Engineering of Systems for Application of Scientific Computing in Industry

by
W. Loeve

National Aerospace Laboratory (NLR),
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands

Abstract

Mathematics software is of growing importance for computer simulation in industrial
computer aided engineering. To be applicable in industry the mathematics software and
supporting software must be structured in such a way that functions and performance can
be maintained easily. In the present paper a method is described for development of
mathematics software in such a way that this requirement can be met.

1. INTRODUCTION

The methods and the software for computer simu-
lation in many cases are produced in a research en-
vironment by industry engineers, by specialists of
the type that in the past was involved in physical
experiments, by theoretical physicists or by mathe-
maticians. This is why computer simulation often is
called scientific computing. The concerning so-
called mathematics software or scientific software
in general suffers from a number of shortcomings.

The shortcomings of mathematics software generat-

ed in a research environment concern:

- limited accessibility as a result of the implicit
assumption that users are skilled in numerous
areas such as mathematics, numerical algor-
ithms, computer programming and computer
operating systems in addition to their own
application domain.

- limited availability and integrity as a result of
difficulties for the method developers to or-
ganize, re-use and integrate a continuing gro-
wing amount of mathematics software and
supporting utility programs.

- limited continuity as a result of the fact that in-
dustry engineers and the scientists mentioned
above are not experienced in software en-
gineering and as a consequence the software
structure and the description of it are not suit-
able for cost effective maintenance.

- insufficient possibilities to ensure that software
becomes available timely.

The existing situation leads to a waste of time for
scientists and industry engineers and to under-
exploitation and misuse of existing software and
data generated with the help of this software. The
situation only can be improved if it is realized that

engineering of software for application in industry
requires a different mentality than research. For
engineering of this software use has to be made of

proper methods, techniques and tools to help to
ensure the required performance of the mathe-
matics software. This requires a contribution of
computer scientists in addition to the contribution
of the type of specialists mentioned above. In the
present paper a method is described for solving
technical and organizational problems that arise in
cooperative development, design, production and
validation of mathematics software.

2. THE DECOMPOSITION OF THE DE-
VELOPMENT AND PRODUCTION PRO-
CESS OF MATHEMATICS SOFTWARE
AND SPECIALISMS INVOLVED

The production process of new mathematics soft-
ware starts after preliminary investigations and
feasibility studies have indicated that it is desirable
and feasible to produce the software. The first four
phases of the production process concern modelling
and mathematical aspects. The last six phases
concern software production. In the present paper a
rather complete set of phases is given as a basis of
the software development method. This method is
under development at NLR since 1979 [1]. The
following phases can be distinguished in realization
of mathematics software for simulation purposes:

1. Definition of the mental model.

In this phase decisions are made concerning
technical or physical aspects that will be simul-
ated. The decisions cause modelling errors. In
this phase contributions are required from
eventual users who have to apply the resulting
mathematics software and from specialists that
are familiar with the aspects to be simulated.

Thic dociiment i nrovided hv TAXA

EFHRRRAARSIER 195

. Definition of the mathematical model.

In this phase the mental model is described in
mathematical terms. In this phase also as-
sumptions are made with respect to the various
aspects of the mental model. This causes repre-
sentation errors. In this phase in addition to the
specialists that contribute to phase 1, mathema-
ticians have to contribute.

. Definition of the discretized mathematical
model.

This phase is required to enable solution of
continuous mathematical models in all cases for
which these cannot be solved analytically. In
simulation of flows the model is a finite set of
often non-linear algebraic equations. In this
phase discretization errors are introduced. This
phase requires knowledge in the area of nu-
merical mathematics to generate a proper set of
equations.

. Solution of the finite set of equations.

In this phase the method to solve the set of
equations is defined. In this phase solution
errors can be introduced. In practice application
of the solution method will require a computer.
As a consequence the result of this phase can
be considered »s the software requirements
which form the basis of the software production
process. Knowledge about numerical mathemat-
ics and knowledge about computer science is
essential.

. Functional design.

