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A hybrid explicit/implicit numerical referred to as the CCG scheme was recently
proposed by Collins, Collela, and Glaz for one-dimensional hyperbolic conservation
laws. By suitable blending of an explicit second-order time marching scheme with an
implicit scheme, this approach was made to possess the max norm diminishing (MND)
property for all Courant numbers. Having been manifested for linear equations, the
CCG scheme, however, fails to maintain this property unconditionally for non-linear
equations, so that it requires an additional CFL-like restriction on the time step. In
this paper we show how to remedy the shortcoming of the CCG scheme, and also
propose a new general approach to design unconditionally MND hybrid schemes for
non-linear advection equations. Numerical experiments are carried out for calculating
the Burgers equation on a highly non-uniform grid. Results of these calculations
exhibit a certain advantage in accuracy and efficiency of the proposed hybrid scheme
compared with both the conventional implicit -and the second-order explicit schemes.

1 Introduction

The present paper is concerned with an important
problem of computing unsteady fluid flows with small
scale features such as boundary layer, shock wave, con-
tact discontinuity, shear layer, which are characterized
by steep gradients in their spatial distributions. To
handle this problem, solution adaptive grids are being
commonly used. These grids consist of fine meshes to
accurately resolve those steep gradients in the solution
along with rather coarse meshes in moderate gradient
zones. Such non-uniformity in mesh spacing is charac-
terized by the grid stiffness defined as the ratio of the
smallest grid mesh spacing to the largest.

The method presented in this paper is mostly in-
tended for unsteady solutions on highly stiff grids. The
grid stiffness is commonly accompanied by the tempo-
ral stiffness, when explicit schemes are used to per-
form time integration. Because of the CFL stability
condition, the time step must be proportional to the
smallest mesh spacing. Therefore, a deadlock situa-
tion might occur, where local refinement of the grid
makes explicit schemes impractical to use due to al-
most vanishing time step.

On the other hand, implicit methods are mostly un-
conditionally stable, and the choice of the step size
for time marching calculations is dictated by required
temporal accuracy only. However, there is a short-
coming that all of these methods suffer from excessive
numerical diffusion, which is much larger than that
of explicit methods. Accordingly, it is ineffective to
use implicit schemes for unsteady problems. There-
fore, the problem is to design an accurate numerical
method that could stably calculate unsteady problems
with a relatively large time step not restricted by the

grid stiffness.

Regarding the above problem, in this paper we pro-
pose a hybrid scheme which includes both implicit and
explicit schemes. It has an advantage of high efficiency
inherent in implicit schemes and high accuracy inher-
ent in explicit schemes.

The idea of implicit-explicit hybridization has been
explored by several researchers. First, it was discussed
in the book of Richtmyer and Morton[1]. Collins et.al.[2]
developed a hybrid scheme referred to as the CCG
scheme for one dimensional Eulerian hydrodyvnamics.
O'Rourke et.al.[3] extended the CCG scheme to multi-
dimensional advection calculations.

The design principles of the CCG scheme are as fol-
lows.

1. Continuous switching between implicit and ex-
plicit schemes.

2. Second-order of accuracy in the explicit mode.

3. Max Norm Diminishing Property (MND) for all
time steps.

The CCG scheme has been first designed for the one-
dimensional linear advection equation

Oru + ad,u =0 (1)

where a is a positive constant. In this scheme eq.(1)
is discretized by the finite volume method (FV)I).
=l = Mgy = wisy2) (2)

where A = aAt/Ax;.
The edge state u;y;/» is defined depending on the
CFL number X as follows:

u

Thic dociiment i nrovided hv TAXA



316 FAZEF P R AT R 0 2kt 44 5

tn+1
A>1 ) (n+1/2 I Pt
12 ( gndstiff = 0.01
L 10 [t=0
7\4< 1 n S 08 // =30 /j
t . - . t 08 4 ’// 1=100
1 i+1/2 »
X mesh points
= 0 50 100 150

Figure 1: Interpolation scheme of CCG.

Figure 2: Shortcoming of the CCG scheme.

