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Numerical Analysis of Shock Waves in Nonuniform Gas
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ABSTRACT

Instability of shock waves propagating through a stratified gas is investigated numerically. A shock wave is produced by

a piston which begins to move from rest abruptly at some constant velocity in a two-dimensional horizontal duct.

Initially the gas in the duct has a temperature or density distribution only along the vertical axis at a constant pressure.

The initial density distribution, which is assumed to change monotonically, has zero spatial gradient at the upper and

lower walls and then has a single inflection point. Numerical simulations are performed for the weak density

nonuniformity, where a substantially steady curved shock can be realized at least for some time interval in the shock

evolution. It is shown that the curved shock front tends to be disturbed by pressure fluctuations which are produced by

nonlinear interactions between the instability waves and the shock-induced flow field. At a high Reynolds number the

gas viscosity does not affect appreciably the instability waves. The gas viscosity, however, plays an important role in

stabilizing the shock front against the pressure fluctuations.

I. INTRODUCTION
Shock propagation in nonuniform gas is realized in many
practical situations. Here shock waves propagating
through a stratified gas were investigated numerically in
detail using a TVD-scheme with the Euler and the
Navier-Stokes equations. We consider the same system
as that treated in the previous paper (1). The system is
composed of an ideal gas in a two-dimensional horizontal
duct at some constant pressure. Initially, the gas in the
duct is at rest and has a density or temperature
distribution only along the vertical direction. The density
distribution which changes monotonically in the vertical
direction, has zero spatial gradient at the lower and
upper walls, and has a single inflection point. At time t =
0, a piston in the duct begins to move from rest at some
constant velocity to produce a shock in front of it.

In the previous paper (1), an analytical solution for
the substantially steady curved shock was obtained in
the coordinate system fixed on the shock. It was shown

that the analytical results in the linearized problem for
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the Euler equations predict the numerical results well
for the weak density inhomogeneity. The flow instability
of this shock-induced flow was also investigated. The
pressure fluctuations observed in the numerical results
are consistent with the theoretical predictions for the
Euler equations. Although the instability waves do not
affect the shock front in the context of the linear analysis,
the actual induced flow field is nonlinear and then the
development of the instability waves may eventually
affect the shock front at a very large time. This
nonlinear problem has not yet been resolved.

In light of this, we will investigate in detail the
shock behavior and the time evolution of the shock
induced flow. It will be shown that pressure waves
produced by nonlinear interactions between the
instability waves and the shock-induced flow field tend
to disturb the shock front. But, the gas viscosity plays an

important role in suppressing the pressure fluctuations

and also in stabilzing the shock front.

II. NUMERICAL SIMULATION

Consider a two-dimensional duct with a constant cross
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Fig.1 Schematic flow system

section as shown in Fig.1, where x is the horizontal axis
and y is the vertical one and a piston is placed at the
right end. Initially the gas pressure p,, is constant and
the gas density 0. is given as a function of y, £ o=0.
(), which means that the gas temperature 7., is given
as a function of y, T,.=7..(»), through the equation of
state, where the subscript ®© represents the initial gas
conditions. At time £=0, the piston begins to move from
rest at a constant velocity 1} into the left (-x) direction.
For analytical convenience, however, we consider an
equivalent system where the gas has initially a uniform
velocity ¥, and begins to impinge at £0 on the piston
surface fixed at the right end. It is noted that physical
properties are represented in dimensionless form based
on the initial conditions and the duct width. We consider

two types of density profile,

p.=p.[1+e f(¥)], (1
where
f)= cos(xy) (2)
and
’—1 for l+rSs s1
> y
1 1 1 1
={-—ly-— fi ) —+6 (3
0) 5(y 2) or S-8syss
1
1 for 0 —=0
r sys 5

where 0, is an averaged value of the gas density 0.,
over the duct cross section. The parameters ¢ and § are
chosen as £=0.2 for the cosine density distribution, £=0.1,

&=0.1 for the piece-wise linear density distribution.

