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ABSTRACT

The present paper is devoted to investigate a variation of the exact Riemann problem (RP) solution with respect to a variation of the

initial data. This variation may be written in the linear form by introducing variation matrices (VM) coupled with the comresponding side of initial

discontinuity. It is shown that VM for the exact RP solution can be obtained in the explicit form for any initial data. Its application to the implicit

Godunov scheme leads to the linear system of equations in A - form which is solved in two relaxation sweeps, backward and forward ones, by

implementing LU approximate factorization. The advantage of the scheme obtained in such a way is large CFL number in calculating of super- and

hypersonic flows around blunt body.

1.Introduction The idea of employing the exact solution of
RP in numerical methods was developed by Godunov [1],
which produced a wide class of numerical schemes referred
to as Godunov's type. Originally it was an explicit finite
volume method (FVM), where the numercal flux on cell
edge is equal to the value of differential flux in the exact
solution of the RP with the initial data equal to the mean
values of the state parameter vectors in the cells adjacent to
the edge.

The time step for any explicit scheme is restricted by
the Courant-Friedrichs-Lewy (CFL) condition, which
requires that the domain of dependence in numerical scheme
must at least include the domain of dependence in
differrential equations. In the case of the explicit Godunov
method the time step must be such that the trajectories of the
discontinuities which appear as a result of an initial
discontinuity decomposition do not intersect during the time
step.

This time step restriction can be removed by the
introduction of implicit scheme. Generally, the implicit
scheme is nonlinear with respect to new time level. To solve
this numerically, either iterative method or linearization of
the original numerical scheme is used [2].

The latter approach developed in [3,4] for gas
dynamic equations is based on the linearization of
differential flux, the splitting Jacobian matrix into positive
and negative parts, and the upwind finite difference
approximation. The system of equations in A-form thus
obtained can be approximately factorized into the product of
two subsystems with block bidiagonal matrices in one-
dimensional case. In multi-dimensional case it leads to the
alternating direction implicit (ADI) procedure [5). The ADI

scheme is unconditionally stable in two dimensions.

However, it is well known [6] that the corresponding
scheme in A-form is unconditionally unstable in three
dimensions. '

An alternative approximate factorization of the
implicit scheme, which was proposed in {7] and developed
in [8,9], is lower-upper (LU) approximate factorization. It
is stable in any space dimension, and in fact, is reduced to
the symmetric Gausse-Seidel relaxation method for the
unfactored implicit scheme with a single subiteration.

The present method belongs to the same family.
However, it comes from an attempt to directly consider the
linearization of the implicit FVM, that is, the linearization of
the numerical flux in FVM instead of differential flux. This
approach seems to be attractive because it can be easily
extended to unstructured grid.

In this paper the Godunov method is employed for
flux evaluation. First, the variation matrices for the exact
Riemann problem solution are constructed in the explicit
form for any initial data. Then, using these matrices the
linear A—form of the implicit FVM and its approximate LU
factorization are derived for arbitrary. grid. Finally, the
implicit scheme thus obtained is applied to supersonic and
hypersonic flows with strong shock wave.

2.Governing equations Let p, u,, E, H, p be the density,

the Cartesian velocity components, the total energy, the total
enthalpy, and the pressure. Then, the three-dimensional

Euler equations can be written as

3G , oK@ _
ot * ox, 0 M

where q is the solution vector and Fy are differential flux

vectors:
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P pYy
Py, - puu, +5,,p
q=|pu,|; K = |puu, +3,,p 2)
P, pusu, +8,,p
pE pu,H
xk is Cartesian coordinates, and the equation of state is
given for a perfect gas as
3
p=(y-Dp(E- Y, u}) ©)
k=]
where 7 is the ratio of specific heats.

3. Implicit finite volume approximation Use of FVM for

space discretization can handle arbitrary geometries and
computational grids, and helps to avoid problems with
metric singularities that are usually associated with the finite
difference method. We consider a computational grid, where
the computational domain is divided into nonoverlapping
cells. Then the finite volume scheme is derived by
integrating eq. (1) in each cell, and transforming cell volume
integral to cell boundary integral:
0@ - @) = -0-PAY s Fr -paY s F (4)
o P

where @, is the cell average parameter vector, @, is the cell
volume, At is time step, P is parameter ( O< f<1), and S, is
the area of cell interface. Here n denotes the time level, and
o the cell interface. F, is so-called numerical flux which is
equal to cell interface average value with regard to the
projection of the diferential flux onto exterior normal.

