チャンネル流遷移の直接シミュレーション

山本稀義 ${ }^{1}$ ，高橋直也 ${ }^{2}$ ，神部勉 ${ }^{3}$

Direct Numerical Simulation of Channel Flow Transition

Kiyoshi YAMAMOTO ${ }^{1}$ ，Naoya TAKAHASHI ${ }^{2}$ and Tsutomu KAMBE ${ }^{3}$

Abstract

Laminar－turbulent transition of channel flow is directly simulated on a parall el－super computer．To calculate the Navier－Stokes equation，a Fourier－Chebyshev spectral method is applied．For a super－critical transition，the simulation starts with an initial velocity given as the basic flow plus small disturbances，and the evolution of the disturbances is pursued until the flow breaks down to turbulence． On the other hand，for a sub－critical transition，the secondary instability induced by an initial flow given as the basic flow plus a Tollmien－Schlichting wave with a large assigned amplitude is simulated．Numerical results obtained by the simulation agree well with ones obtained by the linear stability theory and experiments．

Key Words：channel flow，transition，DNS，Tollmien－Schlichting wave，Λ vortex

1．はじめに
基本的剪断流の中でチャンネル流は平行流の仮定が厳密に成立することから，これまで理論的に も実験的にもしばしば研究されてきた。この性質 はまた計算する場合にも都合が良くて，チャンネ ル乱流の直接シミュレーション（DNS）が盛ん に行われている所以である ${ }^{1)}$ 。
剪断流の層流から乱流への遷移機構は理論的に は主として線形安定性理論によって研究されてき た。しかし，遷移は最終段階では3次元撹乱の非線形増幅によって完成するので，線形理論のみで遷移過程を全て記述することは出来ない。一方，航空機の設計等で翼面境界層の遷移予測法として使用されている $\mathrm{e}^{\mathrm{N} \text { 法は線形理論に基づくので }{ }^{2} \text { ，}, ~, ~}$遷移過程における線形増幅領域を明確に把握する ことは応用分野においても重要である。本研究は翼面境界層の遷移で重要な役割を果たしている T S 波不安定による遷移過程を明らかにする目的 で，同じ遷移機構を持つチャンネル流遷移の精密 なDNSを行った。

2．計算法の説明

流れの座標系は図 1 の様に，基本流 $U\left(=1-z^{2}\right)$ の方向に x ，壁に垂直に z，スパン方向に y を

[^0]

図1 チャンネル流
とる。流れを $U+\mathbf{u}$ と分解し，乱れ成分 $\mathbf{u}(u, v, w)$ は x, y 方向に周期性を仮定して $\mathbf{u}(\mathbf{x}, t)=\sum_{k x} \sum_{k y} \mathbf{u}\left(k_{x}, k_{y}, z, t\right) \exp \left(i k_{x} x+i k_{y} y\right)$

とフーリエ級数展開して表す。（計算領域 $L_{x}=$ $L_{y}=4 \pi$ で，$k_{x}=\left(2 \pi / L_{x}\right) n_{x}, ~ n_{x}=0, \pm 1, \cdots$ で ある。） $\mathbf{u}\left(k_{x}, k_{y}, z, t\right)$ はナビェ・ストークス方程式から $x, ~ y$ 方向にフーリェ・スペクトル法，z方向にチェビシェフ・コロケーション法を適用し て計算される。この時，ナビェ・ストークス方程式の時間積分にはAdams－Bashforth－Crank－Nicol－ son法を使用する。レイノルズ数 R はチャンネル の半幅と中心（最大）速度で定義される。 計算に

チャンネル流の臨界レイノルズ数 R_{c} は線形安定理論から5772と導かれている ${ }^{3)}$ 。したがって， レイノルズ数が R_{c} より大きい場合は微小撹乱か らTS波の線形増幅によって遷移が実現出来る。一方，レイノルズ数が R_{c} より小さい場合は微小撹乱の線形増幅は実現しないので，初期速度場に あらかじめ有限振幅（ $\cong 10^{-2}$ ）のTS波を加えた 2 次不安定遷移のDNSを行う ${ }^{4)}$ 。これは実験に おける振動リボンによる強制的遷移をシミュレー ションしている5）。

3．超臨界遷移のDNS（ $R=10000$ ）

超臨界遷移のシミュレーションとして $R=10000$ のDNSを実施した。図2は遷移過程 における撹乱の種々のモードの発達過程を示す。横軸 t は無次元時間で，緃軸 E は乱れのフーリェ成分（ k_{x}, k_{y} ）のエネルギー（の 2 倍）

$$
\begin{equation*}
E\left(k_{x}, k_{y}\right)=\frac{1}{2} \int\left|\mathbf{u}\left(k_{x}, k_{y}, z\right)\right|^{2} d z \tag{3}
\end{equation*}
$$

を表す。図中の実線は 2 次元擋乱 $E\left(k_{x}, 0\right)$ ，破線 は 3 次元擋乱 $E\left(k_{x}, k_{y}\right)$ を示し， $0 \leq n_{x}, n_{y} \leq 7$ の モードの発達過程が描かれている。

撹乱の初期条件は

$$
\begin{array}{rlrl}
E\left(k_{x}, k_{y}\right) & =10^{-10} & \text { for } & \\
& 0 \leq\left|n_{x}\right|,\left|n_{y}\right| \leq 7 \\
& =0 & & \text { otherwise }
\end{array}
$$

と励起さえた。
時間と共に 2 次元のTS波 $E(1,0)$ が指数関数的
に増幅するが，これは線形増幅の特徴で，その勾配は線形安定理論の増幅率とよく一致している。 さらに，このTS波のエネルギーがほぼ 10^{-4} に到達する（ $t \sim 1600$ ）と 3 次元撹乱（破線）が急激 に成長してきて，流れは急速に乱流に遷移するこ とがわかる。この様な 3 次元撹乱の不安定は，T S 波の振幅が 10^{-2}（ E では 10^{-4} ）を超えた場合 に発生する 2 次的（非線形）不安定性から誘起さ れた現象で，実験的観測ともよく一致している。