In this phase a structured description is produc-
ed of the coherent set of functions that will be
performed by the software. Information sets
and aspects of the interaction between the user
and the combination of software and computer
equipment are described. This phase results in
a functional design. It is restricted to "what"
the software will do. Again the cooperation is
required of all types of specialists already
mentioned.

. Technical design.

In this phase the top level description is given
of the technical design of the software that con-
cemns "how” the software will be structured. An
important task is software engineering. Even-
tual users have to contribute to the testplan, the
user manual and to the definition of the user
interaction.

7. Detailed design.
In this phase a detailed structured description is
given of functions to be performed and of cor-
responding technical solutions. This phase
results in the detailed design for which mainly
software engineering expertise is required.

8. Implementation.
In this phase software source code is generated
and implemented on the available computers.
Tests are executed to verify that the software
entities are implemented correctly. This phase
mainly requires software engineering capabilit-
ies.

9. Integration and validation.

In this phase finally the completed software is
integrated on the computer. Again tests are exe-
cuted to verify that the software is a correct
representation of the definition in step 4. In the
validation process in this phase the relation
between results from simulation and reality has
to be indicated. Reference information for this
comes from other simulation methods or phys-
ical experiments that both contain errors. All
specialisms mentioned in the preceding phases
have to contribute to the integration and va-
lidation phase.

10.Maintenance.
This phase is meant to ensure continuity of the
software. It concerns the system life cycle after
production has been completed. This phase re-
quires high quality contributions, mainly from
users and software engineers.

The phased approach described above is charac-
terized by strong interactions between the various
phases. In principle these are caused by the alter-
nate application of the described top down strategy
and of a bottom up approach that is required for
many aspects. The first three modelling steps and
step 4 in which the finite set of equations is solved
are mutually dependant. It requires sufficient ex-
pertise of each specialist involved to ensure rapid
convergence of the modelling effort. In practice for
new technical critical aspects mostly a feasibility
study is required in advance to be executed in a
research environment. Management has to make
sure that efforts in the feasibility study are limited
to technical critical elements. The cooperation of
all specialists involved under the circumstances’
mentioned above requires organizational measures.

Thic dociiment i nrovided hv TAXA

BIOEWIERABERNE Y VRV I LRXE

3. ORGANIZATIONAL ASPECTS OF THE
METHOD FOR COOPERATIVE DEVE-
LOPMENT AND PRODUCTION OF MA-
THEMATICS SOFTWARE

The quality of the development, of the production
process and of the product depends strongly on the
skills of the specialists involved. These skills have
not yet been standardized sufficiently. This means
that many ad hoc technical and organizational
measures have to be taken to realise cost effective
cooperative development and production of mathe-
matics software without undesirable shortcomings.
However, a number of general measures can be de-
scribed.

Cooperative development and production tasks are
usually assigned to ad hoc project groups. These
groups contain specialists that have between them
the skills that are relevant to the task. The project
groups often have part time members. These mem-
bers contribute to tasks of several project groups
simultaneously. The resulting organizational form
resembles the Adhocracy described by Mintzberg
[2]. As has been described already by Mintzberg
[2] the success of cooperative execution of complex
and untried tasks strongly depends on the motiva-
tion, good will and mutual respect among the
members of the project group.

Three types of cooperative work can be distin-
guished [3]:

- Coordination. This is a cooperative process
where individuals coordinate their actions with
those of others. Each action needs results from
other actions and/or creates results that are input
for other actions. The success of coordination
depends on appropriate decomposition of the
total task in sub-tasks.

- Collaboration. This is a form of cooperation in
which individuals work together in order to
achieve a single goal. The prime requirement to
make collaboration possible is sharing of in-
formation. The second requirement is that a
common understanding exists of the goal and the
process for achieving it. The third requirement
is that each individual knows what he is respon-
sible for.

- Codecision. This occurs in cases that a group of
individuals must reach a joint decision. Again a
requirement is a common understanding of the
goal and the process of achieving it.

The circumstances that are required for successful
cooperative engineering of mathematics software
can be derived from the requirements that are
defined for the three types of cooperation. These
are:

1. Common understanding of the goal and the
process of achieving it.

2. Appropriate decomposition of the total task.

3. Synchronization of actions.

4. Assignment of responsibilities to each contri-
buting individual.

5. Sharing information.

The first requirement means that the goal of the
cooperative actions has to be defined. For this use
is made of a Predesign in which the toplevel ar-
chitecture is presented and justified.

