次ステップの一つの目安となろう。

## 7．おわりに

LES を少しでも実用化の域に近づけることを目標に航空宇宙の基本要素である「翼」まわり流れの LES を試みている。 ここでは，計算法•格子の概要，初期的な計算結果，今後詰め るべき課題などについて報告した。研究の第一ステップとし て，計算法に高次精度風上差分とルンゲクッタ法，SGS モデ ルにスマゴリンスキー・モデルを用いて簡単な形状の「翼」ま わり流れを解いた。ここで用いた計算法は圧縮流における従来 の計算術の延長線上にあるが，計算法についてはこれで何とか行けそうな感触を得たものの，SGS モデリングについては根本的な見直しが必要であるらといらことがわかった。その他に も問題山積みといった印象が強く，「翼」といら基本的なアイテ ムにもかかわらず LES にとつては実に多くの挑戦的な要素が残されていることを改めて実感している，しかしながら，計算機の能力としては実用 LES を確実に捕らえており，そういっ た意味で実用化に向けての采統的な努力を急ぐ必要があること を強く感じた次第である。

## 8．謝辞

本研究は，計算科学技術共同研究の一貫として行ったも のである，研究を進めるに当たつて貴重なご助言をいただ いた，東京理科大学 河村洋，東京大学生産技術研究所 谷口伸行，工学院大学佐竹信一の諸先生方に深く感謝いたします。

## 参考文献

［1］谷ロ：ラージ・エディー・シミュレーション（LES），ターボ機械 24 巻 6 号，1996，pp．374－380．
［2］梶島：コロケート格子による非圧縮流れの高次差分解析，日本機械学会論文集（B編） 63 巻 614 号，1997，pp．3247－3254．
［3］森西：非圧縮性流体解析における差分スキームの保存特性，日本機械学会論文集（B 編） 62 巻 604 号，1996，pp．4090－ 4112.
［4］Germano，M．，Piomelli，U．，Moin，P．，and Cabot，W．H．， ＂Dynamic subgrid－scale eddy viscosity model，＂Physics of Fluids A3（7），1991，pp．1760－1765．
［5］Kaltenbach，H．－J．，and Choi，H．，＂Large－eddy simulation of flow around an airfoil on a structured mesh，＂Annual Research Briefs 1995，Center for Turbulence Research， NASA Ames／Stanford Univ．，1995，pp．51－60．
［6］Jansen，K．，＂Large－eddy simulation of flow around a NACA4412 airfoil using unstructured grids，＂Annual Re－ search Briefs 1996，Center for Turbulence Research， NASA Ames／Stanford Univ．，1996，pp．225－232．
［7］Huai，X．，Joslin，R．D．，and Piomelli，U．，＂Large－Eddy Simulation of Laminar－Turbulent Transition in a Swept－ Wing Boundary－Layer，＂AIAA Paper 97－0750， 1997.
［8］Liu，Z．，Zhao，W．，and Liu，C．，＂Direct Numerical Sim－ ulation of Transition in a Subsonic Airfoil Boundary Layer，＂AIAA Paper 97－0752， 1997.
［9］Matsuo，Y．，Arakawa，C．，Saito，S．，and Kobayashi， H．，＂Navier－Stokes Simulations around a Propfan Using Higher－Order Upwind Schemes，＂AIAA Paper 89－2699， 1989.
［10］乱流解析（数値流体力学シリーズ第3巻）一第4章乱流 モデル（III）－，小林他，東京大学出版会，1995，pp．67－118．
［11］Fasel，－H．，F．，＂Numerical Investigation of the Three－ Dimensional Development in Boundary－Layer Transi－ tion，＂AIAA Journal，Vol．28，No．1，1990，pp．29－37．
［12］Piomelli，U．，＂Large－Eddy Simulations：Present Status and Future Directions，＂AIAA Paper 98－0534， 1998.
［13］Cabot，W．，＂Local dynamic subgrid－scale models in channel flow，＂Annual Research Briefs 1994，Center for Turbulence Research，NASA Ames／Stanford Univ．，1994， pp．143－159．
［14］Chapman，D．R．，＂Computational Aerodynamics De－ velopment and Outlook，＂AIAA Paper 79－0129， 1979.

# 翼まわりの大規模数値シミュレーション 

○飯田博将＊1 佐竹信一＊2 河村洋＊3 松尾裕一＊4<br>$* 1$ 東京理科大学 大学院 理工学研究科 機械工学専攻<br>＊2 富山大学 工学部 機械知能システム工学科 講師<br>＊3 東京理科大学 理工学部 機械工学科 教授<br>＊4 航空宇宙技術研究所

# Large－Scale Numerical Simulation of Flow over an Airfoil 

by<br>Hiromasa Iida＊Shinichi Satake＊2 Kawamura Hiroshi＊Yuichi Matsuo＊3<br>＊Science University of Tokyo ＊2 Toyama University<br>＊3 National Aerospace Laboratory


#### Abstract

Recently，the development of computer power has enabled to make more large－scale numeri－ cal simulation for turbulent flows．In this paper，we report our studies on the simulation of flow around the NACA0012 airfoil without sweep in order to develop the practical DNS and LES technologies．The Reynolds number Re，based the uniform in－flow velocity and the chord length，is set to be $2.0 \times 10^{6}$ ．Computations are now under going with the high－ performance parallel supercomputer NWT at NAL．


## 1 緒言

乱流解析においては，NS（Navier－Stokes）方程式が強非線形のため，一般解を求めることが難しく，従って従来の乱流 の研究は理論的或いは実験的なものであったが，近年の飛躍的なコンピュータの発達により，数値解析が可能となり，そ えに伴いその解析方法もまた急速に進歩している。

本稿では，乱流の数値解析手法として格子平均モデル （Large Eddy Simulation，LES）を用いている。LESは，計算格子をエネルギ保有領域を解像できる程度に分割して，計算格子の幅より小さいスケール（Subgrid Scale，SGS）の運動の影響をSGS乱流モデルで記述し，計算格子の幅より大き いスケール（Grid Scale，GS）の運動のみを計算することに よって，直接数値計算（Direct Numerical Simulation，DNS） より粗い計算格子でも乱流の数値解析を行うことを可能にす る手法である。
この手法によれば直接数値計算よりも比較的複雑な流れ場 で，高いレイノルズ数の流れ場を計算することが出来る。し かし計算格子の切り方やSGS乱流モデルの改善 ${ }^{11}$ がまだ必要 である。
本稿では，まずSGS乱流モデルとして従来から使用さえて いる基礎的なモデルとしてSmagorinsky modelを用いて計算 を行う。このSGS乱流モデルは，様々な流れ場に使用されて

いるが，壁面漸近挙動の再現ができないこと，Smagorinsky定数と呼ばれるモデルパラメータを流れ場に応じて変えなく てはいけないこと，層流乱流間の遷移現象が把握できないこ と等の欠点がある。
近年Germano ${ }^{[2][3]}$ らによって提案されたDynamic SGS model はフィルタリングという操作を行いSmagorinsky定数を流れ場から動的に導くことができる手法として注目を浴びてい る。翼まわりの流れの数値解析は，これまでKaltenbach ${ }^{13}$ が レイノルズ数 $1.64 \times 10^{6}$ を約 200 万ほどの格子で解いており， Jansen ${ }^{[4]}$ も同様のレイノルズ数をほぼ同じ格子点数で有限要素法で計算している。
本稿では， 3 次元翼まわりを解析対象として，以上 2 種類 のLES乱流モデル（Smagorinsky model，Dynamic SGS model） を適用した計算を行い，その結果を報告するものである。