本シミュレーションでは全遷移期間は約1800と見ることが出来る。その内，TS波 $(1,0)$ の線形増幅期間は100～1600と考えられ，こえは前記全遷移期間の 80% 以上を占めている。したがって， この様な遷移過程については，全遷移期間を線形

増幅期間から推定しても良い近似値が得られるの で，前記の e^{N} 法による遷移予測法はよい近似と なると言える。しかし，初期擋乱が大きくなると線形増幅期間は相対的に短くなるので， e^{N} 法の精度は悪くなることが分かる。また，本計算は擋乱の時間的増幅を計算した結果であるが，空間的増幅の場合についても座標変換すれば同様に考え ることが出来る。

図2 超臨界遷移（ $R=10000$ ）の シミュレーション

図3 亜臨界遷移（ $R=5000$ ）の
シミュレーション

4．亜臨界敩移のDNS $(R=5000)$

実験的にはレイノルズ数が R_{c} 以下でも乱流に遷移することが知られているが，この様な遷移過程をシミュレーションするためには初期に大きな擋乱または大振幅のTS波を加えておくことが普通である。これは実験で振動りボンによって大振幅撹乱を加えて3次元化撹乱の非線形不安定を誘起することに対応している5）。図3はR＝5000で初期にTS波のエネルギーを $E(1,0)=1.4 \times 10^{-4}$ と与えた場合の遷移過程の計算結果を示す。 $E(1,0)$ 以外の撹乱成分は $E\left(k_{x}, k_{y}\right)=10^{-12}$ と与 えられた。これは丁度図2（ $R=10000$ ）の時刻 $t \approx 1600$ の流れの状態を与えた場合とも考えるこ とが出来る。計算結果は亜臨界レイノルズ数にお ける有限振幅TS波の2次不安定性によって誘起 される 3 次元微小摚乱の増幅過程を示している。

5．非線形遷移領域の渦構造

前節まではレイノルズ数が5000と10000のTS波型遷移における種々のモードの発達過程を見て きた。TS波については2次元TS波が最大の増幅率を持つことが知られていて，DNSの結果は線形安定方程式（OS 方程式）から計算された増幅率とよく一致する。 2 次元TS波が発達して大振幅になると，このTS波による2次（非線形）不安定性が発生し，それまで安定であった3次元微小撹乱の増幅が始まる。その結果， 2 次元TS波の一定なスパン（y）方向の振幅に高低の波（ peak－valley）が発生し，それが時間と共に発達することによって，流れの3次元化が進行する。 この様なpeak－valley構造は流れの中の Λ 型の渦 の発生と密接に関連している。図4と図5に $R=10000$ と $R=5000$ の非線形遷移領域に発生 する Λ 渦を示す。これらの図では渦度の等値面が可視化されている。図 4（a）は Λ 型の渦がスパン方向に平行なTS波のuの負の領域に並んで発生 することを示す。また，図 4（b）は Λ 渦が時間と共にスパン方向にさらに密に発達すると共に，1部分では微細な乱流構造が発生していることを示 している。なお，これらの結果は $R=10000$ でも非線形僊移領域を早く得るため，流えの初期条件

に図3と同様な有限振幅のT S 波を与えた場合の シミュレーションによって得られた結果であるの で，各（a），（b）の時刻 t は図 2 の場合とは異なっ ている。一方，図5は図3のシミュレーションの結果を可視化したもので，図5（a）は Λ 渦がス パン方向に 2 列に並んでいるが，（b）では発生し た高渦度領域が流れ（ x ）方向に伸びてつながり，渦のストリーク構造が実現していることを示して いる。図4と図5に示された 1 渦の発達過程の違 いはレイノルズ数の違いによるものと考えられる が，その機構は今後の問題である。

6．むすび

翼境界層の遷移で重要なTS波型遷移の力学機構を解明するため，同じ遷移機構を持つチャンネ ル流遷移のDNSを実施した。超臨界遷移として レイノルズ数が10000，亜臨界遷移として5000の遷移過程がシミュレーションされた。計算結果は線形安定理論及び従来の実験結果とよく一致し，本シミュレーションの精度が検証された。また，大振幅TS波によって誘起された 2 次不安定性に よる流れの 3 次元化の過程で基本的役割を果たす Λ 渦の発達過程を可視化した。その結果，高渦度領域は $R=10000$ の場合はスパン方向に発達する が，$R=5000$ の場合は流れ方向に発達し，スト リーク構造が実現することが分かった。

参 考 文 献

1）Canuto，C．et al：Spectral Methods in Fluid Dynamics，Springer Verlag， 1988.
2）Srokowski，A．J．\＆Orszag，S．A．：AIAA Paper 77－1222（1977）．
3）Orszag，S．A．：J．F．M．，Vol． 50 （1971） 689.
4）Yamamoto，K．：Numerical Simulation on Lami－ nar－Turbulent Transition of Channel Flow with Simulated Wall Roughness，in Laminar－ Turbulent Transition（ ed．Kobayashi，R．， Spriger，1995） 245.
5）Nishioka，M．et al：J．Fluid Mech．Vol． 72 （1975）731－751．

図4 チャンネル流遷移の非線形領域に発生する渦構造（ $R=10000$ ）

（a）$t=280$
（b）$t=320$

[^0]: ${ }^{1)}$ 航空宇宙技術研究所，${ }^{2)}$ 東京大学大学院
 ${ }^{3}$ ）東京大学理学部