- ul +0.5(1 — A)ou? A<1 (3)
i+l = Ful + 520! A>1 !
where du! is a limited difference defined in such a way Explicit Component
that there exist coefficients ¢ to satisfy O
duf = e Mugyipo = ¢ Aui_y g, 0<cF < 400 (4)
The baseline idea of the CCG is to use different inter- mplicit Compone
vals of interpolation for calculating the edge state. The t ¢
choice of the interpolation interval is decided based L i i+1/2 i+1
on the location of the characteristic line, as shown in
Fig.1. X
Then, the CCG scheme was extended to a non-linear
equation|2] Figure 3: Geometrical interpretation to the hybrid
scheme.
Gu+ 0, [f(u)] =0 (5)
where f' > 0 and f” >0 The aim of the present paper is to overcome the
This equation is discretized as above problem of the CCG scheme and develop a new
accurate hybrid scheme that would make the CCG de-
At sign principles valid even for non-linear equations. The
n+1l _  n . . .
u; =u; - A—r, [f(u'i+1/2) - f(ui—l/Q)] (6) development of this scheme is carried out under the

following conditions:
and the edge state is calculated as

1. It must maintain the MND property for all time
{ u? +0.5(1 = A)ur A<l : steps.
Uipr/2 = 1 -\, 1 . . .
Tz /\I_L“; + 1T,'”?+ Ai > 1 2. Its explicit constituent must be maximally en-
forced.
where \; = ¢;At/Ax;, and a; = f'(ul).
All the above design principles are clearly manifested

i : i Our strategy is as follows:
for the linear equation. However, in the non-linear

case, eqs. (6) and (7) fail to maintain the MND prop- 1. develop a baseline hybrid scheme that would have

erty for all time steps, and may produce incorrect nu- unconditionally the MND property for non-linear
merical solutions. One example of this is shown in equations.

Fig. 2, where the CCG scheme is applied to solve eq.

(5) with f(u) = 0.5u* and initial data in the form of 2. apply a FCT(Flux Correctored Transport) technique[4]
a triangle on a non-uniform grid with a stiffness ratio to enforce the explicit constituent.

of 0.01. The computational intervals are also depicted
in Fig. 2. It is seen that an erroneous peak appears

Jjust behind the shock in the region of fine meshes. A 2 Baseline HybI‘ld MND Scheme
remedy against this phenomenon has been proposed

in [2], which is in fact a restriction on the time step 2.1 One-dimensional scalar equation
similar to the CFL condition. This circumstance al-

most cancels the advantages originally declared for the We start with the case of a scalar conservation law

CCG scheme.

Thic dociiment i nrovided hv TAXA



MZEFHEEY S 2L —Y 3 Vi v RO Y 2m L E , 317

Figure 4: Sketch for multi-dimensional discretization.

Oru+ 0, [f(u)] =0 (8)

where f” > 0 and a = f'(u).
This is discretized by the FVM as:

At
n+l __
i' =u — Az, [Fi+1/‘2 - Fi—l/Z] (9)
where F;,;/, is a numerical flux function associated
with the cell interface and considered as a function
of ué+1/2 and ul.rH/.z, the values of u on the left- and
right-hand sides of the interface, respectively.

u

Fi+1/‘2 = F(“f‘,+1/2‘u€+1/2) (10)

There is a variety of choices for this numerical flux.
We use a relatively simple HLL(Harten-Lax-Leer)[5]
approximation method:

51+/2f1 - Sf/zfQ + S;L/zsl_/Q(UZ —uy)

F(ulvu2) = T —
S172 ~ 812
(11)
where
fi=flw); fo= flug)
31+/2 = max(0,ay, ay); sy, = min(0,ay, az)

To specify the scheme of egs. (9)-(11), we have to
define the values ui +1/2 and u 12 When these values
are defined as

! 1 . 1 .
Uiy = T Ul s =l (12)
an implicit scheme is attained, which unconditionally
satisfies the MND property, but shows too much dif-

fusion.
On the other hand, if defined by

l ] 4 $oon
Wy = up  —0.5(A —1)0u}
T )
u g = uiyy = 05X + Dougy,

it becomes a 2nd-order explicit scheme that meets the
MND property under the following conditions:
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(a) Computed solutions; comparison between the
hybrid and the fully implicit schemes
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Figure 5: Case of a backward step-like initial distribu-
tion.