## 2．基礎方程式及び解法

計算対象は，ここでは断面形状が上下対象•後退角のない三次元翼（NACA0012）とした。（Fig．1）トポロジーはC型と し，外周はコード長の 3 倍の位置に設定，ウエークでは上下 の格子線を一致させ，スパン長はコード長の半分とした。計算領域は，全翼まわりとし，流れ方向をx，流れと垂直方向 をy，スパン方向をzとしてこれらを計算座標系で $\xi, ~ \eta$ ，

に置き換えた。代表長さ，代表速度はそれぞれコード長，一様流入速度とした。（Fig．2）Table1に計算条件を示す。
計算のLES 基礎方程式（連続の式•NSの式）は，次のように与えられる。

$$
\begin{align*}
& \frac{\bar{u}_{i}}{\partial x_{i}}=0  \tag{1}\\
& \begin{aligned}
\frac{\bar{u}_{i}}{\partial} & +\bar{u}_{j} \frac{\partial \bar{u}_{i}}{\partial x_{j}}=-\frac{\bar{x}}{\partial x_{i}}+\frac{1}{\operatorname{Re}} \frac{\partial^{2} \bar{u}_{i}}{\partial x_{j}^{2}}-\frac{\partial}{\partial x_{j}} \tau_{i j} \\
\bar{\tau}_{i j} & =\overline{u_{i} u_{j}}-\bar{u}_{i} \bar{u}_{j} \\
& =L_{i j}+C_{i j}+R_{i j}
\end{aligned} \tag{2}
\end{align*}
$$

式中の $\tau_{i j}$ は，対流項に対するフィルタリングによって生 じる。また $L_{i, ~}, ~ C_{i, j}, ~ R_{i j}$ は大スケール渦の場に対する見かけ の応力でそれぞれレオナード項，クロス項，レイノルズ項と呼ばれ，これらの項に対してSGS乱流モデルを施す。 Smagorinsky model（以下S－model）は渦粘性近似型のモデル でレオナード項，クロス項の和を0と考えレイノルズ項のみ をモデル化するものであり，以下のように与えられる。

$$
\begin{align*}
& \tau_{i j}\left(=R_{i j}\right)=\overline{u_{i} u_{j}}-\overline{u_{i} \bar{u}} \cong \overline{u_{i} u_{j}}  \tag{5}\\
& =-v_{S G S} 2 \bar{S}_{i j}  \tag{6}\\
& v_{S G S}=\left(C_{S} f \Delta\right)^{2} \bar{S}!  \tag{7}\\
& \bar{S}_{i j}=\frac{1}{2}\left(\frac{\overline{a_{i}}}{\partial x_{j}}+\frac{\overline{u_{j}}}{\hat{\alpha}_{i}}\right)  \tag{8}\\
& \bar{S}=\left(2 \bar{S}_{i j} \bar{S}_{i j}\right)^{\frac{1}{2}} \tag{9}
\end{align*}
$$

式中のC $\mathrm{S}_{\mathrm{s}}$ は唯一のモデル定数であり一般にSmagorinsky定数と呼ばれ，それぞれの流れ場に応じて最適化する必要があ り，本稿では 0.15 を用いた。また，壁ですべり無し条件を課す場合，壁面上で $\tau_{i j}=0$ すなわち $v_{\text {scs }}=0$ でならなければな らない。しかし，平均流に強い速度勾配がある場合 $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ はこ れを満足しない。したがって，通常は，Van Direst型の減哀関数f＝1－exp（ $-\mathrm{y} / 25$ ）をフィルタ幅 $\Delta$ に乗じて修正を行ら。 この減衰関数は経験的なものであり，壁からの無次元距離y だけ離れたところで一樣な減衰を与えるため，乱れの局所性 を反映できない欠点がある。SGS乱流モデルに関する最近の研究はこのS－model孛改良する傾向 ${ }^{16}$ にあり，本研究では以下に示すGS成分の挙動から直接 Smagorinsky定数 $\mathrm{C}_{\mathrm{S}}$ にかわ るパラメータCを計算できるDynamic SGS model（以下 D－ model）を考える。パラメータCは，Lillyによる最小二乗法 を用いて次のように表すことが出来る。

$$
\begin{equation*}
C=-\frac{L_{i j} M_{i j}}{2 \bar{\Delta}^{2} M_{i j} M_{i j}} \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& M_{i j}=\alpha^{2} \tilde{\bar{S}} \overline{\bar{S}}_{i j}-\tilde{S}_{\bar{S}}^{\bar{S}_{i j}}  \tag{11}\\
& \alpha=\frac{\overline{\mathrm{\Delta}}}{\bar{\Delta}} \tag{12}
\end{align*}
$$

また，パラメータCは空間の関数のため局所的にCが負の値を取ることがあり，これが逆輸送（Back－scatter）を表すと の考えもあるが，実際には負粘性による不安定から数値計算 は実行できないため，スパン方向に平均をとり負の値は0に置き換えて行った。
物理空間でのフィルターは，計算を簡単にするために直交等間隔のスパン方向のみ掛けることにした。ここでフィル ターに用いる差分式は，谷口らによる式い！は用いた。

$$
\begin{align*}
& \tilde{\bar{u}}_{i}=\bar{u}_{i}+\frac{\gamma^{2}}{24}\left(\bar{u}_{i+1}-2 \bar{u}_{i}+\bar{u}_{i-1}\right)  \tag{13}\\
& \overline{\bar{u}}_{i-\frac{1}{2}}=\frac{1}{2}\left(\bar{u}_{i}+\bar{u}_{i-1}\right)+\frac{\gamma^{2}-3}{48}\left(\bar{u}_{i+1}-\bar{u}_{i}-\bar{u}_{i-1}+\bar{u}_{i-2}\right) \tag{14}
\end{align*}
$$

これらの式を境界適合座標系（Boundary－Fitted Coordinate grid，BFC）と呼ばれる格子系に変換する。フィルタ幅 $\Delta$ は， ヤコビアン（要素体積の） $1 / 3$ 乗とした。


Fig． 1 Overview of an airfoil configuration．


Fig． 2 Side view of the computational gird．

Grid		Staggered Mesh
Coupling Algorithm		Fractional Step
Time Advancement		Euler Method
Discretization Scheme	Convection Term Viscous Term	2nd Central   2nd Central
Boundary Condition	Streamwise Spanwise	Uniform in－flow，Free Out－flow
		Periodic
Grid Number		$191 \times 32 \times 16(382 \times 64 \times 32)$
Time Step		$\Delta t=0.000001$
Reynolds Number		Re $=5,000,200,000$
LES Model		Smagorinsky，Dynamic

## 4．あとがき

以上，翼まわりの流れを対象に，LES の実用化に向けて大規模な計算を行った。またSmagorinsky－model とDynamic－ modelでの挙動の違いを示した。

なお，本研究は「計算科学技術共同研究」として，航空技術研究所 ${ }^{[9] 1} 101$ ，東京大学生産技術研究所，工学院大学の間で行っているものである。

## 参考文献

1．数値流体力学編集委員会，＂乱流解析＂東京大学出版会 1995，（3）pp．67－118

2．Germano，M．，Piomelli，U．，Moin，P．，and Cabot，W．H．，＂A dy－ namic subgrid－scale eddy viscosity model．＂Phys．Fluid，1991， A3（7）pp．1760－1765．
3．Zang，Y．，Street，R．L．，and Koseff，J．R．＂A dynamic mixed subgrid－ scale model and its application to turbulent recirculating flows＂ Phys．Fluid，1993，A5（12）pp．3186－3196．

4．Kaltenbach，H－J．，et．al．，＂Large－eddy simulation of flow around an airfoil on a structured mesh＂，Annual Research Briefs，CTR． NASA Ames／Stanford Univ．，1996，pp．51－60．

5．Jansen，K．，＂Large－eddy simulation of flow around a NASA 4412 airfoil using unstructured grids，＂Annual Research Briefs，CTR， NASA Ames／Stanford Univ．，1996，pp．61－72．
6．谷口，＂ラージ・エディ・シミュレーション（ぞい）LES モデルと数值計算法）＂，ターボ機械，第4巻第6号，1996年6月，pp．46－52．

7．谷口，載，小林，＂Dynamic SGS モデルの差分法による定式化＂，第9回生研NSTシンポジウム，1994，pp．49－52．
8．田中，坪倉，小林，谷口＂ダイナミックSGSモデルの差分法による定式化とチャネル乱流による評価＂，第10回数値流体力学シンポジウム，1997年12月

9．松尾，＂翼まわり流れのLES の実現へ向けて＂，第11回数値流体力学シンポジウム講演論文集，1997年12月， pp．181－182．

10．松尾，＂翼まわり流れの差分法によるLES＂，航空宇宙数値シュミレーション技術シンボジウム，1998年6月， pp． 65.

