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ABSTRACT

A flux splitting scheme is presented for the general non-equilibrium flow equations with an aim at removing numerical
dissipation of Van-Leer-type flux-vector splittings on a contact discontinuity. The scheme is also recognized as
an improved Advection Upwind Splitting Method(AUSM) where a slight numerical overshoot immediately behind
the shock is eliminated. The proposed scheme has favorable properties: high-resolution for contact discontinuities;
conservation of enthalpy for steady flows; numerical efficiency; applicability to chemically reacting flows. In fact,
for a single contact discontinuity, even if it is moving, this scheme gives the numerical flux of the exact solution
of the Riemann problem. Numerical experiments indicate no oscillation and robustness of the scheme for strong
shock /expansion waves. Higher-order extension is also discussed.

1. INTRODUCTION

Recently various high-resolution schemes have been
devised for the Euler/Navier-Stokes equations. Most of
these schemes make use of a first-order upwind differ-
encing as a basis, achieving higher-order accuracy un-
der some restriction such as Total Variation Diminish-
ing(TVD). Since these high-resolution schemes inherit
their characteristics from their basic schemes, it is very
important to design a basic scheme with desirable prop-
erties. Up to now, the basic upwind schemes have been
proposed, and most of them are categorized as either
Flux Difference Splitting(FDS) or Flux Vector Split-
ting(FVS): the former uses an approximate solution of
the local Riemann problem, while the latter splits the
flux vector into up-stream and down-stream traveling
components. To our understanding, the most popular
and successful FDS is Roe’s scheme, while such a FVS
is Van Leer’s. However, neither of them are not a per-
fect flux splitting scheme: the former produces an ex-
pansion shock and fails near low density, while the lat-
ter bears large dissipation on contact discontinuities and
shear layers. Generally speaking, the FD)S schemes are
too less dissipative and the F'VS ones are too dissipa-
tive. There is an effort to design a robust FDS scheme,
or a less dissipative F'VS. llowever, the former scheme
such as HLLEM(1] may be a little complicated scheme
for practical application, and the latter effort was found
to be a dead end[2).

There has been also a new approach to design a ro-
bust and less dissipative flux splitting scheme, in which
the surplus dissipation of the FVS is reduced by intro-
ducing the flavor of FDS into FVS schemes. We call this
approach FV/DS. Hanel[3] has found that the numeri-
cal dissipation in the boundary layer is greatly reduced
by using one-sided upwinding of the tangential veloc-
ity in Van Leer’s FVS formulation. This was later ex-
tended by Van Leer, who employed one-sided upwinding
also for the enthalpy of the energy flux{4]. But both of
these schemes still hold the numerical dissipation for 1-D
contact discontinuities and yield glitches in the pressure

near the edge of the boundary layer. Liou and Stef-
fen proposed a more promising scheme named Advec-
tion Upstream Splitting Method(AUSM)[5, 6], in which
the cell-face advection Mach number is appropriately
defined to determine the upwind extrapolation for the
convective quantities. The AUSM can capture a station-
ary contact discontinuity with no numerical dissipation
and is robust enough to calculate strong shock waves.
However, it bears a slight numerical overshoot immedi-
ately behind the shock.

In this paper, we present another way to remove the
numerical dissipation of the Van-Leer-type flux-vector
splittings on a contact discontinuity. Our basic idea
is very simple: Van Leer’s velocity splitting formula is
modified so as to cancel the mass flux at the contact
discontinuity. This scheme is also recognized as an im-
proved AUSM scheme. A cure for the carbuncle phe-
nomenon and higher-order extension are discussed as
well.

2. GOVERNING EQUATIONS

2.1 Generalized Nonequilibrium Flow Equations

Generally, a nonequilibrium flow such as described
by chemical reactions or turbulent models has the gov-
crning equations in a form:

aq BFk
"t om T S, (1)
where
[ o] pu ] 0]
Uy puytg + Oy 4p 0
puz pugug + 24p 0
pu3 pusui + b3 kp 0
q=| E |, Fo=| (E+pu |, s=| 0 |
ph phHhuk 81
pf2 pfaus, S2
L pfn J an“k _J L Sn J