Br<1; 0<ef, <2, (14)
where
(s, — s )AL
pr = —izl/z Titl)2 (14.1)
A.’I,',‘

To make a the hybrid scheme, we propose cell inter-
face values defined as follows:

i)y = ul + (1= w) A — 0.5(w; A — Ddul (15)

U':ﬁ*l/'l = u?+1+(1—wl'+1)Anll,7j+1“().5(&){+1/\{+1+1)(le;1+1
(16)

where A™u denotes the time increment: A"y = u"¥!-
u”". As seen from these definitions, the interface values
of the hybrid scheme are composed of two components.
One corresponds to the implicit scheme of eq. (12).
and the other to the explicit scheme of eq. (13). The
parameter w; controls the amount of each component.
It varies in the range

0<w <1 (17)
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(a) Computed solutions; comparison between the
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Figure 6: Case of a forward step-like initial distribu-
tion.

When w; takes a value of zero or unity, the hybrid
scheme becomes an implicit or an explicit scheme, re-
spectively.

We can show a simple geometrical interpretation to
the definition of edge states in the hybrid approach.
To compute the values, first an intermediate time level:
t¥ =1t" +w; A"t is introduced for each cell (see Fig.
3), where intermediate values of the solution are de-
fined by interpolating between the lower and upper
time level values. Then, the explicit scheme is launched
from the time level t*, using the intermediate values
as initial data to obtain the edge states.

Evaluation of the control parameter is dictated by
two conditions. To suppress strong diffusion inherent
in the implicit scheme, it is preferable to take the value
of this parameter as close to unity as possible, or even
equal to unity. The other condition is that the scheme
must keep the MND property. Therefore, an optimal
decision is to take the value of w as large as possible
under the restriction that the scheme be max norm
diminishing for all time steps. The lemma stated below
helps us make such a decision.

LEMMA If the following inequalities are valid:

wify <1, 0<el,,<2 (18)
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T
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X

(a) Computed solutions; comparison between the
hybrid and the fully implicit schemes.

(b) Control parameter distributions

Figure 7: Case of a triangle-shape initial distribution.

the hybrid scheme (9),(10),(15),(16) hold the MND
property.

In this lemma f; is defined by eq. (14.1), and the
superscript w denotes the value evaluated at the time
level t“. According to what has been stated by the
lemma, we can define the control parameter as

w; = w.(37) (19)

where the function w, is given by

1 z<1
wa(z) = Loe>i

Note that the hybrid scheme considered here exactly
coincides with the CCG scheme for eq. (5), if eq. (19)
for the evaluation of w is replaced by w; = w,(37).

e

2.2 Multidimensional Generalization

Multi-dimensional extension of the above hybrid
scheme is carried out in a straightforward way. We
consider a 3D equation in the form of the conservation
law,

Ou + Ok fr(u) =0, (k=1,....3) (20)
which is discretized by the FVM as
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Figure 8: Comparison between the Hybrid and the
Explicit Schemes for a backward step-like.
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Figure 9: Comparison between the Hybrid and the
Explicit Schemes for a forward step-like.

At
n+l _ n —_
=l - §U F,AS, =0 (21)

where AV; denotes the cell volume, AS, the cell face
area, and F, = fi o Nk, the numerical flux at the cell
face. The summation is performed over all faces of the
cell (see Fig. 4).

The numerical flux is approximated by a flux func-
tion of two arguments: face states on the left- and the
right-hand sides

F, = fk,a'nk,a = F(uf,,u;) (22)

which is also calculated in the form of HLL approxi-
mation:

! - — (o]
F(ul ur) — SjFa - SUF; + 33—80 (uo‘ B u;)

g o

(23)

si — So

where

FL = fi(ul) nox; Fr = fu(ul) ne

= min(0,a’ ,a’)

b o)

st = max(0,d. ,al); s

o o

Herea=a-n = ok, and ap = dfy/du (k= 1,2,3).