ITII. NUMERICAL RESULTS
A. Numerical Accuracy

In the numerical simulations, the piston velocity is

chosen as 15=1.25 which means that the gas impinges on
the fixed piston surface at a velocity u,=1.25 through
the coordinate transformation as in Ref. 1. On the piston
surface and the duct walls, the symmetric conditions are
applied for the Euler equations and the no-slip
conditions are applied for the Navier-Stokes equations.
The time interval is chosen to be Af=Crixmin(Ax,
ApILCH2+v?)12], where CrL=0.2 and Ax and Ay are the
spatial mesh sizes. Square meshes are employed and
their sizes are set to Ax=Ay=0.02 and 0.01. In what
follows, the former is called the coarse mesh and the
latter the fine mesh. The computational domain is 100x1
where the upstream boundary is located at x=0 and the
piston surface is at x=100. The integration time interval
is 0=¢=120. The ratio of specific heats of the gas, , is
chosen to be 1.4 and the Prandtl number, Pr, to be 0.76.
The numerical simulations were performed for both the
coarse and fine meshes in each case.

In the Navier-Stokes calculation, the duct height His
taken to be 2.0 cm, which yields the Reynolds number of
4.6x105 based on the sound velocity at S.T.P. Another
Reynolds number of 4.6x103 is also applied to investigate
viscous effects on the numerical results. In such cases,
development of the shock-induced boundary layer will be
neglected. Although it is impossible to predict the inner
structure of shock front numerically even with the

Navier-Stokes equations, it will be possible to evaluate
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Fig. 2 Shock profiles at =120 for the cosine density

distribution.
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Fig. 3 Shock profiles at =120 for the piece-wise

linear density distribution.

the viscous effect on the shock induced flow in the core
region between the upper and lower boundary layers.
The thermal boundary conditions at the upper and the
lower walls are set to J7/7y = 0. As described above,
we cannot capture the boundary layers numerically, but
the result will be creditable under the assumption that
the boundary layers are negligibly thin. The results are
compared with the corresponding inviscid ones.

The present TVD-scheme can predict the Rankine-
Hugoniot relations within the accuracy of 99.8 % for the
one dimensional shock tube problem. The numerical
accuracy of the two-dimensional results depends on the
mesh size (2). In Figs. 2 and 3, the shock profiles at &=
120 are shown for the cosine and the piece-wise linear

density distributions, respectively. Agreement among all
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Fig. 4 Shock fronts at =120 for the cosine

density distribution.
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Fig. 5 Shock fronts at =120 for the piece-wise

linear density distribution.

shock profiles (except for their locations) is remarkable
for each type of density distribution. The pressure
contours show some differences among them especially
for the piece'wise linear density distribution.
Considering the numerical accuracy, however, it will be
reasonable to say that even the shock-induced flow fields
near the fronts show fairly good agreement among them.
Only the pressure contours in the inviscid results with
the fine mesh show appreciable fluctuations, which will
be produced by pressure disturbances propagating
upstream from the downstream flow region. We can
conclude that satisfactory mesh-convergency was
obtained numerically both for the inviscid and viscous
results except for the pressure fluctuations in the shock
induced flow fields. Since the instability in the
downstream region of the shock front is responsible for
generation of these pressure fluctuations, the details
about them are discussed below again in relation to the
instability waves.

For more closer investigation of .the numerical
accuracy, pressure profiles along the centerline y = 1/2
near the shock front are shown in Figs. 4 and 5.
Considering the fact that the distance between the shock
front and the piston surface is about 93 at t = 120, the
difference among them is very slight. For example, the
distance between the shock fronts for the Euler
equations with the fine and coarse meshes in Fig. 4 is
about 0.05 which is 0.06 percent of the distance between

the shock front and the piston surface. Since the

numerical accuracies in time and space are the second
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Fig. 6 Time evolution of shock profiles for the

cosine density distribution; Re=4.6x105.

order, it will be reasonable to consider that the mesh
convergency for the shock profile in each case is well
realized. The locations of shock front for the coarse mesh
do not depend on the Reynolds number for the piece-wise
linear density distribution. Numerically locations of all
the fronts coincide completely in Fig. 5. Although the
shock speed seems to depend slightly on the Reynolds
number, that is, the shock front for a higher Reynolds
number seems to be faster than that for a lower
Reynolds number, the difference between them at t = 120

may be within the possible numerical error.