1
E = e + Sp(ulz + 1122 + 1133),
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and
p=plp,e,pfi,pf2,--.,pfn)- (2)

These equations include the conservation of total mass,
momentum, total energy, and also the physical quanti-
ties pf;, which represent nonequilibrium effects, i.e., ei-
ther the concentration of chemical species or vibrational
energy. The quantities p, p, ui, E, and e respectively
denote the pressure, density, Cartesian velocity compo-
nents, total and internal energies, whereas the vector S
is a set of elements of nonequilibrium source terms. It is
assumed that an appropriate “frozen” speed of sound ¢
is calculated depending on a gas model, by which Eq.(2)
is defined. In this study, a numerical scheme is formu-
lated for the governing equations given by Eqs.(1) and
Eq.(2).
2.3 Numerical Flux in Generalized Coordinates
In practical computation, a numerical flux in gen-
eralized coordinates is needed, which we calculate af-
ter [7). Let the vector n = (ny,n,,n3) be a normal-
ized cell-interface normal in £-direction with the vectors
I(l1, I3, I3) and m(m,, m3,m3) being its recipropal ones:
n-l=0;n-m=0;1-m=0; |nj=|l] = m| =1. The
normal and tangential velocity components to the cell-
interface normal are calculated for each left and right
state:
u=nu;, v=hLy, w=mu,. 3)

The numerical flux in the x-direction of this local Carte-
sian coordinates has the form:

F = (pu, pu’ + p, pou, pwu, pHu, pfru, ... pfau) (4)

where H is the total enthalpy:H = (E + p)/p. Follow-
ing a specified flux splitting scheme, the numerical flux
Fi2 = (R, F,...,F54,) is calculated in these local
Cartesian coordinates. Finally the numerical flux in the
£-direction of the generalized coordinates, Fg, is given
as

3
nFy, + LFs + myF,
'Ileg + 12F3 + m;F..
113F2 + 13F3 + 17)3F_|
F( =5 Fs ’ (5)

Fe

F5+n

where S is the area of the cell interface. In this proce-
dure the numerical flux in the generalized coordinates is
uniquely specified by the definition of the numerical flux
in the local Cartesian coordinates, which is discussed in
the next section.

3. NUMERICAL SCHEME

3.1 Classification of the FV/DS schemes

Up to now, the most successful FV /DS schemes have
been the Van Leer scheme[4] and the AUSM(5, 6]. These
schemes are equipped with favorable properties: couser-
vation of enthalpy for steady flows; small dissipation
in the shear layer. As the first step in constructing

our scheme, we generalize these schemes, calling them
AUSMV-type and AUSMD-type schemes, where “V”
and “D” denote flux-Vector-splitting-biased schemes
and flux-Difference-splitting-biased ones, respectively.

First, we define the AUSMD-type schemes by its nu-
merical flux:

1
Fipz = 5[ (pu)1/2(¥L+¥R) = [(ou)12|(¥R—¥L) | +P1y2,
(6)
where
V= (Ia“,vvwaHafla“' ,fﬂ)"

Hence, a specific numerical scheme is uniquely defined
by an appropriate interface mass flux (pu)/; and inter-
face pressure pyj;. So far, the interface pressure of Van
Leer’s FVS is usually used as py/;. On the other hand,
the form of the mass flux varies with each numerical
scheme, because the mass flux is directly connected to
the resolution of contact discontinuities, which is a main
interest in the FV/DS schemes. For example, the fol-
lowing mass fluxes may be possible for the AUSMD-type
scheme, and are actually used in Van Leer’s FV/DS and
the AUSMs, respectively.
e Van Leer’s FV/DS:
(pu)ij2 = uf pr + up pr. (M
o AUSM(velocity-splitting):

(phra = 5l s72(pu+om) = hyal(pm—po) ], (8)
where uy/; = u} + ug.
¢ AUSM(Mach number-splitting):
(puhya = %[ M, a(prer + prer)

— |Mipl(prer — prer) ), (9)
where My, = uf /e + ug/ca.

Here u* are identical to the velocity splitting of Van
Leer’s FVS. The AUSM belongs to the AUSMD-type
schemes. In fact, the interface mass flux defined by
Eq.(8) or Eq.(9) in conjunction with the interface pres-
sure of Van Leer’s FVS makes the AUSMD-type scheme
reduce to the velocity-splitting-based AUSM and the
Mach-number-splitting-based AUSM, respectively. It is
noted that the mass flux of the Mach-number-splitting-
based AUSM vanishes at a stationary discontinuity,
making the AUSM a less dissipative scheme among the
FV/DS schemes. In the next section, we will present
a new formula for the interface mass flux (pu),;2 which
results in noticeable improvements over the AUSM.
The numerical flux of the Van Leer FV /DS scheme[4]
slightly differs from the form of Eq.(6) even if the mass
flux of Eq.(7) is used, because that scheme does not use
the upwind extrapolation about the term (pu?)/; in the
x-momentum flux. Hence, we need to define another
class of FV/DS schemes — AUSMV-type schemes:

(m®)ausmy = uf (pu)r + ug (pu)p. (10)
But the AUSMD-type schemes defines

(p*)AUSMD = %l (pu)rj2(ur+ur) — |(pu)ry2l(ur—uL) |
(11)
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The mass flux of Eq.(7) and the velocity/pressure split-
tings of Van Leer's FVS make the AUSMV-type scheme
reduce to the Van Leer FV/DS scheme. We emphasize
that a specific AUSMV-type scheme needs the definition
of the velocity splitting, u*, for the x-momentum flux as
well as that of the interface mass flux and the pressure.

3.2 AUSMD and AUSMYV Scheme

The main drawback of Van Leer’s FV/DS scheme
is the numerical viscosity on the contact surface, while
that of the AUSM is the numerical overshoot at shock
waves. We have found that the overshoot of the AUSM
is mainly due to the mass flux differencing. This is prob-
ably because the AUSM mass flux of Eq.(8) nor Eq.(9)
does not directly take into account of the density behind
the shock wave. Hence, in this study we employ a mass
flux formula of Eq.(7). In this case, however, the surplus
numerical dissipation at the contact discontinuities is a
problem.

In this study, we design a velocity splitting so that
the numerical dissipation can cancel at the contact dis-
continuity. The mass flux is

(puhrja = uf pL + ug pr, (12)

where the velocity splittings u}f,uy are no longer the
familiar Van Leer splittings, but rather including terms
designed to capture stationary/moving contact discon-
tinuities, and are given as
ul =

=

{ ap{ Larenl _ wtluly jowthal bl <,

wél“—"t, otherwise,
up =
o —teazinlt — acjenl)  sacjeal, i leal <3,
%"—"l, otherwise,
where
___2(p/pk 2 (p/p)r
aj,

T Wi+ wior BT lo) + le)R

and ¢, = max(cr, cr). The velocity splitting, which is a
function of a: 0 < a < 2, is shown in Fig. 1.
Secondly, the pressure flux is

P2 = pi + PR (13)
where
pL/R(HE + 1) (2 F hLe)/q, if Maml <
PLR= ur/rt |ur/nl

otherwise.
2uyr

Substitution of Eq.(12) and Eq.(13) into Eq.(6) results
in the numerical flux of the AUSMD, in addition, if
the term pu? in the x-momentum flux is replaced by
Eq.(10), we have the scheme AUSMV. We call these
specific AUSMD/V-type schemes as the AUSMD and
AUSMV, respectively.

Fig. 1 Velocity splitting.

3.3 AUSMDYV: Mixture of AUSMD and AUSMV

There remains a question about the choice between
the AUSMD and AUSMYV, i.e., between Eq.(11) and
Eq.(10). According to our numerical experiments(8},
the AUSMV has a higher shock-capturing capability
than the AUSMD, while the AUSMD has a weaker CFL
number restriction than the AUSMV. Then we prefer a
mixed momentum flux of (pu),/; between the AUSMV
and AUSMD:

(P2 = (54 ) (o aossy + (5 = $)(ou)avsus (14

where s is a switching function of the pressure gradient:

_1 . lpr — pu|

$=3 min( 1, Kmin(pl,,pn)) (15)
This averaging is biased toward to the AUSMV in or-
der to maintain the shock-capturing capability. We call
this mixed scheme the AUSMDV. In this study a con-
stant parameter K = 10 is taken. It is noted here that
the genuine AUSMYV flux is also possible when the CFL
restriction is not considered serious.

3.4 A Cure for the Carbuncle Phenomenon

The carbuncle phenomenon is an instability in cap-
turing a strong shock wave in multi-dimensional prob-
lems. Quirk’s proposed a test problem([9], in which a
shock wave propagates into a static gas through a duct
whose centerline grid is slightly perturbed. The AUS-
MDV is not free from this problem as shown in Fig. 2.
We suspect that the carbuncle phenomenon comes from
the recognition of a multi-dimensional shock wave by
a one-dimensional numerical scheme. When the shock
wave is captured by a shock capturing scheme, an in-
termediate point(s), which is unphysical, is needed to
express a shock position numerically. In 1-D case, if the
scheme is well designed, this is not a problem. But when
that scheme is applied to multi-dimensional calculation,
the intermediate point exchanges information with the
neighbors which are also intermediate shock points. It is
probable that the exchange of information between these
unphysical data causes a numerical instability. In that
case, a mechanism to stabilize the shock or some form
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of artificial viscosity is required. We call this artificial
procedure “Shock-Fiz.”