Following the idea of hybridization developed above
for 1D equations, let us write the left and right face
states as:

u; + (1 —wi)A™u; + (;i,a - O.SAtw,'&i) . 8&,
= ujy + (1= wei)) AMug i

93 Q=

ol

+ (ra(i),a — 0.5Atwo(i)aa(i)> - Ju
where 8ﬂui is a limited gradient as

Ou; -7, =] DUg(iy,i, Alo(i): = Us(i) — Ui (25)

Here 0<c¢? < + oo.

As seen here, the cell parameter w; again controls the
amount of the explicit/implicit constituents in the hy-
brid scheme. Particularly, the scheme is fully implicit
for w; = 0 which is unconditionally of MND property.

As for w; = 1, the scheme converts to a 2nd-order ex-
plicit scheme that possesses the MND property under
the following conditions (see [3], also):

maz (8],8{") <1, /<05 (26)

for all cells and faces. 3! and 3!/ are calculated as

1 -
B =58t b (-d);

(27)
st =5 s [1 ‘g S (z?)}
In these formulas,
R

27 = —r7 + 0.5At;q,
b7 (f) denotes positive coeficients of a decomposi-

tion of a vector X with the face radius-vectors 77:
X=3# (X') 77, b7 (%) 20
o

Such a decomposition always exists, if computational
cells are convex.

Based on the MND conditions for the explicit scheme
of eq. (26), the following lemma can be proved.

LEMMA If the control parameter w; satisfies the in-
equality

w; mazx ([3{’“,,’3{1’”) <1 (29)

the hybrid scheme given by egs. (21) - (25) is of MND
property providing the limited gradient of eq. (25) is
emploved with 0<¢7<0.5 for all cells and faces.
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Consequently from this lemma, we can define w; as

wi=w. (B7), B =maz (8]:8]")  (30)
Note that the set of coefficients b7 in eq. (27) is not
unique. Some special algorithm to find such a set is
required. Therefore, the calculation of 8¢ in eq. (30)
becomes expensive. To overcome this, a less restricted
condition can be used[3], which leads to a more simple
formula for 3:

At
w 1 +
B =+ ;Swg (31)

3 Solution of Discretized Equa-
tions

Except for the case w; = 1, the discrete equations of
the hybrid scheme have a complicated form. To find
the upper time level solution u?*! from these equa-
tions, we employ Newton’s iteration method. With s
as an iterative index, the linearization of eq. (21) can

be written as
I+ L%(:)]60° = R® — ¥°;

s = un+l,s _ un; JPS = ‘Ps+l — s (32)
where
OR
au
Here R denotes the residual on the right-hand side of
eq.(21), and D, Ly, Ly are the diagonal, the lower- tri-
angular, and the upper-triangular constituents of the
matrix L, respectively.

The solution to the linear system (32) is obtained by
implementing sub-iterations with the LU-SGS method,
where a couple of equations are successfully solved in
the forward and backward iterative sweeps as follows:

L()= = D(-) + Li(-) + L")

[D + Ll():l (S\I]sa* + LZ((S‘I].?Jr),) — RS _ \I}S

(33)
[D + Ly(-)] §¥5™ ! 4 Ly(6¥**) = R® —~ ¥°

Note that the exact linearization of eq. (32) is very
expensive, if not impossible to obtain. In order to
simplify the linearization, wave speeds s in the flux
formula (23) and the control parameter w as well are
assumed to be “frozen”. Moreover, only a first-order
representation of the numerical fluxes, i.e. eqs. (27)

and (24) with du; = 0, is linearized.

4 Numerical Results

In this section, leaving aside theoretical aspects for
a moment, we give some numerical results to show the
effectiveness of the hybrid scheme. As a test case, we
compute a one-dimensional Burgers equation:

070 4 —o— hybnd, 240 timesteps
)
—e— 2nd order explict, 24000 timesteps ‘pgﬁn.c‘
"
.I'.. [
0654 .'.a.. i
L 060 ...o’
o
055
1
'
=240 )
250 4 hee
mesh points: ah_ =1, gridstiff=0.01
T T T
125 150 175

x

Figure 10: Comparison between the Hybrid and the
Explicit schemes for a triangular initial data.

