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Abstract

A Cartesian grid generation method has been developed for fast and automated analysis of inviscid flows
around 3D bodies. It can take into account non-simple cases of intersection between a solid surface and a
Cartesian grid, so that a cell containing a thin body, a sharp edge or multiple solid regions is properly
handled. These cases appear frequently in the computation of a supersonic transport (SST) model. To
increase the efficiency of computation, a pseudo-planar approximation is made to represent a body surface
inside a cell, resulting in a reduction of total body surface elements by a factor of about three in this
application. Higher efficiency is achieved using a new algorithm for local grid refinement around a curved

surface.

1. Introduction

Cartesian grids have become popular recently, due
to their ability to treat complicated geometries with less
effort. The time of grid generation is also very short.
However, being non-body-fitted, Cartesian grids may
have problems concerning intersection between grid and
solid surface. One of such problems is found in handling
a very thin part of a body, such as the outboard wing of
SST, where a cell might contain two flow regions
separated by the thin body, each of which belongs to a
difterent wing surface: upper and lower surfaces. If no
distinctions between those two flow regions are made, a
conventional flow solver will mistakenly consider them
as one flow region, leading to an erroneous solution.

There are several possibilities to overcome this
problem. (1) Multiple overlapping grids can be locally
fitted to some parts of the body. However, this grid
generation process can no longer be made automatic nor
simple. (2) The problem cell can be refined until each
cell contains a single flow region.”* This approach is
impractical as a large number of cells are produced and
the cell size becomes prohibitively small. (3) It is a
hybrid of Cartesian and prismatic grids. The latter grid
is employed to discretize a boundary layer, which
intersects with a Cartesian grid outside it.”" However,
this grid generation process would be even more
complicated. (4) The problem cell can be split into two
sub-cells in such a way that each sub-cell contains a
unique flow region,””"" as introduced by Melton, Berger,
Aftosmis and Wong.’

An alternative cell-splitting algorithm is proposed
here in this study, where intersection between a body
surface and a cell is simplified using pseudo-plane
approximation to increase computational efficiency."
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Validation has been carried out on a very thin double
wedge in a supersonic flow, where significant improve-
ment in accuracy was achieved. The method can be
further extended to consider a cell with a sharp edge as
well as a cell with two solid regions, the cases of which
are found when treating a SST model. A new local grid
refinement around a curved surface is also proposed for
a better efficiency.

2. Grid Generation Method

The procedure of the grid generation method
proposed here is briefly outlined in the following. First a
coarse, uniform grid is generated around a body inside a
computational domain. Then grid refinement is made
around the body surface in such a way that the grid
resolution increases toward the surtace. Further refine-
ment is pertormed around curved parts of the body.

Then we compute the geometrical properties of
cells with irregular shape produced by intersection with
the body surface. For this, a special algorithm has been
developed in this study, so that even complicated case of
intersection can be treated. )

2.1 Treatment of Irregular Cells at Body Surface

Generally, intersection between a grid cell and a
body surface has many levels of complexity, which can
be classified by the number of tluid or solid regions
existing inside a cell (see Fig. 1). Class 1 is the case
where there is no intersection with body surface, which
is the simplest case. Class 2 is a simple intersection,
where there are one flow region and one solid region
within the cell. When the intersection becomes more
complicated, there might be two flow regions and one
solid region, or two solid regions and one tlow region
within the cell, which belongs to class 3. The present
method can treat the cases ranging from classes 1 to 3.
Beyond these three cases, intersection becomes too
complicated to deal with, and furthermore, such cases
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are so rare, that the cell is further refined.

The intersection cases mentioned above determine
calculation methods of the cell geometrical properties,
which consist of (1) volume, (2) face area, and (3) face
normal vector. The outline of the algorithms used here
is shown in Fig. 2.

Important features of the algorithms, such as
pseudo-plane approximation, and the treatment for cells
intersecting body surface, are briefly described in the
following sub-sections.

