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ABSTRACT

A new length scale for flow with pressure gradient is proposed in the RNG algebraic
turbulence model. The dissipation rate is modeled, so that the equation for eddy viscosity
takes the cubic form. The model shows the continuity of eddy viscosity near the wall.
This model was applied to predict transition location for flows at pressure gradient. The
characteristics of the predicted transition well agree with the experimental and empirical

data.

1. INTRODUCTION

The computation of practical boundary layer is of-
ten greatly dependent on the modeling of the laminar
- turbulent flow zone. It is well known that transition
is influenced by freestream turbulence, pressure gradi-
ent, Mach number, Reynolds number, accoustic noise,
surface conditions and so on [1].

Several attempts to empirically determine the loca-
tion of transition have been made. Cebeci [2] proposed
an empirical relation between z Reynolds number, Re,
and the momentum thickness Reynolds number, Res.

The application of this model to predict transition
location has been evaluated by Kawai [3] for subsonic
flow around airfoils. The Baldwin-Lomax turbulence
model [4] is employed to calculate the turbulence effect
starting from the location predicted by this model. It
was shown that the drag coefficient is in better agree-
ment with experimental data when this model is em-
ployed than the model proposed in the Baldwin-Lomax
turbulence model [4].

Van Driest and Blummer [5] developed a transition
formulation by taking account of the influence of pres-
sure gradient and freestream turbulence on transition.
This model is derived from the assumption that transi-
tion occurs when the local vorticity within the boundary
layer exceeds a threshold. This is subsequently modi-
fied by Abu-Gnaham and Shaw [6] so as to incorporate
the minimum Reynolds number calculated from the in-
stability analysis.

These models are not directly related to turbulence
model employed in the {ully turbulent flow and usually
only used to identify the location where the turbulence
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model begins to be effective. In actual case, to sim-
ulate natural transition from laminar to turbulence, a
streamwise intermittency is needed.

An example of transition models which are directly
combined with turbulence model has been developed
by McDonald and Fish [7]. The solution of this model
needs to calculate the streamwise development of a tur-
bulent mixing length, the magnitude of which is deter-
mined by the turbulent kinetic energy. That is, at least
one additional equation to the governing equations must
be computed.

We are concerned with zero equation turbulence
model which is faster than one or two equation mod-
els since there are no additional differential equations
to the governing ones. Baldwin and Lomax [4] assume
that the transition takes place when the ratio of the
turbulent viscosity to the freestream molecular viscosity
exceeds a certain value. Although the model provides
a reasonably good prediction of transition location for
some cases, the transition process from laminar to tur-
bulent flow, however, occurs suddenly, which is quite
unnatural.

Recently, applications of the RNG based alge-
braic turbulence model, which was originally derived
by Yakhot and Orszag [8], to the study of transition
have started [9] [10]. The key factor of this model lies
in the employment of the heaviside function in which
the parameter as an argument of the function deter-
mines the onset of turbulence. This model requires the
definition of the length scale and the formulation of the
dissipation rate in the calculation of turbulent viscosity.

In the present paper, a new length scale taking ac-
count of freestream with pressure gradient is proposed
for the RNG. The dissipation rate is modeled such that
the turbulent viscosity can be directly calculated from
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the model equation avoiding the iterative method. The
capability of the present model to capture the onset of
turbulence is evaluated and its transition characteris-
tics are compared with the experimental and empirical
data.

In the next section, the algebraic RNG turbulence
model with a proposed parameter will be discussed.
The results and evaluations of this model for transi-
tion prediction are described in Section 3. Finally, in
section 4 the concluding remarks will be made.

2. RNG TURBULENCE MODEL
2.1 The Modeling

The algebraic kinematic eddy viscosity derived from
the RNG theory takes the following form [8} [11] :

ve=v{l1+ H(B - Cp)}} (1)
with

(2)

where H is the heaviside function and & = 0.12. Cx
experimentally lies between 75 and 200, and ¢ is the
dissipation rate. The relation L = x#A™! is assumed to
relate the integral length scale I with the wave num-
ber A, whose value represents the allowable turbulence
scale in the inertial range. Relating L with the mixing
length L at large Reynolds numbers, we have the rela-
tion that L = (5'/*/x)L, where L is given. The effective
turbulent viscosity v, = v, + v is defined as the sum of
the turbulent viscosity v, and the laminar one v.
Considering the equilibrium condition, where the
production of kinetic energy is equal to the dissipation
rate ¢, the following formulation for ¢ is employed :

N W

u

= )
Because the calculated drag strongly depends on the
first grid point next to the body surface, a fine grid
is normally employed, that is, typically y* < 15. In
this region, the damping action due to the molecular
viscosity manifest themselves near the wall, that is, in
the low Reynolds number region [13}.