25 l imtialdata S<x<16- a-profile, peak=10 1

switch, o
18 —0— soiution, u

mesh points. ah =1, gridstiff=0.01
T T

T T T
0 50 100 150 200

*

Figure 11: Hybrid scheme results for a high peak initial
data.

Oru +uld,u =0 (34)

with several initial conditions.

These calculations used a computational grid with
an interval 0<X <200 and a grid stiffness ratio of 0.01.
The maximal spacing is Ah,,,, = 1, while the min-
imal one is Ah,,;, = 0.01 which placed at X = 100,
the center of the interval. The grid is also depicted in
the figures.

Figures 5 to 7 show numerical results of computing
eq. (34) with At =1 for three initial data in the form
of a backward step, a forward step, and a triangle.
The results are obtained by the fully implicit scheme,
w; = 0, and the hybrid scheme. The dissipation of the
fully implicit scheme is quite large, while the hybrid
scheme well suppresses it. Distributions of w in Figs.
5 to 7 show that it tends to unity as Ah increases,
where the scheme mostly uses the explicit constituent
rather than the implicit one. On the other hand. in
the region where Ah is small, w takes a small value.
and the scheme switches to the implicit constituent.

Figures 8 to 10 show a comparison between the hy-
brid scheme and the 2nd-order explicit scheme. It
is seen that the hybrid scheme maintains almost the
same accuracy as the 2nd-order explicit scheme in spite
of use of more than 100 times larger time step.

Figure 11 shows numerical solutions obtained by the
hybrid scheme for a high-peak triangular initial data
with a relatively large time step of At = 1.
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Figure 12: Characteristics of Hybrid/FCT scheme.

“Expansion-type” and “shock-type” features of this
solution are well captured, although the time step used
in this calculation exceeds the CFL-allowable time step
by several hundred times. Distributions of the switch
parameter w are also given, which show a rather com-
plicated process of hybridization between the explicit
and implicit constituents in the dense grid region.

5 Enforcement of Explicit Con-
stituent

In the previous section, we confirmed the high per-
formance of the baseline scheme. As mentioned in the
introduction, to further develop the hybrid scheme, we
can introduce a FCT technique to enforce the explicit
constituent so as to keep the MND property. By do-
ing this, we can get more accurate solutions for time
dependent problems.

The FCT technique is introduced in the following
way. Let us consider, for simplicity, a one-dimensional
linear equation

Oru+ 0, f(u) =0 (35)
which is discretized by the hybrid scheme as
Af * *

“?H =u} - A_rz [Fi+1/2(’w'; ) = Fi_1 ) (w; )] (36)

Then, we introduce a new control parameter w;. It is
determined by w? evaluated in the baseline scheme and
dw; for an additional amount of the explicit constituent
as

). e

W = .4,'7 +(5uJ, (37)

Accordingly, the numerical flux function is trans-
formed to

Fiiipp(wi) = Fipip(wl) +0Fi 0 (38)

where the additional flux dF;;, /> can be represented
as

5Fi+1/2 = 44i+1/2(5;d;. ((]S&d,gl - vd*) (39)
The coeflicient A;; )/, can be treated as an anti-
diffusion flux, which suppresses the dissipation. In
this view. dw; in eq. (37) can be considered as an ana-
logue of the limiting coefficient in the FCT method[4],
and can be taken such that no new extremum would
appear in the numerical solution. As a result of this
procedure, the hybrid scheme might be more accurate.
Figure 12 shows the effectiveness of this approach.

6 Concluding Remarks

A new hybrid implicit-explicit scheme has been de-
veloped for non-linear advection equations. The scheni
holds the MND property for all time steps. The nu-
merical results show its good performance and aceu-
racy to solve time dependent problems with large time
steps. Application of this scheme to compressible fluid
dynamics equations is under way.
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