The parameter B determines the specific time
differencing approximation used. The scheme with f =0 is
explicit, P =1 is full implicit , and B =0.5 is of second order
of approximation in time.

The numerical flux can be written in general form. If
we introduce the local cell interface orthonormal basis
n=(n,,n,,n 3, k= (k,,k,,k,) l-(l,,lz,l ) . where il is
the exterior normal to cell interface, and local one-

dimensional flux vector F :
pu
pu’ +p
F=| pwu (5)
pwu
puH

where (u,v,w) are the components of the velocity vector in
this basis, the numerical flux F, can be written in the

general form:
F, =T, F

where T, is the transforming matrix:

1
0

T,=[0 k, k, Kk, (6)
0

-0 O O <

60 0 0 O

The flux vector F is usually defined by the values
of parameter vectors in the two cells adjacent to a cell
interface:

F=#Q.Q.,) Q=Td O

where o(i) denotes the cell, which adjoins the i-cell through
the cell interface .

In Godunov's scheme we have

F= F((), )? 60 = 6‘(0- éuéem) (t))

Here Q® denotes the exact solution of the RP.

In flux vector splitting schemes, FVS, the flux
vector is given in the form:

F=F (6;)"‘ F(éo(i)) %)

where F* and F  are positive and negative parts of the
differential flux [4,10].

4. Linearization and LU approximate factorization The

implicit scheme in the form of eq. (4) is too expensive to
calculate since it requires the solution of coupled nonlinear
equations at each time step. A simple approach to the
treatment of the non-linearity, taking the advantage of the
fully implicit scheme, is local linearization of the non-linear
terms in eq. (4), i.e. the flux vector (Newton method). The
Newton method is defined in the following way.

Let the increment of a vector @ at the time level

n be
AD =0 -0"
Taking into account that the flux vector F ofeq.(7)
can be expanded as

! = B2 + pl AG, + 12AG,, + OUIAG, 1P 11AG,, )
and dropping terms of the second and higher order, it yields

(mr+ﬁAtZS,u§;’)Aq,+ﬂAt§:s,p<=>Aq,(,) ~-AE (10)

where T is the residual

"ll

R

If B=0.5, the scheme is second-order accurate in

time, while for other values of B it is of first order.
The variation matrices pu'? are defined in general

form as

i a(i)

for flux (7) with two arguments.

no =T = an
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In the case of Godunov's flux, the derivatives in
eq.(11) can be written by the Jacobian matrix A in the exact
RP solution A

an ( )3Q,
where QR /3Q, are variation matrices of the exact RP
solution, which will be derived below.

k=i, o() (12)

In FVS, the variation matrices are obtained directly

from eq.(9) as follows:
L OF* oF
ug) = Tc. ~ To ’ ug) = Tt;l ~ To
aQi an(i)

The implicit scheme (10) produces a large block
band matrix, which can be inverted only by performing
many operations. In [7] an idea of LU approximate
factorization was proposed for the implicit scheme on
regular grids, that is unconditionally stable in any number of
space dimension, and leads to the system of equations with
sparse triangular matrix. For an arbitrary grid, following
this idea we can introduce LU decomposition of eq. (10) by
separating the summation in it into two parts:

2( aug)Aqn + Sou(z)Aqo(i)) = zscu;Aii; + Zsoquqo

]

where

. [ndAq,, if i < o(i)
nAQ, = MAG i .

Ho Ay,  Ifi>0(i)
WAG: = p'::n qcm’ ifi <o(i)
o280 = nAg,, if i > o(i)

and simulating (10) with backward and forward relaxation
sweeps. Then LU factorized scheme can be written in two

steps as:

(oAq,HBAtZS,uGAq, =-AF  (13)

0,Aq; + ﬁAIZ S.HoAq, = miA(li.

The system of equations (13) is solved in two steps.
First, the first system is solved as the number of cell
increases (direct sweep). Then, in the opposite sweep,
where the number of cell decreases, the final increment is
defined by solving the second system. The latter is used to
obtain the parameter vector on the new time level. In each
sweep one needs to invert a sparse triangular matrix. In
practice it reduces to inversion of 5x5 matrix in three
dimensions and 4x4 matrix in two dimensions for each
computational cell, and can be perfomed efficiently without
any large storage. Equations (13) are actually a explicit
scheme, which defines sequentially the increments in cells
during the forward and backward sweeps of computational

grid.