For the Predesign document use is made of results
from feasibility studies. The first requirement also
means that the process of achieving the goal has to
be described. This is described in the so called
Project plan. It contains a description of the phases
that are distinguished as described in section 2. It
also contains a description of the result of each
phase.

To fulfil the second requirement mentioned above,
in the project plan a specific work breakdown is
based on the information presented in the predesign
document.

To fulfil the third requirement mentioned above a
time schedule is presented in the project plan for
the actions that are related to each task.

To fulfil the fourth requirement, in the project plan
all key persons are mentioned and responsibilities
are assigned to them explicitly in the project plan.

The fifth requirement means that relevant infor-
mation has to be accessible for any member of the
project group on a need to know basis. Information
becomes available in three basic ways:

- Documents with written text and diagrams
such as generated in modelling and design
phases of the software development. This form
is also applied for user manuals.

- Software as a result of implementation.

- Data such as generated by the software or
from external sources.

Thic dociiment i nrovided hv TAXA

EFHERHFARRINER195

Management must be able to be sure that the re-
quired quality of the information is realized. The
quality related aspects are described in the quality
assurance plan (q/a) in which a description is given
of the methods, techniques and tools that will be
applied for execution of the tasks described in the
project plan. As mentioned at the beginning of this
section for mathematics software the quality de-
pends largely on the skills of the people who per-
form the tasks. In relation to this in the quality
assurance plan a description is given of the educa-
tion and the experience of the people who will
contribute to the cooperation. In the g/a plan it also
is described how execution of the distinguished
subtasks is controlled to ensure proper results.

Creation of all the information mentioned requires
an adequate attitude of specialists involved. Making
sure that software can be regarded as information
that can be shared requires technical measures.

4. TECHNICAL ASPECTS OF THE MET-
HOD FOR COOPERATIVE DEVELOP-
MENT AND PRODUCTION OF MATHE-
MATICS SOFTWARE

The organizational approach described in the pre-
ceding section has to be suppleniented by a well
defined technical approach in the method for co-
operative development and production of mathe-
matics software. Both approaches have to be in
harmony with each other. In practice it appears
that the most important requirement for the realiza-
tion of cooperation is sharing of information in a
ready-for-use form. This means that a method for
cooperative engineering of mathematics software
shall technically enforce a standard way of struc-
turing, storing and retrieving of information.

This concerns documents, data and software.

Already in the eighties in the Netherlands attention
was paid to development of a method for en-
gineering and storing of software based on a de-
composition suitable for information sharing.

The software engineering approach that is applied

now is based on contemporary techniques. In these

two types of elements are distinguished, modules

and objects:

- a module is a software component that per-
forms an activity.

- an object is information, and modules encap-
sulating that information.

Modules are defined by: module name, description
of what information is transformed by the module
into what other information (it’s interface) and
what the transformation consist of (its function).
Objects are defined by: object name, description of
what information is present in the object, and the
definition of all modules encapsulating that infor-
mation.

An information system suitable for information
sharing is created for computational fluid dyna-
mics. A scheme of this is presented in figure 1. It
is the result of a cooperation of the National Aero-
space Laboratory (NLR), Delft Hydraulics, the
University of Twente and Delft University of
Technology. As such it forms the technical bases

of the Expertise Centre for Computational Fluid
Mechanics in the Netherlands [4]. This forms part

of the national infrastructure of services and facili-
ties in the area of information technology.

In the system presented in figure 1 an executive
function is indicated in addition to the functions
mentioned so far. The executive supports execution
of computer programs on a network of different
computers that are required for specific types of
processing [4]. The executive supports file hand-
ling in the network and enables the user to control
processes in the network by means of assigning
windows on the screen to specific processes or to
specific computers in the network. In figure 2 the
present computer network of NLR is given. The
supercomputer is applied for computation processes
that can be vectorized and that need the maximum
processing power that can be made available to day
via general purpose computers. The mainframe is
used for the module management and the data
management systems.