（a） $\operatorname{Re}=5,000$（without model）

（b） $\mathrm{Re}=200,000$（S－model）

（c） $\mathrm{Re}=200,000$（D－model）
Fig． 3 Contour map of pressure

（a） $\operatorname{Re}=5,000$（without model）

（b） $\operatorname{Re}=200,000$（S－model）

（c） $\mathrm{Re}=200,000$（ $\mathrm{D}-\mathrm{model}$ ）
Fig． 4 Velocity vector and contour map of pressure （at the trailing edge of an airfoil）

（a） $\mathrm{Re}=5,000$（without model）

（b） $\mathrm{Re}=200,000(\mathrm{~S}-$ model $)$

（c） $\mathrm{Re}=200,000$（S－model）large－mesh $(382 \times 64 \times 32)$ Fig． 5 Velocity vector and contour map of pressure （at the leading edge of an airfoil）

（a） $\mathrm{Re}=5,000$（without model）

（b） $\mathrm{Re}=200,000$（S－model）

（c） $\mathrm{Re}=200,000(\mathrm{D}-\mathrm{model})$

Fig． 6 Pressure distribution of an airfoil


Fig． 7 Contour map of dynamic constant $\mathrm{C}\left(=\mathrm{C}_{\mathrm{s}}{ }^{2}\right)$


Fig． 8 Contour map of dynamic constant $\mathrm{C}\left(=\mathrm{C}_{\mathrm{s}}{ }^{2}\right)$ （at the trailing edge of an airfoil）

# 乱流LES に適した一般座標系差分スキームについて 

# 小垣 哲也 ${ }^{* 1}$ ，谷口 伸行 ${ }^{* 2}$ ，松尾 裕一＊${ }^{*}$ <br> Proper Finite Difference Schemes in Generalized Coordinates for Large Eddy Simulations of Turbulent Flow 

by<br>Tetsuya KOGAKI ${ }^{*}$ ，Nobuyuki TANIGUCHI ${ }^{*}$ ，Yuich MATSUO ${ }^{* 3}$


#### Abstract

In order to conduct direct numerical simulations（DNS）or large eddy simulations（LES）of turbulent flow in compli－ cated flow geometry，accurate finite difference methods are needed in generalized curvilinear coordinate system．Recently，it was shown that the analytical conservative properties of the set of basic equations are needed to be satisfied properly even in discretized basic equations in order to obtain accurate and stable solutions in simulations of incompressible turbulent flow using finite difference method．In this paper，it is demonstrated that the analytical conservative properties of the coordinate transformed basic equations for incompressible viscous flows are identical with that in Cartesian coordinates．The basic equations treated here are the continuity equation，the Navier－Stokes equation and the transport equations of the square value of velocity components and the kinetic energy． The finite difference schemes in generalized curvilinear coordinate system that are suitable for simulation of incompressible turbu－ lent flow are constructed from relatively simple extension of the proper finite difference schemes derived in equidistant Cartesian coordinate system．The conservative properties of finite difference schemes consutructed in this research in generalized curvilinear system are examined by numerical tests of two－dimensional inviscid flow with periodic domains．It is confirmed that the modified finite difference scheme in a colocated grid layout conserves the mass and kinetic energy properly even in nonorthogonal nonuniform computational grid．The conservative properties of the finite difference scheme in a staggered grid layout is also proper only when computational grids are orthogonal．In addition，direct numerical simulation of plane channel flows with fairly coarse mesh at $R e_{\tau}=180$ are conducted using the finite difference schemes in generalized curvilinear coordinate system．It is found that the results are improved by the modified finite difference scheme in colocated grid layout because the residual of continuity equation in regular grid layout is reduced．


## 1．緒 言

非定常な乱流挙動を捉えらる高精度な非圧縮性乱流数値解析手法としてはDNS（Direct Numerical Simulation），LES （Large Eddy Simulation）が知られている。しかし，DNSや LESは，RANS（Reynolds Averaged Navier－Stokes equation） モデルに基づく計算と比較すると，モデルの効果が少ない （あるいは全くない）ため，一般的に計算手法の精度に対す る依存性が強く，高精度な計算手法を必要とする。DNS や LESにおいては，数値誤差により生じる運動エネルギーの散逸が，分子粘性やSGS モデルにより負荷される数値粘性 による散逸と比較して十分無視しうる程度でなけれぼならな い。本研究は，複雑な形状をした非圧縮性乱流場のDNS， LES のための高精度な有限差分法の離散化手法を構成する ことを目的とする。最近，コロケート格子系における差分ス キームにおいて，運動エネルギーKの輸送方程式中の圧力項 の保存特性に問題があることが指摘され，それらを改善する修正コロケート格子系差分スキームが森西により提案された ${ }^{11}$ ．ここでは，正規直交座標系において定式化された森西の修正コロケート格子系差分スキームを一般座標系に拡張し， その検証を行う。

## 2．基礎方程式系の解析的保存特性

本研究で取り扱われる非圧縮性粘性流れの基礎方程式 は，連続の式，Navier－Stokes方程式および速度二乗量と

[^45]運動エネルギー $K$ の輸送方程式である。まず連続の式と Navier－Stokes方程式に座標変換を施すと以下のようにな る。

$$
\begin{align*}
& (\text { Cont. }) \equiv \frac{\partial U_{m}}{\partial \xi_{m}}=0  \tag{1}\\
& \frac{\partial}{\partial t}\left(\frac{u_{i}}{J}\right)+(\text { Conv. })_{i}+(\text { Pres. })_{i}+(\text { Visc. })_{i}=0 \tag{2}
\end{align*}
$$

ここで，式（1）中，（Cont．）は連続の式を表している．また，$U_{m}$ は体積フラックス（または反変速度にヤコピアンの逆数を乗 じた量）であり，次式で与えられる。

$$
\begin{equation*}
U_{m}=\frac{1}{J} \frac{\partial \xi_{m}}{\partial x_{j}} u_{j} \tag{3}
\end{equation*}
$$

式（2）中，（Pres．）および（Visc．）はNavier－Stokes方程式中 の圧力項および粘性項を表し，次のように定義される。

$$
\begin{align*}
& (\text { Pres. })_{i} \equiv \frac{\partial}{\partial \xi_{m}}\left(\frac{1}{J} \frac{\partial \xi_{m}}{\partial x_{i}} p\right)=\frac{1}{J} \frac{\partial \xi_{m}}{\partial x_{i}} \frac{\partial p}{\partial \xi_{m}}  \tag{4}\\
& (\text { Visc. })_{i} \equiv-\frac{\partial}{\partial \xi_{m}}\left(v G^{m n} \frac{\partial u_{i}}{\partial \xi_{n}}\right) \tag{5}
\end{align*}
$$