2.1.1 Pseudo-Plane Approximation
The following two assumptions are a base of the
method proposed in this study:
1. A body surface is approximated to be pseudo-
planar within a cell (see Fig. 3).
2. One cell at body surface contains one solid region
and one tluid region.
The first assumption simplifies the representation of
body surface within a cell by a single panel, and thus
minimizes the requirement for memory space. The term
‘pseudo’ is used since the actual body surface within a
cell is not planar in general. Its normal vector and area
are thus calculated from the constituent triangular
panels (see Figs. 3b and 3c). In other researches dealing
with the cell-splitting method, such simplification is not
made, so that all bo@zl elements inside a cell are stored,
as shown in Fig. 3a.” ! Therefore, those methods gene-
rally need a larger memory space than the present one.
The second assumption provides another simpli-
fication since the relation between cell and body surface
is made unique, leading to efficient computation.

2.1.2 A Cell Containing A Normal Geometry or A
Sharp Edge (Class 2)

To classity an intersection, the number of body
surface within a cell is first identified (see Figs. 2 and 4).
When there is only one body surface, the body geometry
is classified as either normal geometry or sharp edge.
Here a sharp edge is defined as a pair of neighboring
body panels with 8 < 30°, where 0 is the angle made
between these panels.

For the case of normal geometry, computing cell
geometrical properties is simple, since a polyhedron
representing the flow region inside the cell can readily
be constructed. For the sharp edge case, however,
according to the first assumption mentioned above, the
body inside the cell will be truncated, or blunted (see
Fig. 5a). This is undesirable since it deteriorates solution
accuracy. To preserve the original shape as much as
possible, the cell should be split along the sharp edge by
placing a splitting panel (see Fig. 5b). By considering
each flow region separately, the geometrical properties
can be computed in the same manner as the normal
case.

2.1.3 A Cell Containing Two Flow Regions or Two
Solid Regions (Class 3)

A cell contains two body surfaces in the following
two cases: (1) one solid region and two flow regions,
and (2) two solid regions and one flow region (see Fig.

1). Two solid regions exist in a cell if the surfaces are
facing each other, that is, Eqn. (1) is satisfied (see Fig.
6).

n, -(xCZ =X, )>0, f, -(Xcl =X, )>o (1)
where Xc and N are the position vector of centroid

and the normal vector of the pseudo planar body surface,
respectively. Subscripts 1 and 2 denote each body
surface.

In both cases, the cell is split into two sub-cells,
where only one interface between fluid and solid
regions is considered in the cell, tollowing the second
assumption that there can only be one flow region and
one solid region in a cell. The geometrical properties of
polyhedron of each tlow region are then computed as in
the case of normal cell geometry.

Although in case (2) the cell should not be split
since it contains only one flow region, it is actually split
to be consistent with the second assumption, where the
geometry properties in each sub-cell are modified so as
to become the same as those of the original cell. They
are re-merged in the stage of solving to give an identical
solution equivalent to the original one (see Fig. 2).

2.2 Local Grid Refinement around Curved Body
Surface

Here in this study grid refinement is carried out
isotropically, which means that a three-dimensional cell
is refined into eight sub-cells of equal shape and size in
all Cartesian directions.

Since the pseudo-planar approximation is less
accurate at curved body surface, more refinement is
needed as the curvature of body surface increases.
However, as the curvature becomes infinity at a sharp
edge, excessive refinement will result, and consequently
a large number of very small cells will be produced. In
this study, such cell is split instead. Thus, grid
refinement criteria used by other methods cannot be
applied, because more refinement takes place as the
body surface becomes more curved. Those criteria are
listed in the following; (1) a cell larger than the
characteristic size of body panels it intersects, ’ (2)
small angle between neighboring body panels within a
cell,”" and (3) a cell with more than one vertex of body
panel."