Data management is applied for exchange of infor-
mation between installed software programs to
enable easy transfer of programs to other environ-
ments (portability).

Finally workstations are used for specific commer-
cially available software such as CAD/CAM soft-
ware for geometry handling. The workstations also
are applied for graphic aspects of pre-processing
and post-processing and of graphic control of
processing based on mathematics such as grid
generation and solving a set of equations.

The system given in figure 1 is called ISNaS (Info- .
rmation System for flow simulation based on the
Navier Stokes equations).

Thic dociiment i nrovided hv TAXA

FI0EWMZE R BELS IRV VR VY LmXE

Reconsidering the requirements that originate from
efficient cooperative development and production
of mathematics software the following can be ob-
served.

Re-usability of software is improved by intro-
duction of modules and objects.

A transparent relation between functions in the
Functional Design and modules in the Tech-
nical Design has a positive effect on the main-
tainability of the system.

Application of decomposition in modules and ob-
jects to development of mathematics software for
computational fluid mechanics is described in [S].

5. CONCLUDING REMARKS

. A method is presented for development and

production of mathematics software. The aim
of the method is to produce software that can
be applied for simulation purposes in industry.
Mathematics software for applications in in-
dustry can be realized only if various specia-
lists contribute to the development and produc-
tion process. For this reason the method is
designed in such a way that it supports co-
operative engineering processes.

The method has organizational and technical
aspects. Both aspects need equal attention for
the method to be effective.

The quality of the result of application of the
method depends on the skills and the attitude
of the specialists that are involved in the de-
velopment and production process.

6. REFERENCES

1.

W. Loeve, Life-cycle-oriented methods for de-
velopment and production of large-scale in-
dustrial mathematics software, Computers in
Industry 18,Elsevier Science Publishers
B.V.,(1992).

Henry Mintzberg, Structure in fives, Prentice
Hall International Editors, (1983).

G. DeMichelis, Computer support for co-
operative work, Butler Cox Foundation,
(1990).

M.E.S. Vogels and W. Loeve, Development
of ISNaS: An information system for flow
simulation in design, Proceedings of CAPE89
Tokyo, North Holland, Amsterdam, (1989).
M.E.S. Vogels, Top down engineering of a
flow solver, Design Documents and software,
Internal Reports, National Aerospace Labora-
tory NLR, NL, (1990-1992).

7. FIGURES
jmm e m——m—man .
: 1)
' ¥ :
s 238 !
: 3 83 a E:
1 8 2 Ze 321 81
' 3 a 238 8] 8|,
1 [}
[} ¥
] 1
1 ¥
[} € I
: ¥
: g T5|!
: 1 T 883,
1)
[Ny R 1 A ey
bty e e | e b E STt EEE -1
[} bt IR]
g IR IR
1 2 5] |68) |£8) |8&] &)+
] al
[}
Py H '
1
' - e '
1 25 3)
it B8 g [
' 2 E i 1
] 1
R B e
e et ---
t |
1 1
1 1
]]
) t
) ¥

Fig. 1 Toplevel description of an open system
for development, production and ap-

plication of flow si

mulation software

(ISNa¥).
a
L3l
[- NS
owa
L=
- L
Il »
Il ZE
FE =
] “o
Em
it R
R e
9] *»
)
|3 T
z H
g I & gy
—] — 2% x
] i] 92 5[]
I 83
10__1 v
g Il — 38
e
I
” SN o~
R ol du
I g gz |
zEl |2 38 5281 1
22 g S2[% 9z 2| |8
BB ERE 8% 8
=R sng EH 3
L u g @ | J— I N
I s 28 & N N
z2 1.2 I w,a $ia g T LN
Q= 3 xZ N N
S|zl s KBNS g |zo a 5 x Q.
3 |oE e =06 3o 8 2L Z S
=g <ij= 2« = XS 3 =
5 e 5 28 & =
| 7] z|lz] uE g
w
a @
2
w0

LI
2 Mb/s

Fig. 2 The general purpose computernetwork for
development of mathematics software at

NLR

Thic dociiment i nrovided hv TAXA

Thic dociiment i nrovided hv TAXA