また，Navier－Stokes 方程式中の（Conv．）は，発散型 （Div．），勾配型（Adv．）および混合型（Skew．）が定義でき る。

$$
\begin{equation*}
(\text { Div. })_{i} \equiv \frac{\partial}{\partial \xi_{m}}\left(U_{m} u_{i}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{Adv} \cdot)_{i} \equiv U_{m} \frac{\partial u_{i}}{\partial \xi_{m}} \tag{7}
\end{equation*}
$$

$(\text { Skew．})_{i} \equiv \frac{1}{2} \frac{\partial}{\partial \xi_{m}}\left(U_{m} u_{i}\right)+\frac{1}{2} U_{m} \frac{\partial u_{i}}{\partial \xi_{m}}$

Table 1 Analytical conservative properties of the basic equations for incomporessible flows（extracted from Ref．（2））．

Terms in   Mementum Eq．		$u_{i}$	$u_{1}{ }^{2} / 2$	$K=u_{i}{ }^{2} / 2$
（Conv．）	（Div．）	$\bigcirc$	$\bigcirc$	$\bigcirc$
	（Adv．）	$\bigcirc$	$\bigcirc$	$\bigcirc$
	（Skew．）	$\bigcirc$	$\bigcirc$	$\bigcirc$
	$\bigcirc$	$\times$	$\bigcirc$	
（Visc．）	$\bigcirc$	$\times$	$\times$	

これら Navier－Stokes方程式中の対流項の各型は，座標変換前と全く同様に次のように関係づけられる。

$$
\begin{align*}
& (\text { Adv. })_{i}=(\text { Div. })_{i}-u_{i}(\text { Cont. })  \tag{9}\\
& (\text { Skew. })_{i}=(\text { Div. })_{i}-\frac{1}{2} u_{i}(\text { Cont. })=(\text { Adv. })_{i}+\frac{1}{2} u_{i}(\text { Cont. }) \tag{10}
\end{align*}
$$

式（1）～（9）から，連続の式，Navier－Stokes方程式中の圧力項，粘性項および対流項の発散型が保存形であり，式 （1）の連続の式が満たされる場合，対流項の勾配型と混合型が発散型と等価となり保存形となることがわかる。
速度二乗量の輸送方程式の解析的保存特性については，次に述べられる運動エネルギー $K$ の輸送方程式の解析的保存特性と，圧力項を除いてほぼ同様であるので省略す る。式（2）の $i$ 成分に $u_{i}$ を乗じて縮約を取り，運動エネル ギーKの輸送方程式を導出すると以下のようになる。

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{K}{J}\right)+u_{i}(\text { Conv. })_{i}+u_{i}(\text { Pres. })_{i}+u_{i}(\text { Visc. })_{i}=0 \tag{11}
\end{equation*}
$$

上式中左辺第 2 項は，Navier－Stokes方程式中の対流項の型に応じて次のように変形できる。

$$
\begin{align*}
& u_{i}(\text { Div. })_{i}=\frac{\partial}{\partial \xi_{m}}\left(U_{m} K\right)+K(\text { Cont. })  \tag{12}\\
& u_{i}(\text { Adv. })_{i}=\frac{\partial}{\partial \xi_{m}}\left(U_{m} K\right)-K(\text { Cont. })  \tag{13}\\
& u_{i}(\text { Skew. })_{i}=\frac{\partial}{\partial \xi_{m}}\left(U_{m} K\right) \tag{14}
\end{align*}
$$

運動エネルギの輸送方程式中では，混合型のみが保存形 であり，式（1）の連続の式が満足されると，勾配型および発散型が混合型と等価となり保存形となる。次に，圧力項 および粘性項は，以下のように変形できる。

$$
\begin{align*}
& \left.u_{i}(\text { Pres. })_{i}=\frac{\partial}{\partial \xi_{m}}\left(p U_{m}\right)-p \text { (Cont. }\right)  \tag{15}\\
& u_{i}(\text { Visc. })_{i}=-\frac{\partial}{\partial \xi_{m}}\left(u_{i} v G^{m n} \frac{\partial u_{i}}{\partial \xi_{n}}\right)+v G^{m n} \frac{\partial u_{i} \partial u_{i}}{\partial \xi_{m}} \frac{\partial \xi_{n}}{} \tag{16}
\end{align*}
$$

圧力項は，式（1）の連続の式が満足されると保存形となる。
粘性項は，発散型に変形できないため非保存形である。式 （16）中の右辺第2項は，分子粘性による運動エネルギKの散逸を表している。一方，速度二乗量の輸送方程式中の圧力項は，例えば速度二乗量 $u_{1}^{2} / 2$ の場合，

$$
\begin{equation*}
u_{1}(\text { Pres. })_{1}=\frac{\partial}{\partial \xi_{m}}\left(p \frac{1}{J} \frac{\partial \xi_{m}}{\partial x_{1}} u_{1}\right)-p \frac{\partial}{\partial \xi_{m}}\left(\frac{1}{J} \frac{\partial \xi_{m}}{\partial x_{1}} u_{1}\right) \tag{17}
\end{equation*}
$$

となり，第2項の存在から非保存形である。
以上をまとめると，座標変換した基礎方程式（連続の式，Navier－Stokes 方程式，速度二乗量および運動エネル ギー $K$ の輸送方程式）の解析的保存特性は，表1で示さ れる座標変換前の基嘅方程式の解析保存特性 ${ }^{(2)}$ とすべて一致することがわかる．

## 3．適切な一般座標系差分スキームの構成

$3 \cdot 1$ 離散オペレータの定義 基本的な差分および補間ス キームとして，任意の変数 $\Phi$ の間隔 $n h$, の $\xi$ ，方向の差分，補間および任意の 2 つの変数 $\Phi, \Psi$ の積に対する補間を，次のように定義する ${ }^{(2)}$ 。

$$
\begin{align*}
& \left.\frac{\delta_{n} \Phi}{\delta_{n} \xi_{1}}\right|_{\xi_{1} \xi_{2} \xi_{3}} \equiv \frac{\Phi\left(\xi_{1}+n h_{1} / 2, \xi_{2}, \xi_{3}\right)-\Phi\left(\xi_{1}-n h_{1} / 2, \xi_{2}, \xi_{3}\right)}{n h_{1}}  \tag{19}\\
& \left.\bar{\Phi}^{n \xi_{1}}\right|_{\xi_{152} \xi_{3}} \equiv \frac{\Phi\left(\xi_{1}+n h_{1} / 2, \xi_{2}, \xi_{3}\right)+\Phi\left(\xi_{1}-n h_{1} / 2, \xi_{2}, \xi_{3}\right)}{2}  \tag{20}\\
& \left.\tilde{\Phi} \Psi^{n \xi_{1}}\right|_{\xi_{1} \xi_{2} \xi_{3}} \equiv \frac{1}{2} \Phi\left(\xi_{1}+\frac{n h_{1}}{2}, \xi_{2}, \xi_{3}\right) \Psi\left(\xi_{1}-\frac{n h_{1}}{2}, \xi_{2}, \xi_{3}\right) \\
& +\frac{1}{2} \Psi\left(\xi_{1}+\frac{n h_{1}}{2}, \xi_{2}, \xi_{3}\right) \Phi\left(\xi_{1}-\frac{n h_{1}}{2}, \xi_{2}, \xi_{3}\right) \tag{21}
\end{align*}
$$