Thus, we devised a damping function for the dis-
sipation rate € in Eq.(3), taking into account the ex-
perimental fact that its dimensionless value, which is
defined by €* = evfu! = 1/ky*, approaches to 0.1 [14]
at the wall as follows:

€= u;Dp/Ky 4)

where D = 1—ezp(—0.1xu,y/v) and u, = \/7.[p. As
can be seen from Eq.(4), the dissipation rate ¢ is {ree
from the effective turbulent viscosity v..

Substituting Eq. (4) into Eq.(2), we get

3L4
Da*m —Chr) (5)

(vefv)’ =1 +H(

where the intermittency function «yg is added. This is
defined as

ya = {1 +5.5(n)%}! (6)

where 7 = y/é and é is the boundary layer thickness.
The reason for using the intermittency function is to
ensure reduction in turbulent viscosity near the edge of
the boundary layer.

2.2 Length Scale

Wiegahrt and Tillmann [15] showed that under ad-
verse pressure gradient the mixing length increases from
Kk y/6 to 2 y/6, where k(= 0.4) is the von Karman con-
stant and @ is the momentum thickness. That is, the
von Karman constant « varies in the flow with pressure
gradient. Nakayama et al. [16] also derived the same
conclusion from the kinetic energy equation.

In the logarithmic region, the momentum equation
can be written as [17]

dr dp du,.

where 7 is the total shear stress composed of both the
turbulent shear stress 7; and the laminar shear stress T,
and ufu, = f(y*). We can integrate Eq.(7) from the
wall to y,, where y, is the location where the turbulent
viscosity becomes maximum. As a result, we have

dp du, (vt 2, 4
Tc—-Tw+£ys+PV‘&;L fedy (8)

Writing the turbulent shear stress 7; in terms of the
mixing length, » = pL?%(du/dy)?. Making Eq.(8) non-

dimensional, we get

L+ = Ky u2 dz r’,
u? d(u,/ue) 1 du,
G ui T dr + u, dz )

<22 [ pagy ®)

where LY = Lu, /v, u, = /r,/p, and u, is the
freestream velocity.

In the flow with zero or very mild pressure gradient,
the contribution of the third term of Eq. (9) is assumed
to be small. The second and fourth terms including
dP/dz and du./dz, respectively, show the influences of
pressure gradient on the shearing stress for a very mild
pressure gradient flow.

It is well known that in the log-law region, L¥ =
ay?; that is, it varies linearly with the distance from
the wall up to 1, in the overlapping region. In the zero,
or very mild pressure gradient, this & can be the von
Karman constant x. Furthermore, from Eq.(9), we ob-
tain

a=«kP* (10)

where
ToU L, ul 1/2
={1—(n— [ (=)dn)—=— 1
(== [TV A (1)
and A = 6°/v du./dz is the Pohlhausen parameter. 7,

can be approximated from the zero pressure condition
as 0.225.
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Thus, in the present calculation we employed a mod-
ification indicated by Eq.(10) for the length scale L, as-
suming that the effect of freestream pressure gradient on
the length scale across the boundary layer is the same,
that is P*. Consequently, the length scale is defined as
(18]

L _ 0.2n(1 — 0.467) p+

) 0.45+1n (12)

2.3 Transition Model

The transition captured with the present model is
associated with the heaviside function, which is defined

as
zfor z >0 turbulent

H(z) = { 0for z <0 laminar (13)

Specifically in the RNG algebraic model the turbulence
starts when satisfying the condition

%;-A"‘ > Cr (14)

Quite recently, Yakhot et al. [10] also showed the
possibility of the RNG model to capture the transition,
where a new length scale and dissipation rate were pro-
posed. They acquired a quartic equation for v, and
simulated a flat plate flow with Cr = 160. On the
other hand, Kirtley [12] employed Cr = 200 to apply
the RNG model to a turbomachinery problem.