5. Variation matrices for the exact RP solution The RP for
gas dynamic equations can be considered as Cauchy

problem:
6_6_ + aF(Q) =0
o ox
with initial data at t=0
= [Q, x<0
=423 14
Q {Q, x>0 a4

where t and x are time and space coordinates, Q and §
are defined in eq.(2),and Q, and Q, are constant.

This problem has a unique solution under any initial
data. The solution is a piecewise analytical function Qw .
which depends on the initial data and parameter A=x/t [11]:

| M) =a"(1.Q.Q.)

The number of singular points of this function is

strictly limited. It must be less than 5 in general case.
Moreover, their physical types (or wave pattern, because the
singular points represent the velocities of several
discontinuities originated from the breake-up of an initial
discontinuity) have always a certain order. That is, the
contact discontinuity (CD) arises. It separates the gas which
was initially on the left (x<0) from one on the right (x>0). A
constant flow domains (contact zones) in both sides of CD
have the same pressure and velocity. The contact zone might
be separated from an unperturbed zone by a shock wave, or
a fan of rarefaction waves (RW). In the domain of RW the
solution is described by the relations:
QM) uta-A=0; cw’'Fp'=0; s’=v'=w=0 (15
where a is the sound velocity, c=pa, s is the entropy, and
the prime denotes the derivative with regard to A. Except for
the RW zone, the solution does not depend on A..

Considering a variation of the initial data

Q-Q+8Q: Q-Q+%Q
we are concerned with the first variation of the solution
8Q = M,3Q, +M,5Q,
where the variation matrices (VM) M, are defined as
aQ‘ )
3Q,,

The problem is to find VM for any arbitrary initial
data. It is evident that M,, are piecewise analytical

M, =M, .()‘ Q(”)

functions that have the same singular points as the solution
= (%) . :
Q™ and are constant with respect to A everywhere but the

zone of RW.
In what follows, it is convenient to introduce the

vector U-(u,p,s,v,w) instead of the vector Q. The

corresponding VM is denoted by .
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Evidently, we have for the left unperturbed zone:
wm=L n=0
and for the right one
K =0
where I is the identity matrix.
Varying (15), we can obtain the VM in the zone of

RW in the form:

He=1

« 3% 0 o0 o
C;
w ool e
u'i= = i 5 1=Lr
Few=lo S 1 00
0 0 0O 1 0
| 0 0 0 0 1]
where
(1:7——_]_; ﬂ:i
Y+1 Y+1

and the upper and lower signs correspond to the right and
left RW, respectively.

In the contact zone, VM are constant and must be
defined by considering conjugate relations between the
variations at the internal characteristic of the RW or at the

shock wave.
Analysing these relations, we can derive that the

variations in the contact zones on the left and on the right
with respect to CD in all possible cases are written in the
form with an indeterminacy of one arbitrary constant C;:

80 =N"“8U, + m'C, , (17)

where N and m® are matrix and vector. It is natural to

i=lr

call them variation matrix and variation vector of contact
zone, and they can be written out in the explicit form. In the
case when the contact and unperturbed zones are separated

by RW, they have the form:
[0 0 0 0] 1
¢ cfa-a;)
Fc — '(y—]—)': 00 +c
. C; - - .
N'=lo o 1 o0 of m=|0}i=Lrqsy
0 0 0 10 0
|0 0 0 0 1] 0
For the case of shock wave they are i
[ 1+M?
1 —+X, —omT-x, 0 0 =%
0 _'min mXs 00 x',;n'
N = A T, mi=| 2
0 -— —i 0 of T
miT T 0
0 0 0 1 0 o
0 0 0 0 1]
where
m =p(u,-D,) A=u-u; M;=m,/c;; (19)
2+ moA 1+M? + moA c+0,
1T X T s X =mTi—s—
M-l P m(M?-1) M* -1

a’ y-1 -¥%
T=- ; O= ; s=pP 7Y
(v-1) ®
and D,, is the velocity of shock wave.
To determine two constants C, and C, in eq.(17),

there are two conjugate relations on the CD
[5u)=0, ([8p)=0

This completes the solution for the variation of the exact RP
solution.