式（19）および（20）は，Taylor 展開からそれぞれ計算空間上で 2次精度の差分および補間であることが確認できるが，物理空間上でも，同様に 2 次精度であることが証明されている ${ }^{(3)}$ ． 4 次精度の差分および補間スキームは，異なる間隔の 2次精度離散スキームを組み合わせることにより構成可能であ る $^{(2)}$ 。
3•2 計算格子系 速度，圧力といつた変数の定義点の配直として，これまで，図1に示されるようなレギュラ，ス タガード，コロケート格子系等が実際の計算で用いられ ている。この中で，レギュラ格子系は圧力場にチェス盤状 の振動が生じることで知られている。速度と圧力のデ カップリングを防ぐ方法として，直交速度成分の定義点 が，圧力の定義点からそれぞれの方向に半格子ずれた位置に定義されるスタガード格子系（図 1 （c））がある。しか し，この本来のスタガード格子系は，一般座標系において計算格子が 90 度回転した場合を考えると，直交速度成分 がセル界面に沿ってしまい，直交速度成分のスタガード配列の利点が失われて解が不安定になる。これに対して Maliskaらは，全ての直交速度成分をそれぞれのセル界面 に定義したスタガード格子系（図 1 （d））を提案した ${ }^{(4)}$ ．ここ ではこの Maliska らのスタガード格子系を一般座標系に おけるスタガード格子系として取り扱うことにする。

コロケート格子系 ${ }^{(5), ~}{ }^{(6)}$ は，図1（b）に示されるように，直交速度成分 $u_{i}$ と圧力 $p$ がセル中心に，特別な補間により計算される体積フラックス $F_{m}$ がセル界面に定義される計算格子系である。コロケート格子系差分スキームは，運動エ ネルギーの保存特性に誤差が含まれ，高精度なDNS，LES には不向きであることが指摘されている ${ }^{(2),(7)}$ 。これに対し て森西は，コロケート格子系差分スキームの運動エネル


Fig． 1 Various grid layouts in generalized coordinates．

ギーの保存特性を改良した修正コロケート格子系差分ス キームを提案している ${ }^{(1)}$ 。
$3 \cdot 3$ 一般座標系差分スキームの構成 運動量，速度二乗量および運動エネルギーの保存特性が適切な差分スキー ムを構成するためには，表1で示された基礎方程式の解析的保存特性が離散化式においても適切に近似されなけ ればならない ${ }^{(2)}$ 。Maliska のスタガード格子系において，解析的保存特性を形式上適切に近似する差分スキームに ついては，小垣 ${ }^{(8)}$ を参照していただきたい。
Van Kan 修正を導入してコロケート格子系差分スキーム の圧力項の運動エネルギーの保存特性を改善した修正コロ ケート格子系差分スキーム ${ }^{(1)}$ を一般座標系に拡張すると，フ ラクショナルステップ法をベースとした以下のような計算ア ルゴリズムが構成される。

$$
\begin{align*}
& u_{i}^{*}=u_{i}^{k-1}-J \Delta t\left[-(\text { Conv. }-\mathrm{MC} 2)_{2}-(\text { Pres. }-\mathrm{R} 2)_{i}-(\text { Visc. }-\mathrm{MC} 2)_{i}\right]  \tag{22}\\
& \frac{\delta_{1}}{\delta_{1} \xi_{m}}\left(G^{m n} \frac{\delta_{1} \Delta p^{k}}{\delta_{1} \xi_{n}}\right)=\frac{1 \frac{\delta_{1}}{U_{m}^{*}} \frac{\xi_{m}}{\delta_{1} \xi_{m}}}{u_{i}^{k}=u_{i}^{*}-J \Delta t \frac{\delta_{2}}{\delta_{2} \xi_{m}}\left(\frac{1}{J \xi_{m}} \frac{\partial x_{i}}{\partial p^{k}}\right)}  \tag{23}\\
& F_{m}^{k}=\overline{U_{m}^{*}} \xi_{m}-\Delta t G^{m n} \frac{\delta_{1} \Delta p^{k \#}}{\delta_{1} \xi_{n}}  \tag{24}\\
& p^{k}=p^{k-1}+\Delta p \tag{25}
\end{align*}
$$

ここで，式（22）中の－MC2は修正コロケート格子系における 2 次精度差分スキームを表している。連続の式は次のように離散化される。

$$
\begin{equation*}
(\text { Cont. }-\mathrm{MC} 2) \equiv \frac{\delta_{1} F_{m}}{\delta_{1} \xi_{m}}=0 \tag{27}
\end{equation*}
$$

式（22）中の対流項（Conv．－MC2）は，以下のように一般座標系に拡張される

$$
\begin{align*}
& (\text { Div. }-\mathrm{MC} 2)_{i} \equiv \frac{\delta_{1} F_{m} \bar{u}_{i}^{1 \xi_{m}}}{\frac{\delta_{1} \xi_{m}}{\delta_{1} u_{i}} \xi_{m}}  \tag{28}\\
& (\text { Adv. }-\mathrm{MC} 2)_{i} \equiv F_{m} \frac{\delta_{1} \xi_{m}}{-}  \tag{29}\\
& (\text { Skew. }-\mathrm{MC} 2)_{i} \equiv \frac{1}{2}(\text { Div. }-\mathrm{MC} 2)_{i}+\frac{1}{2}(\text { Adv. }-\mathrm{MC} 2)_{i}
\end{align*}
$$

これらの対流項差分スキームは，離散的に次式を満足する。

$$
\begin{align*}
& (\text { Adv. }-\mathrm{MC} 2)_{i}=(\text { Div. }-\mathrm{MC} 2)_{i}-u_{i}(\text { Cont. }-\mathrm{MC} 2)  \tag{31}\\
& u_{i}(\text { Div. }-\mathrm{MC} 2)_{i}=\frac{\delta_{1}}{\delta_{1} \xi_{m}}\left(F_{m} \frac{\tilde{u}_{i}}{2}{ }^{1 \xi_{5}}\right)+\frac{\tilde{u}_{i}}{2}(\text { Cont. }-\mathrm{C} 2)  \tag{32}\\
& u_{i}(\text { Adv. }-\mathrm{MC} 2)_{i}=\frac{\delta_{1}}{\delta_{1} \xi_{m}}\left(F_{m} \frac{\tilde{u}_{i}}{2}\right)-\frac{u \xi_{m}}{2}(\text { Cont. }-\mathrm{C} 2)  \tag{33}\\
& u_{i}(\text { Skew. }-\mathrm{MC} 2)_{i}=\frac{\delta_{1}}{\delta_{1} \xi_{m}}\left(F_{m} \frac{\tilde{u}_{i} \tilde{u}_{i}}{2}\right) \tag{34}
\end{align*}
$$

式（31）は式（9）を，式（32）～（34）は式（12）～（14）を適切に近似し ている．従って，式（28）～（30）で定義される対流項差分ス キームは，運動量，速度二乗量および運動エネルギーの保存特性に関して適切な離散化式となっている。次に，式（22）中 の拡散項（Visc．－MC2）は，Navier－Stokes 方程式中でのみ保存形であればいいので，次式で定義する。

$$
\begin{equation*}
(\text { Visc. }-\mathrm{MC} 2)_{i} \equiv-\frac{\delta_{1}}{\delta_{1} \xi_{m}}\left(\nu G^{m n} \frac{\delta_{1} u_{i}^{\#}}{\delta_{1} \xi_{n}}\right) \tag{35}
\end{equation*}
$$