Substituting Eqs.(4) and (12) into Eq.(14) for zero
pressure gradient case, using 7, = 0.225 where the effec-
tive viscosity is known to become maximum, and setting
Cpg to 75, we have the criteria for transition location,

that is when
u,. b

v

> T1.75 (15)

As the theoretical formulas for laminar flow [20], we
have

_ Uryg _ 0.664
¢y = z(ue) = \/ﬁz (16)
Sz
= 7
b= TR (am

Substituting Eqs. (16) and (17) into Eq. (15), we find
that the critical Reynolds number ReS is about 5.3 x
10%, which is close to the experimental data [20).

15000 7 ---- Ref. (3j(q=0,1,3 8§ %) .
,
R Rel. [4) (@ =1, 3 %) s
T Present Model ,'/ ...........
q=0%
10000
L
¥
o
5000
0 T N
15 10 H 0 A s 10 1s

Fig. 1 Characteristics of the captured transition
for various values of pressure gradient.

3. RESULTS AND EVALUATIONS

To observe the characteristics of the predicted tran-
sition location with the present model, a family of lam-
inar velocity profiles were calculated. The boundary
layer thickness, the skin friction and the velocity pro-
file in the y-direction were computed in terms of the
Pohlhausen parameter A. The complete model of Eq.(1)
was computed up to the transition location is captured,
that is when Eq. (15) is satisfied.

The characteristics of the captured transition loca-
tions under pressure gradient with this model are pre-
sented in Fig. 1. The solid curves illustrate the two
cases for Cr = 75 and 200. Results calculated by us-
ing the van Driest-Blumer [5] and the Gnaham-Shaw
[6] empirical formulas for various turbulence intensities
q are also presented for comparison. In addition to the
fact that the change in Cg can represent the effect of
turbulence intensity in the freestream, the qualitative
tendency is reasonable. That is, in the favourable pres-
sure gradient region, the transition is delayed, while at
the adverse pressure gradient the transition is acceler-
ated.

759

®  Ref.[4)
— Present Model
CR =158

Transition location

RGil gy,

T 1
0.0 o5 x (m) 1.8

Fig. 2 Boundarylayer characteristics at zero
pressure gradient (a) ¢; ,(b) H ,(c) Re,.

As shown in Fig. 1, the characteristics of the cap-
tured transition qualitatively agree with the empirical
formulation. However, the quantitative result is slightly
different from the experimental data. This is because
the transition model described by the RNG has a fixed
value for Cg. On the other hand, in the experiment, the
transition does not only depend on the Reynolds num-
ber, but also other factors such as turbulence intensity,
accoustic noise and so on.

The constant Cr determines transition location not
only in the streamwise direction but also in the normal
one to the wall, that is, the laminar sub-layer thickness.
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Estimation of the laminar sub-layer thickness expressed
as yh . can be made directly from Eq. (5), by defining
L = ky. Using Cg = 75 will lead to g}, ~ 13.5 which is
close to Fediaevski’s [21] prediction (y}t,, =~ 12). On the
other hand, when Cp is increased to 200, the y* is ap-
proximately 18. Because y;}  increases monotonously
between Cp = 75 and 200, Cg = 75 is considered the
best value in the present model. All results presented
in this paper are obtained using Cr = 75.

~ logy*

logy*

1

T T
' .| ()
ut = ufu,

Fig. 3 The growth of turbulent viscosity /v and
velocity u* = u/u, during transition period
(a) nfv, (b) ut = ufu,.

For Cr = 75, the calculated result is expected to
be in reasonable agreement with the experimental data
which are collected under the conditions of more than
1% turbulence intensity and small pressure gradient.

It is suspected that the present model can give a
good prediction for adverse pressure gradient flow prob-
lem with less than 2% turbulence intensity even if the
pressure gradient is small when Cp = 75. Moreover, in
the separated flow region the velocity gradient is nega-
tive, the turbulent viscosity will be zero in the separated
region, since the argument inside the heaviside function
becomes negative.

All computations were carried out using the popular
box-method [2]. The laminar viscosity v was held con-
stant (= 1.5 x 1073m?/s). The original governing equa-
tions were transformed into the well known Falkner-
Skan equation.