The final result can be expressed in the compact
form if we introduce proper and associated values
depending on the value of the parameter A. For example, if
the value of A is such that it corresponds to the left side of
CD, then the left side parameters are proper but right side
ones are associated, and vice versa. Denoting the associated
values by asterisk , and the initial data by circle, the

variation of the exact RP solution can be written as
80 = pd0, + 380,

where

a) p=1l, p' =0 in the unperturbed zone;

b)  H=Hgy, W =0 in the RW zone;

c) p=N-fok’; u"=fof in the contact zone;
< m,N, -mN, i m,N; - m N;

mzm: _mlm; ’ mzm: - mlm;

Here Paw | N, and m are defined in eq.(17),
(18), and _(19), respectively for RW and schock wave; the
vectors N, are the first and second row of the matrix N,

™M,2 are the first and second components of the vector .

6. Numerical results Two dimensional calculations of
inviscid hypersonic flows around a cylinder have been
performed to verify the implicit Godunov scheme. The

freestream Mach numbers of 6 and 20 are used.
Comparisons are made between explicit (scheme SE) and
implicit (scheme SI) Godunov's scheme. Three types of the
grid are considered: a coarse grid of 40x15 with 40 cells
along the cylinder surface and 15 cells normal to the
surface, a middle grid of 30x80, and a fine grid of 60x160.
The CFL number is equal to 1 for SE scheme , while for SI
scheme it is varied from 1 at the beginnig to 100 after 30-50
iterations from impulsive start.

Convergence rate is evaluated by the value of the
residual of density in L. nom (Res) as a function of the
number of iterations. Implicit mirror wall condition is -
imposed at the cylinder surface. The upper part of the flow
domain is shown in the figures below.

The first case considered is a supersonic flow at
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M=6. The density contours (Fig.1) given by implicit and
explicit schemes on the grid of 60x160 (Fig.2) are identical.
Therefore, the implicit Godunov scheme yields a steady
state solution that is independent of time step At . For this
case, the convergence rate presented in Fig.3 shows that the
residual of the SI scheme drops more than 3 times faster
than one in the SE scheme.

The same tendency is observed if we use more
coarse grids as shown in Figs.4 and S. Thus, to get the
value of the residual of 10710 by the SE scheme using
15x40 mesh needs approximately the same number of time
step as the SI scheme on 60x160 mesh.

A hypersonic flow at M=20 has been taken up as a
case which is not appropriate for Godunov's type schemes.
In this case a numerical instability in capturing a strong
shock wave, called "carbuncle phenomenon” [12], can
appear in multi-dimensional computations.

As a result of this phenomenon, an ambiguous
numerical solution may be produced by Godunov's scheme.
It can be seen in Fig.6, where some numerical results at
M=20 by explicit Godunov's scheme are presented. These
calculations have been carried out by the same numerical

code with CFL number of 1, and the residual of 10710

have been achieved. The carbuncle phenomenon doesn't
develop on a coarse grid, whereas it does on a fine grid of
30x80 .

The convergence history for M=20 is presented in
Fig.7. When the carbuncle phenomenon doesn't appear
(Fig.7 a), the relation between convergence rates for SE and
ST schemes is the same as that of M=6. Otherwise, the
carbuncle phenomenon causes an oscillating slow
convergence in the SE scheme, and doesn't affect the
convergence in SI scheme (Figs.7b and 7¢). The numerical
solution in this case is incorrect near the stagnation stream
line. However, it can be removed by introducing a
dissipative mechanism to stabilize the shock wave [13].
7. Conclusions A variation of the exact Riemann problem
solution has been considered in the present paper. It has
been shown that the variation matrices can be derived in the
explicit form for any arbitrary initial data and used to
linearize numerical fluxes in the implicit Godunov method.
The linear system of equations written in the A—form has
been factorized in approximate LU form, which is relaxed in
backward and forward sweeps for arbitrary computational
grids. The results of some numerical experiments with the
implicit scheme thus obtained show more capability and

higher convergence rate 10 a steady state solution than

explicit scheme. The general approach considered herein,
based on the numerical flux linearization in implicit FVM,
seems to be attractive because it can be easily extended to
unstructured grid and the N.-S. equations.
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