A new criterion is proposed here. where local grid
refinement is carried out between two extreme cases:
sharp edge and flat surface. To implement this, the
absolute value of the cosine of angle 8 between two
body panels is employed, since it takes a maximum
value of 1 at © = 0° (sharp edge) and 180° (flat surface).
and a minimum value of 0 at ® = £90°, as in Eqn. (2).
The minimum value of all combinations ot body panels
within the cell is considered to capture a curved body
surface even if its mesh is so fine that the angle between
neighboring panels tends to that of a tlat surtace.

An edge with 8 < 6, = 30° is considered a sharp
edge in this study, which is treated by the method
described in section 2.1.2. On the other hand, a cell

Thic dociiment i nrovided hv TAXA



M7 I 2L — 3 3 Yy v KD o Lgm 271

containing body panels with 30° < 16| < 150° is refined.

min‘ni 'ﬁj‘<COSGlim
for 1<i,j<N, and 1# ] (2)

where all combinations of i and j are considered. n;

and ﬁi are the normal vectors to body panels 1 and j,

respectively, and N, is the total number of body panels
within a cell.

The methods described above will be applied to a
Cartesian grid with the problems of thin body, sharp
edge and two solid regions.

3. Flow Solver

The Euler equations are solved to calculate inviscid,
compressible flows on a Cartesian grid generated by the
present method. The flow solver employed here is based
on the cell-centered finite-volume scheme, where the
numerical flux is calculated using Hinnel’s flux-vector-
splitting scheme."” The solution is advanced in time
using a three-stage Runge-Kutta Method. Furthermore,
convergence is accelerated using the local time stepping.

To achieve a reasonable time step, an extremely
small and irregular cell produced by intersection of
Cartesian grid with body surface is merged with its
neighboring cell of larger size, which is carried out by
taking the summation of mass, momentum and energy at
all boundaries of the two cells. The same procedure is
also used to merge the flow regions inside the cell for
the case of two solid regions (see section 2.1.3).

4. Computation on Supersonic Transport Model

The present method was applied to a model of
supersonic transport shown in Fig. 7a. The body surface
consists of 9,906 triangular panels and 5,068 nodes for a
semi-span model. Since the surface mesh of the model
used here originally was not intended for CFD analysis,
those triangles are of irregular size and shape. Such
surface is not appropriate for body-fitted grid, whether
structured or unstructured, because the smoothness of
surface mesh is very important. Cartesian grid, on the
other hand, is much less dependent on surtace mesh
quality. The only parameters that a user needs to set are
the dimension of computational domain, the size of
coarsest grid (level 0), and the highest level of grid
refinement. The rest of the procedures are automatic.

Two tests are performed to examine: (1) the
efficiency of the cell-splitting method, and (2) the eftfect
of local grid refinement on accuracy. The flow is
calculated under the conditions of M=2.4 and o=1.5°.

4.1 Cell-Splitting

An identical grid is used here, as shown in Figs. 7a
and 7b. The grid is refined up to level 8, which
corresponds to 538 cells along the axial length of
aircraft. In other words, if the actual length of the
aircratt is in the order of 100 m, the side of the smallest

cubic cell will be about 19 cm. The cell geometrical
properties are computed using two methods: the non-
cell-splitting method as the baseline, and the cell-
splitting method.

Pressure distributions on wing are shown in Figs.
9a and 9b. The pressure coefficient is plotted at 4
stations in the spanwise direction: n=0.3, 0.5, 0.7 and
0.9, where 1 is the ratio of the spanwise length to the
half-span. When using the non-cell-splitting method, the
thin-geometry problem is clearly seen even at 1=0.3,
especially near the trailing edge (see Fig. 9a).

By employing the cell-splitting method, a much
more improved solution is obtained over the whole wing
(see Fig. 9b). The tlow solution near the leading edge.
however, is less satistactory, which is mainly due to low
grid resolution in this region.