The zero pressure gradient case was simulated with
a freestream velocity U, = 22m/s. The experiment of
Gnaham-Shaw [6] shows that transition occurs at 28cm
from the leading edge. Using the present model, turbu-
lence occurs at 25¢m, which is close to the experimental
result.

The local skin friction ¢f, the Reynolds number
based on the momentum thickness Reg and the shape
factor H are presented in Fig. 2. Except for the slight
difference in skin friction ¢;, Res and H are in close
agreement with the experiment.

75

® Rel 4
——— Present Model
CR =175

=
2 ‘ N
® o °
' (b)
2000
P
1000
Transition Location
(c)
° T 1
e.9 0.5 x (m) 1.9

Fig. 4 Boundary layer characteristics at favourable

pressure gradient (a) ¢y ,(b) H ,(c) Res.

Furthermore, the RNG model can simulate a grad-
ual transitional process from laminar to turbulent flow.
The value of ¢; is likely Lo increase gradually until the
Reynolds number becomes high enough at which the
result merges with the experimental one. In the range
where the laminar flow gradually approaches the tur-
bulent flow, the streamwise intermittency appears. Al-
though, in fact, this transitional process is quite differ-
ent from the intermittency in the normal direction to
the wall.

This gradual transitional process is due to the effec-
tive turbulent viscosity v.. The v, is calculated based
on the parameter § included in the heaviside function.
This v, is filtered locally with regard to the assigned
threshold value, that is, the value of Cg. When f§ is
larger than Cpg, the v /v is directly calculated as a cu-
bic root of {1+ f — Cr}. Otherwise, it hecones unity;
that is, v, = 0. At a certain streamwise location, where
the Reynolds number becomes large enough, the effec-
tive turbulent viscosity v begins to have a value.

Figure 3 shows the turbulent viscosity (v/v) and
the related non-dimensionalized velocity distribution
(u* = u/u,) in terms of y* = u,y/v at several stream-
wise locations. The dashed lines are the theoretical ex-
pressions of velocity for comparison.

When 1, starts to have a value (see curve 1}, the ve-
locity deviates slightly from the fully laminar one. The
effect of the growing v, can be clearly scen in the outer
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part of the log-law distribution. As the Reynolds num-
ber becomes higher, the magnitude of turbulent viscos-
ity increases, and the velocity comes close to the empir-
ical formulation for the velocity in the turbulent region.
It is this spatial growth that prevents the skin friction
¢y from discontinuously reaching the value shown by the
experimental data. It is conceived that the difference
in skin friction in Fig 2. is due to this effect.

Furthermore, the turbulent viscosity predicted by
this model is shown to be continuous in the normal di-
rection to the wall and to increase smoothly with the
Reynolds number. In addition, the laminar sub-layer
is reasonably predicted. Moreover, in the transition re-
gion, no oscillations are observed.

One example of favourable pressure gradient cases
is presented in Fig. 4. The calculation was performed
using the same streamwise pressure distribution as in
ref. [6], where the reference velocity is 24.4m/s. The
transition occurs at the location of z = 25¢m. This rea-
sonably agrees with the experimental data of Gnaham-
Shaw [6] in which the transition occurs at z = 28cm.
Despite the discrepancy in skin friction, the boundary
layer growth is well predicted, which is revealed in the
distributions of Reynolds number Re; and the shape
factor H.

4, Concluding Remarks

e A dissipation rate for the RNG based algebraic
turbulence model has been devised. The present
mode] maintained the same cubic equation as the
originally proposed one. The variation of length
scale inside the boundary layer is defined by con-
sidering pressure gradient.

e The eddy viscosity computed with this model is
smooth in the region near the wall. The effective
viscosity v, was shown to depend on the Reynolds
number. As the Reynolds number increases, so
does v.. The gradual increase in v, which can be
associated with the onset of turbulence seems to
represent the intermittency effect.

o The present model has been used to evaluate the
transition phenomena for flow with pressure gradi-
ent. The characteristics of the captured transition
location qualitatively agree with the empirical for-
mulations.

o To see the capability of the present model concern-
ing transition location, the simulated result has
been compared with the experimental one. They
showed good agreement for cases with pressure gra-
dient.
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