省エネルギー型はく離制御

望月 修（北大院）

Energy－Saving Control of Separation

O．Mochizuki＊
＊Division of Mechanical Science， Hokkaido University

Abstract

The appropriate timing to start controlling a dynamic stall was studied to find a way to reduce the total amount of energy to suppress separation．The dynamic stall of an airfoil in pitching－up motion was adopted because the time when separation occurs can be determined beforehand．The angle of attack was increased from 0 to 30 degrees at a constant angular velocity．The timing of control was defined as the interval from the start of control to the onset of separation without control．A wall jet ejected from a thin slit near the leading edge at a constant velocity was used to suppress the separation．Many combinations of timing of the ejection and velocity of the jet were tested to determine the optimum amount of energy required to suppress the stall．It was found that， within the limits of our experimental conditions，there exists an optimum combination．

Key Words：Dynamic Stall，Active Control，Airfoil，Wall－Jet，Saving Energy，Optimization

1．はじめに

はく離を抑制するために必要なエネルギーを減らすために，はく離制御をいつ開始するかと いうタイミングについて研究した。予めはく離 がいつ起こるかがわかっている流れ場として，図1に示すように，ピッチングアップ冠動する翼の動的はく離を採用した。迎角は 0 から 30 度 まで一定角速度で増加する。翼の前縁から一定速度で吹き出す壁面噴流をはく離扣制に用いた。制御に必要な最小エネルギーを見いだすために，噴出のタイミングと噴出速度の種々の組み合わ せを試した。この結果，本実験の範囲内におい て，はく離を抑制するときに最小エネルギーで済む最適制御開始時刻の存在を明らかにした。

2．実験装置および方法

はく離を検出するために，図1に示す測定点 （A）において，後流の速度変動をモニターした。翼のピッチング角速度 ω を無次元にして $S=\omega c$
／（2U）で表す。ここに，cはNACA0020翼の翼弦長，Uは主流速度である。

3．実験結果

制御をかけないときにおける $S=0.012$ でピ ッチングアップする翼の後流速度変動を図2に示す。横軸の時刻 $t *=t U / c$ は，はく離が起こる時刻を0として計った無次元時間である。した がって，負符号ははく離発生以前であることを表す。翼がピッチングアップ運動を開始した直後（－20＜$t *<-15)$ に見られる変動波形は，翼 に発達した境界層が翼後端からはく離して形成 された後流によるものである。その後，速度波形には $t * \div-2$ まで目立った変動が見られず， この間はく離が起こっていないことを示してい る。 $t *=-2$ から速度変動の振幅が大きくなり， $t * 0$ で急激に速度が湾動し，この時点ではく離 が生じたことがわかる。動的はく離の発生迎角 は28度である。

動的はく離の制御では，図2 で示された速度変動波形変化における $t * 0$ 以降の急激な変動 が生じないようにすることである。結果の一例 を図 3 に示す。図中の波線で示したものは制御用噴流の速度変化である。すなわち，この図の場合，$t *-6$ から噴流をステップ状に $V_{j} / U=3.1$ で吹き始めたことを示している。この結果，$t *$ 0 以降にはく離に伴う急激な速度変動波形が見 られず，はく離が抑制されていることがわかる。 なお，この場合，制御をかけないときのはく離 が生じた時刻を $t=0$ としている。図 3 には，速度変動波形の $t *=-2$ に小さな加速が見られ るが，これは噴流の吹き出しによる加速が検出 されたものである。

このように噴流を $t *_{S}$ に吹き出してから $t *_{E}$ に制御を終了するまでに必要な総エネルギー E_{j}（次式）を図4に示す。なお，t＊－6に制御開始し たときのものを基準としてプロットされている。

$$
E_{j}=\int_{t^{*} s}^{t^{*} E} \frac{1}{2}\left(\rho b l V_{j}\right) V_{j}^{2} d t
$$

ここに，bはスリット幅，lはスパン長さである。制御開始時間が $t *-6$ までは，ほぼ一定の最低噴流噴出速度であるから，その間は時間ととも に直線的に減少する。 $t *-6$ で最小値を示した あと，急激な増加となっている。したがって， $t *-6$ が必要最小エネルギーで，はく離を制御 できる開始時刻であることがわかる。このとき の総エネルギーは，主流が翼弦長を代表寸法と した領域で保持しているエネルギーに対して 10% 程度であることがわかった。

4．おわりに
はく離が起こらないようにその直前に制御を開始することによって，少ないエネルギーでは く離の予防が可能なことを示した。

Fig． 1 Coordinate system and symbols．

Fig． 2 Velocity signature without control．

Fig． 3 Velocity signature with control．

Fig． 4 Minimum amount of energy to suppress separation versus timing to start control．$\quad S=0.012$ ．