B. Time-change of Shock Profile

Next, consider the time change of the shock profile and
the induced flow field near the shock front. In Figs. 6
and 7, the shock profiles are shown at t = 30, 60, 90 and

120. In the viscous results, time-convergency of the
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Fig. 7 Time evolution of shock profiles for the

cosine density distribution; Re=oc.
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Fig. 8 Pressure profiles along the centerline (y=1/2)
for the cosine density distribution calculated using

the coarse mesh; Re=c.

shock profile is quite remarkable. Numerically it was
confirmed that the shock profile remains unchanged for t
> 3. In the inviscid results of Fig. 7, the situation is a
little different. For 3 < t < 120, the shock profile itself is
substantially unchanged, but the induced flow field near
the shock front begins to be disturbed for t > 30.

C. Instability Waves

In order to investigate the instability waves and
pressure fluctuations produced by nonlinear interactions
between the instability waves and the shock-induced
flow field, time-change of pressure profiles along y = 1/2
is shown in Figs. 8 to 11. Figures 8 and 9 show inviscid
results for the cosine density distribution which
correspond to Fig. 2. In the results with coarse mesh in
Fig. 8, only slight pressure fluctuations are seen.
However, the results with the fine mesh in Fig. 9 have
serious fluctuations which are enhanced with increasing
time. These fluctuations are obviously mesh dependent

and then will not show physical phenomena. These are
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Fig. 9 Pressure profiles along the centerline (y=1/2) for
the cosine density distribution calculated using the

fine mesh; Re=c.

perhaps artificial or superficial phenomena inherent to

the numerical simulations with the Euler code.

The corresponding viscous results are shown in Figs.

10 and 11 for Re = 4.6x105. Any appreciable differences
between the results at t = 30, 60, 90 and 120 are not
observed in these figures.

Although the instability is relatively very weak for
the cosine density distribution and very difficult to
observe the instability waves, they are clearly confirmed
in the results for the piece-wise linear density
distribution as shown in Figs. 12. Numerically it was
confirmed that main frequency characteristics do not
depend on the mesh size for Re=4.6x10° and for
Re=4.6x103. This suggests that numerical results will
have physical meanings. The generation, growing and
propagation of the instability waves do not depend
appreciably on the Reynolds numbers, at least, greater
than 4.6x103. It is also well demonstrated that higher
modes of instability waves grow with increasing time.

It has to be stressed that these pressure waves

are composed of the original instability waves produced
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Fig. 10 Pressure profiles along the centerline (y=1/2) for
the cosine density distribution calculated using the

coarse mesh; Re=4.6x105.

by the flow instability and the pressure waves produced
by the nonlinear interactions between the instability
waves and the flow fields. Since the instability waves
may have various wavelengths, we can not distinguish
completely the induced pressure waves from the

instability waves.

IV. CONCLUSIONS

Instability of shock waves propagat'ing through a
stratified gas was investigated numerically. Our
previous analysis has predicted that substantially steady
curved shocks in the coordinate system fixed on the
shock are stable in the context of the linear analysis. But
the present numerical simulations showed that pressure
waves are produced owing to interactions between the
instability waves and the shock induced flow field. They
can propagate upstream as well as downstream and can
reach the shock front and tend to disturb it with
increasing time. The gas viscosity is effective to suppress

the pressure fluctuations. At a high Reynolds number,
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however, the gas viscosity affects slightly growing and

propagation of the instability waves.
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Fig. 11 Pressure profile along the centerline (y=1/2) for
the cosine density distribution with the fine mesh;

Re=4.6x105.
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Fig. 12 Pressure profile along the centerline (y=1/2) for

the piece-wise linear density distribution with the fine

mesh; Re=4.6x105.

Thic dociiment i nrovided hv TAXA