圧力項差分スキームは，レギュラー格子系で定義される （Pres．－R2）を用いる．

$$
\begin{equation*}
(\text { Pres. }-\mathrm{R} 2)_{i} \equiv \frac{\delta_{2}}{\delta_{2} \xi_{m}}\left(\frac{1}{J} \frac{\partial \xi_{m}}{\partial x_{i}} p\right) \cong \frac{1}{J} \frac{\partial \xi_{m}}{\partial x_{i}} \frac{\delta_{2} p}{\delta_{2} \xi_{m}} \tag{36}
\end{equation*}
$$

上式に $u_{i}$ を乗じて運動エネルギーの圧力項の保存特性を調 べると，以下のようになる．

$$
\begin{align*}
& u_{i}(\text { Pres. }-\mathrm{R} 2)_{i}=\frac{\delta_{1} p \tilde{U}_{m} \xi_{m}}{\delta_{1} x_{i}}-p(\text { Cont. }-\mathrm{R} 2)  \tag{37}\\
& (\text { Cont. }-\mathrm{R} 2) \equiv \frac{\delta_{2} U_{m}}{\delta_{2} \xi_{m}}=0 \tag{38}
\end{align*}
$$

ここで，式（38）の（Cont．－R2）は，レギュラ格子系差分スキー ムにおける連続の式の離散化式であり，この連続の式が満た されなけれぼ圧力項差分スキームの運動エネルギーの保存特性が適切ではないことがわかる。修正コロケート格子系差分 スキームにおいて，時間ステップにおける $k$ における（Cont．－ R2）は，テイラー展開から次のように評価できる．

$$
\begin{align*}
& \frac{\delta_{2} U_{m}{ }^{k}}{\delta_{2} \xi_{m}}=\Delta t\left[\frac{\delta_{1}}{\delta_{1} \xi_{m}}\left(G^{m m} \delta_{1} \Delta p^{\# k}-\overline{\delta_{1} \xi_{n}}-G^{m \delta_{2} \Delta p^{7 k}} \frac{I_{2} \xi_{m}}{\delta_{2} \xi_{n}}\right)\right] \\
& =\Delta t\left[-\frac{1}{8} \frac{\partial}{\partial \xi_{m}}\left(G^{m n} \frac{\partial^{3} \Delta p^{\# t}}{\partial \xi_{n}{ }^{3}}\right) h_{n}{ }^{2}\right. \text { 絃 } \\
& \left.-\frac{1}{8} \frac{\partial^{3}}{\partial \xi_{m}{ }^{3}}\left(G^{m n} \frac{\partial \Delta p^{\# k}}{\partial \xi_{n}}\right) h_{m}{ }^{2}+O\left(h^{4}\right)\right] \\
& =O\left(\Delta t^{2} \cdot h^{2}\right) \tag{39}
\end{align*}
$$

従って，一般座標系に抎張された修正コロケート格子系差分 スキームは，等間隔正規直交座標系の場合 ${ }^{(1)}$ と同様に，運動 エネルギーの保存特性の誤差が時間精度 1 次から 2 次に改善 されている．

## 4．一般座標系差分スキームの保存特性の検証

4． 1 検証方法概要 本研究で構成した一般座標系差分ス キームの運動量および運動エネルギの保存特性を調査するた めに 2 次元周期的非粘性流の数値実験 ${ }^{(2)}$ を行った。時間進行法は，時間積分による影響をなるべく小さくするため， 3次精度 Runge－Kutta 法 ${ }^{(6)}$ を用い，クーラン数 $C F L\left(=C_{x} \Delta t /\right.$ $\Delta x_{m i n}$ ）は，ことわりのない場合，十分小さい $C F L=0.01$ と している．計算は，無次元時間 $t=10$ まで行われる。速度 と圧力のカップリングアルゴリズムは，フラクショナル ステップ法を用いている。圧力方程式は，van der Vorst の Bi－CGStab 法 ${ }^{(9)}$ を用いて解き，残差ベクトルの大きさ が $10^{-10}$ になるまで収束させる。このときの連続の式の残差は $10^{-12}$ 程度である。計算領域および格子点数は，それ ぞれ $2 \pi \times 2 \pi$ ， $16 \times 16$ である。計算格子の不等間隔およ び非直交性が保存特性に与える影響を調べるため，直交等間隔格子（COS0，C：Clustering，S：Skew）に加え，格子点制御関数として双曲線正接分布関数 ${ }^{(3)}$ を用いた直交不等間隔格子（ $\mathrm{C} n \mathrm{~S} 0, n=1 \sim 3$ ）および図 2 に示される等間隔非直交格子（ $\operatorname{Cos} n, n=1 \sim 3$ ）を用意した。不等間隔，非直交性 の度合いは，$n$ が増加するほど強くなる。境界条件は，全方向に周期境界条件が課される。初期値の作成は，森西 ${ }^{(2)}$ の方法にほぼ準じている。
4.2 検証結果 図3は，Maliskaのスタガード格子系に おける 2 次精度一般座標系差分スキームの場合の，運動 エネルギー総量の誤差の時間平均絶対値のクーラン数に対する変化を示す。ここで，Maliskaのスタガード格子系 における計算領域全体の運動エネルギーの総和は以下の ように定義する。

$$
\begin{align*}
& K_{1}=\sum_{\xi} \sum_{\eta}\left[\frac{1}{2}\left(\frac{u_{1}^{2}}{J}\right)_{\text {C.S.1 }}+\frac{1}{2}\left(\frac{u_{2}^{2}}{J}\right)_{\text {C.S. } 2}\right]  \tag{42}\\
& K_{2}=\sum_{\xi} \sum_{\eta}\left[\frac{1}{2}\left(\frac{u_{1}^{2}}{J}\right)_{\text {C.S. } 2}+\frac{1}{2}\left(\frac{u_{2}^{2}}{J}\right)_{\text {C.S. } 1}\right] \tag{43}
\end{align*}
$$

ここで，式（42），（43）中の下付添え字C．S．は，直交速度成分が定義されているセル界面の番号を表し，C．S．1および C．S． 2 はそれぞれ，通常のスタガード格子系において，$u_{1}$


Fig． 2 Nonorthogonal uniform grids used for validation tests of conservative properties of finite difference schemes in generalized coordinate system．


Fig． 3 The error of total kinetic energy by the second－order accurate finite difference scheme in Maliska＇s staggered gird layout as a function of Courant number．


Fig． 4 The error of total kinetic energy by the second－order accurate finite difference schemes in the colocated and the modified colocated gird layouts as a function of Courant number．


Fig． 5 The time averaged value of $\mid$（Cont．$-\mathrm{R} 2) \mid$ by the second－ order accurate finite difference schemes in the colocated and the modified colocated grid layouts as a function of Courant number．


Fig． 6 Time averaged streamwise velocity and velocity fluctuations of velocity components by the finite difference scheme in Maliska＇s staggered grid layout．

および $u_{2}$ が定義されているセル界面を表す。計算格子が直交格子の場合，$K_{1}$ の保存特性の誤差は，時間進行法の精度である $O\left(\Delta t^{3}\right)$ に比例して減少しているのに対して， セル界面に接する直交速度成分から構成された運動エネ ルギーの総和 $K_{2}$ は，適切に保存されていない。また，計算格子が非直交の場合，$K_{2}$ の保存特性の誤差が $K_{1}$ の保存特性にも影響を及ぼし，$K_{1}, K_{2}$ がともに適切に保存されな くなる。