The total number of cells in the cell-splitting
method is 265,418, which is a 1.3% increase compared
with that of the non-cell-splitting method, which is not
significant (see Fig. 8). On the other hand. the pseudo-
plane approximation used in the cell-splitting method
reduces the total number of body elements from
171,104 to 53,039, which 1s a factor of 3.2. As a result.
the storage of the area and the normal vector of the
panels decrease trom 5.48MB in double precision for
the baseline method to 1.70MB.

Although this reduces the total number of flux
surtaces, which are composed of cell surfaces and body
elements from 793,797 to 681,268, this advantage does
not lead to a significantly faster flow computation. since
there are other opposing factors that have greater eftect
on the speed of computation. The main factors are small
size and shape irregularity of cells at body surface.
which lowers CFL number. leading to slow computation.
The typical tlow computation time for the present
configuration is in the order of one or two days on a
NEC’s EWS 4800/360MP workstation with R4400/
100MHz processor.

The time to generate the grid using the current
method is 1 hour 24 minutes of CPU time, where 67.6%
of the total time is used for computing cell geometrical
properties. 62% of this time span is used for checking
each body panels for intersection with a particular cell
at body surface. Since there are 53.039 cells at body
surface and 9,906 original body panels, the checking
algorithm is invoked 525 million times. A better
approach to check only the panels in the vicinity of a
particular cell is desired for further improvement.

4.2 Local Grid Refinement

A grid with local refinement around curved body
surface is generated, so that the refinement level varies
from 7 to 9 along the surface, which corresponds to cell
sizes of about 37 c¢m to about 9 cm for SST of axial
length 100 m (see Fig. 7c).

The grid contains 175810 cells. which is a
reduction of 34% over the cell-splitting method without
local grid refinement (see Fig. 8). 18.6% of the total
cells intersect with body surface. Regarding the original
body surtace elements, 87.2% of these cells have body
panels with a connecting angle 8 between 150° and 180°.
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which are considered to be nearly flat. On the other
hand, the cells including a sharp edge with 0° < 6 < 30°
account for 3%, all of which were split by the sharp-
edge splitting method. Cells with 30° < 6< 150°
account for 9.8%, which are most refined. In particular,
cells with 80° < 6 < 100°, which are considered to be
least accurate due to the pseudo-planar approximation,
account for 4.8%. It is expected that the present grid can
capture the flow properties efficiently and effectively,
because those unfavorable cells account for a small
percentage and their sizes are the most refined.

It is evident that the pressure rises sharply near the
leading edge, whereas the pressure distribution along
the rest of the wing remains almost the same (see Figs.
9b and 9c). The number of body elements is also
reduced by 61% to 32,616, compared with the case
without local grid refinement. The storage for the area
and the normal vector of panels takes about 1 MB,
which shows that the cells are distributed much more
efficiently.

However, the grid resolution around the leading
edge is not yet sufficient even with the current
refinement level. Here the average cell size is about 9
cm, whereas the curvature radius of the edge is in the
order of 1 ¢m. Thus further refinement in this region is
still necessary for more realistic applications.

S Concluding Remarks

A cell splitting method for Cartesian grid was
proposed in this study to deal with multiple flow or
multiple solid regions within a cell, which occurs in the
thin part of body. One of the features of the present
method is to use pseudo-planar approximation for body
elements within a cell, which can remarkably reduce
computational cost. The method was further improved
by considering the case of sharp edge as well as the case
of two solid regions. Moreover, a local grid refinement
method was also introduced at curved surface for
efficient use of grid.

The present method was applied to a model of SST.
The flow solution in a thin geometry region was
improved by using only about 1% additional cells.
Moreover, the number of body elements intersecting
with grid cells was reduced by a factor of 3.2, due to the
pseudo-planar approximation. Finally, the local grid
refinement around curved surface further improved the
flow solution using even fewer cells.
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Fig. 7  Grid around SST:
(a)overall view, (b) cross-sectional view at Nn=0.5, (¢)
cross-sectional view at N=0.5 with local grid
refinement near leading edge.
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Fig. 8  Computational costs in terms of grid cells and
body surface elements.
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