一般座標系における 2 次精度の従来のコロケート格子系および修正コロケート格子系差分スキームの場合の，運動エネルギー総量の誤差の時間平均絶対値のクーラン数に対する変化を図4に示す。また，図5には，同計算に おける連続の式（Cont．－R2）の絶対値の最大値の時間平均値 $\mid$（Cont．－R2）$\left.\right|_{\text {max }}$ のクーラン数に対する変化が示されて いる。修正コロケート格子系差分スキームの場合， $\mid\left.($ Cont－R 2$)\right|_{\text {max }}$ が $O\left(\Delta t^{2}\right)$ に比例して隇少することによっ て，運動エネルギーの保存特性が改善されていることが わかる．また，こうした傾向は，不等間隔直交，等間隔非直交のいずれの計算格子においても同様であるため，等間隔正規直交座標系における修正コロケート格子系差分ス キーム ${ }^{(3)}$ が一般座標系に適切に拡張されているといえる。 なお，図では示さないが，運動量の総量の誤差は，格子系，計算格子を問わず，倍精度計算の丸め誤差 $O\left(10^{-15}\right)$ 程度であり，運動量の保存特性には全く問題なかった。


Fig． 7 Time averaged streamwise velocity and velocity fluctuations of velocity components by the modified finite difference scheme in colocated grid layout．

## 5．平行平板間内乱流への適用

5.1 計算の概要 本研究で構成した一般座標系差分ス キームの実際の乱流場への適用例として，壁面摩擦速度 をベースとしたレイノルズ数 $R e_{\tau}=180$ の平行平板間内乱流の計算を行い，スペクトル法によるDNSデータ ${ }^{(11),(12)}$ と比較した。計算アルゴリズムにはフラクショナルス テップ法を用い，時間進行法は，対流項を 2 次精度 Adams－Bashforth法，拡散項をCrank－Nicolsonスキーム により行う半陰解法である。時間間隔は，0．00025である。空間離散化は一般座標系におけるMaliskaのスタガード格子系差分スキームまたは修正コロケート格子系差分ス キームを使用した。圧力 Poisson 方程式はBi－CGStab 法 ${ }^{(9)}$ を用いている。ここでは，計算スキームの影響のみを調查するために，SGS モデルは使用していない。計算格子 は，DNSとしては非常に粗い格子点数（ $33 \times 65 \times 33$ ）を使用している。また，不等間隔直交格子に加え，格子の非直交性の影響を調べるため，壁方向にひずみを持つ不等間隔非直交格子の 2 つの計算格子を使用した。直交格子，非直交格子において壁からの第 1 格子点の壁座標 $y^{+}$はそ れぞれ，$y^{+}=0.45, y^{+}=1.0$ である。計算領域は $x, y, z$ 方向 にそれぞれ，$\pi \times H \times \pi / 2$ である。
4.2 計算結果 スタガード格子系および修正コロケート格子系差分スキームによる流れ方向の時間平均速度分布 および乱れ強度をそれぞれ図6，7に示す。スタカード格


Fig． 8 Pressure－strain term in Reynolds stress budget（finite difference scheme in staggered grid layout and modified finite difference scheme in colocated grid layout，orthogonal grid）．


Fig． 9 Pressure－strain term in Reynolds stress budget（modified finite difference schemes in colocated grid layout，orthogonal and nonorthogonal grids）．

子系差分スキームの場合，格子が非直交だと，平均流速が増加し，乱れ強度が減少する傾向を示している。一方，修正コロケート格子系差分スキームの場合，計算格子の非直交性が平均流速分布および乱れ強度分布に与える影響 は僅かである。従って，運動エネルギーの保存特性が満た されることによって，格子の非直交性，不等間隔に対する解の依存性が小さくなる傾向を持つ。

次に，レイノルズ応力収支式中の圧力ひずみ相関項の対角成分 $\phi_{11}, \phi_{22}, \phi_{33}$ およびそのトレース $\phi_{k k}$ の分布を図 8 ， 9に示す。従来，コロケート格子系差分スキームでは，レ ギュラー格子系における連続の式（Cont．－R2）が満たされ ないことに起因して，圧力ひずみ相関項の計算精度が非常に低かった ${ }^{(7)}$ 。しかし，修正コロケート格子系差分ス キームでは，レギュラー格子系における連続の式の残差 が時間 2 次精度に改善されるのに伴い，压力ひずみ相関項の計算精度が改善され，スタガード格子系差分スキー ムの結果と比較しても遜色のない結果が得られている。 また，コロケート格子系差分スキームの場合，トレース $\phi_{k k}$ の残差がゼロにならないという問題があったが，修正コロ ケート格子系差分スキームの場合，計算格子が非直交で

ある場合でも，トレース $\phi_{k k}$ の残差は $10^{-6}$ オーダーと非常 に小さく，解の信頼性が向上している。

## 4．結 論

森西により提案された等間隔正規直交座標系における修正 コロケート格子系差分スキームを一般座標系に拡張できるこ とを示し，運動量と運動エネルギーの総量が時間的に保存さ れるべき 2 次元周期的非粘性流の数値実験を行った。その結果，不等間隔非直交である任意の一般座標系の計算格子の場合においても，運動量のみならず運動エネルギーの保存特性 が十分であるのは，修正コロケート格子系における一般座標系差分スキームのみであることがわかった．ただし，直交不等間隔の場合は，従来のスタガード格子系における差分ス キームも運動量および運動エネルギーの保存特性が適切であ る．さらに，本研究で構成した一般座標系差分スキームの実際の乱流場への適用例として，平行平板間内乱流の数値計算を行った。その結果，一般座標系における修正コロ ケート格子系差分スキームは，レイノルズ応力収支式の压力ひずみ相関項の計算精度が改善されることによって，統計量の信頼性が向上するとともに，計算格子の非值交性の影響を受けにくい優れた特性を持つことを実証した。

## 謝 辞

本研究を遂行するにあたり，名古屋工業大学，森西洋平助教授からご指導いただいた。記して謝意を表する。本研究は，日本学術振興会特別研究員奨励費（No．7186）および NEDO独創的産業技術研究開発促進事業（ID No．8H代－170） の援助を受けた。また，本研究は，科学技術庁航空宇宙技術研究所，東京大学生産技術研究所，東京理科大学および富山大学間の「計算科学技術共同研究」の一噮として行わ れた。

## 参 考 文 献

（1）森西．（1998）．機論，投稿中
（2）森西．（1996）．機論，62－604，B（1996），4090－4112．
（3）Thompson，J．F．，Warsi，Z．U．A．and Mastine，C．W．（1994）． J．Fluid Eng．，107，18－33．
（4）Maliska，C．R．and Raithby，G．D．（1984）．Int．J．Numerical Methods in Fluids，4，519－537．
（5）Rhie，C．M．and Chow，R．L．（1983）．AIAA J．，21，1525－1532．
（6）Peric，M．，Kessler，R．and Scheuerer，G．（1988）．Computers \＆Fluids， 16－4，389－403．
（7）大岡•持田•村上，（1997）．生産研究，49－1，19－26．
（8）小垣•小林•谷口（1997）．第11回数値流体力学シンポジウム講演論文集，501－502．
（9）藤野•松本•水藤（1991）．第5回数値流体力学シンポジウム講演論文集，501－504．
（10）Kim，J．，Moin，P．and Moser（1987）．J．Fluid Mech．，177，133－ 166.
（11）Mansour，M．N．，Kim，J．and Moin，P．（1988）．J．Fluid Mech， 194，15－44．
（12）大岡 •村上•持田（1997）．生産研究，49－1，19－26．

# 航空宇宙技術研究所特別資料41号 

平成11年2月発行
発行所科学技術庁航空宇宙技術研究所東京都調布市深大寺東町7－44－1電話（0422）40－3075 〒182－8522
印刷所株式会社廣済堂東京都港区芝2－23－13
（C）禁無断複写転載
本書（誌）からの複写，転載を希望される場合は，管理部研究支援課資料係にご連絡ください。


[^0]:    ＊1 三菱重工業 Mitsubishi Heavy Industries，Ltd．
    ＊2 宇宙開発事業団 National Space Development Agency of Japan

[^1]:    ＊1 三菱重工業（株），＊2 航空宇宙技術研究所

[^2]:    ＊航空宇宙技術研究所，National Aerospace Laboratory

[^3]:    ＊航空宇宙技術研究所 角田宇宙推進技術研究センター

[^4]:    ＊1 東京大学大学院工学系研究科航空宇宙工学専攻
    ＊2 東京大学大学院工学系研究科航空宇宙工学鹿攻 助教授

[^5]:    ${ }^{1}$ 東北大学大学院学生
    2 東北大学大学院工学研究科

[^6]:    防衛大学校，National Defense Academy

[^7]:    ＊航空宇宙技術研究所
    角田宇宙推進技術研究センター

[^8]:    試験気流淀み点エンタルピ最大 $25 \mathrm{MJ} / \mathrm{kg}$試験気流淀み点圧力試験気流持続時間

    最大 150 MPa
    2 msec 以上

[^9]:    ＊1 航空宇宙技術研究所 角田研究センター
    $\bar{T} 981$－1525 宮城県角田市君荁字小金沢 1

[^10]:    1．はじめに
    現在，日本でも極超音速機の研究•開発が行われている。 スクラムジェットなどの空気吸込み型エンジンを使う極超音速機は中程度の極超音速域（2．5～4．5km／s）での運用が計画されている。このようなシステムを開発するにあたっ て，数値流体力学（CFD）による流れ場解析は，実験の困難 な条件をも再現できることやコストパフォーマンスの面に おいて，欠かすことのできない解析手段である。しかしな がら，それに使われる CFD コードは，流れ場の再現性を十分に検証されたものでなければならない。極超音速流れは熱化学的な非平衡状態をともなうため，極超音速流 CFDコ ードの再現性の是非は熱化学非平衡を取り扱うモデルによ るところが大きい。

    極超音速流 CFD コードによく使われる熱化学非平衡モデ ルに，Park の 2 温度モデル ${ }^{1}$ がある。このモデルは，混合気体に対して，並進•回転温度と分子振動•電子励起温度 の 2 つの温度を定義するモデルである。スペースシャトル の大気圈再突入時などの高い極超音速流れでは，空気中の気体分子が離脱衝撃波背後でかなり高温まで加熱され，酸素分子が直ちに解離する。このとき，衝撃層に分子の状態 で残っているものは大半が窒素分子であるから，衝撃層内 の分子の振動温度は窒素分子の温度で記述できる。この場合，Park の 2 温度モデルは，熱化学非平衡流れをよく再現 できることが知られている。

[^11]:    ${ }^{* 1}$ 東北大学工学研究科航空宇宙工学専攻

[^12]:    ＊航空宇宙技術研究所，National Aerospace Laboratory

[^13]:    ＊ 1 航空宇宙技術研究所

[^14]:    ＊1 日産自動車（株）＊2航空字宙技術研究所

[^15]:    ＊航空宇宙技術研究所，National Aerospace Laboratry

[^16]:    ＊航空宇宙技術研究所，National Aerospace Laboratry

[^17]:    $\dagger$ 東京都立科学技術大学，$\ddagger$ University of Salford，U．K．

[^18]:    ＊1 九州大学工学部（〒812－8581 福岡市東区箱崎6－10－1）．

[^19]:    ＊ 1 航空宇宙技術研究所 航空エンジン研究部
    ＊2DLR ドイツ航空宇宙センター 推進技術研究所

[^20]:    ${ }^{1}$ 九州大学工学部 ${ }^{* 2}$ 九州大学大学院工学研究科 ${ }^{3}$ 九州電力株式会社

[^21]:    ＊1 石川島播磨重工業＊2 航空宇宙技術研究所

[^22]:    ＊ 1 富士通（株）〒 261 千葉市美浜区中瀬1－9－3
    ＊＊航技研 〒 182 調布市深大寺東町 7－44－1
    $* 3$ 東北大工 $\overline{\text { T }} 980-77$ 仙台市青葉区荒巻

[^23]:    ＊ 1 東北大学工学研究科大学院
    ＊2 東北大学工学研究科航空宇宙工学専攻

[^24]:    $\cdot 1$ 三菱重工業（株）

[^25]:    1 川崎重工業森岐阜技術研究所
    ${ }^{2}$ Gifu Technical Institute，Kawasaki Heavy Industries

[^26]:    ＊富士重工業株式会社

[^27]:    1 東北大学大学院学生，
    2 東北大学大学院工学研究科

[^28]:    ＊航空宇宙技術研究所

[^29]:    ${ }^{*} 1$ 三菱重工業（株）${ }^{*}$ 2中菱エンジニアリング（株）
    ＊3宇宙科学研究所 ${ }^{*} 4$（株）CTI

[^30]:    1．東京大学先端科学技術研究センター
    2．東京大学大学院工学系研究科，現，日立製作所マルチメ ディアシステム研究開発本部

[^31]:    1コミュータヘリコプタ先進技術研究所（ATIC）
    2航空宇宙技術研究所

[^32]:    ${ }^{\text {＊}}$ 航空宇宙技術研究所

[^33]:    ${ }^{1}$ 航空字宙技術研究所 流体科学総合研究ダループ乱流数值解析研究タループ

[^34]:    1）航空宇宙技術研究所，${ }^{2}$ ）東京大学大学院

[^35]:    ＊名大•院
    ${ }^{\dagger}$ 名大・エ

[^36]:    ＊航空宇宙技術研究所 計算科学部，Computational Sciences Division，National Aerospace Laboratory JAPAN，（E－mail：aiso＠ nal．go．jp）

[^37]:    1エントロピー解（厳密解）への収束が保証されている差分近似にお いて，sonic－point（音速点，即ち $f^{\prime}=0$ となる点）の周辺で生じる膨張波の数値解に於いて膨張が不十分になり物理的には有り得ない数値的 な特異性が生じる現象。下の図で丸で囲んだ部分のような現象。（実線 が厳密解，・が数値解）
    

    離散化を密にする事により特異性が量的に減少しエントロビー解に近 づいていくので，Murmann－Roe 差分（付加粘性なしの上流差分）等で膨張す心石連続が膨張せずに物理的に有り得ない逆衝撃波を生じて しまら現象とは異なり，数値解の定量的な質に関連する問題である事 に注意する。Hartenにより提唱されたエントロピー修正（Entropy－fix） の方法を Murmann－Roe 差分に施した差分スキーム（このときエント ロピー解八の収束は［1］により保証される）で膨張波を数値計算した場合がこのbridge 現象の典型例として知られている。

[^38]:    ＊航空宇宙技術研究所計算科学研究部

[^39]:    ＊早稲田大学理工学部機械工学科
    ${ }^{2}$ 2当時早稲田大学大学院，現在（株）荏原製作所
    ＊航空宇宙技術研究所航空推進総合研究グル—プ

[^40]:    ＊1 航空宇宙技術研究所 National Aerospace Laboratory ＊2 川崎重工株式会社 Kawasaki Heavy Industries

[^41]:    5．格子依存性
    NALコードの格子依存性を調べるために，07HOP

[^42]:    ＊航空宇宙技術研究所角田宇宙推進技術研究センター

[^43]:    $A^{\text {東京本機大学 工学部 機械厂学科 }}$
    $B$ 東宗棵機大学 1 学部 機械T学科

[^44]:    ＊航空宇宙技術研究所

[^45]:    ＊1 東京大学大学院（日本学術振興会特別研究員），＊2 東京大学生産技術研究所，＊3 航空宇宙技術研究所