80
60 00
F—~AAA—
£ € 200
§ 40} GERAOR = 0.106-05
TPG = 228 & 200
JMAX = 350
20} CFL =1.00
N = 400 100
0.0 00
Y-axis{ behind shock) X-axis(coenteriine)

Fig. 2 Shock wave propagating through a duct by AUSMDV.
Here, the following shock-fix is proposed(see Fig.3).

1. Find out compressible sonic points across the ceil
interface before calculating numerical flux. This
sonic point takes place when

(16)

up—crp >0 and ugp—cgpr <0,
or up+cL >0 and ug+cr <0.

If this is detected between grid point j and j+ 1,
set flag S¢; = 1 and S¢ ;41 = 1 in €-direction. The
same procedure is done in 1 /(-direction, which is
easy to vectorize.

2. In calculating a numerical flux in £-direction be-
tween grid points j and j + 1, S, and S; but S
are used to sense the shock position, to which some
dissipative scheme is applied. That is

Dissipative Scheme: if
(Sni+ Sajnr + 50+ Scin) 2 1
Non-Dissipative Scheme: otherwise.
Sheock:Sonic Point

\\ W'

L

v )t
—vo@«e ° |—

—H
-—»oe((e ° —

+ Mt

v e
——»o@{(e ° —

4 N 8
! // )
Intermeditate

& the Shock w.ﬁ":".‘.‘.‘.fifﬁ"“ Dissipative Numerical Flux

Fig. 3 Shock-fix.
The numerical fluxes in other directions are calculated
in a similar way. This method unlike [9] does not use
the pressure gradient in sensing shock waves. The pres-
sure gradient does not always provide a sufficient infor-
mation for the recognition of shock wave, since in that
case some empirical parameter to distinguish shock and
compressive wave would be needed. It is noted that the
alone shock fix procedure is easily applicable to unstruc-
tured grid approach. This shock-fix needs a dissipative
scheme to stabilize the shock wave. For the AUSMDV,

we employ Hanel’s FVS scheme, because it is dissipa-
tive enough and conserves the total enthalpy for steady
flows. The numerical flux of Hanel’s FVS is

Fip2 = pLuf¥L + prup¥r+ piy2, (17)

where the velocity splitting and the interface pressure
are identical to those of Van Leer’s FVS. Quirk[9] pro-
posed a test problem for the carbuncle phenomenon,
where a shock wave propagates into a static gas through
a duct whose centerline grid is slightly perturbed. Fig-
ure 4 show the solution of Quirk’s test problem by the
AUSMDV without the shock-fix, indicating the effec-
tiveness of the shock-fix. A similar shock-fix is possible
for Roe’s approximate Riemann solver, for which the
HLLE scheme is considered to be a dissipative partner
schemel8).

280.0 300.0
Density Contours
8.0 §0.0
60 wof
z £ 300 )
2 40
(§ O GERROR = 0.106-05
TPG « 228 200
JMAX =
20} CFL =1.00
N - 40 100
0.0 0.0
Y-axis(behind shock) X-axis(centerfine)

Fig. 4 Shock wave propagating through a duct by AUSMDV
with shock-fix.

4. RESULTS AND DISCUSSIONS
4.1 Test Problems using First-Order Scheme
Here some of numerical experiments are introduced.
The first problems are shock-tube ones as shown in Fig.
5a-c, where the initial value is
* (p,pu)e = (1,1,0); (p,p,u)r = (1/8,1/10,0),
g (P,P, A!)L = (-11 4 15); (pvpaM)R = (-11 1, "’15)1

i (p,p,u);, = (1)2; —2501:)) (p)P7 u)R = (1’ 5, 2-5CL)a
respectively. The first case is Sod’s standard problem

and the other problems are about very strong shock
and expansion waves. All these figures indicate the
robustness and high-resolution of the AUSMDV. The
second problem is 1-D self-similar conical flow over a
10-degree half cone at hypersonic speed. This problem
is used to check the accuracy of numerical schemes on
the shock and boundary layer[10]. The flow conditions
are M, = 7.95; Reo, = 4.2x10%. Figure 6 shows the
profiles of pressure, temperature and tangential velocity
solved by the AUSMDV. The AUSMDV conserves the
total enthalpy for a steady state solution, giving the ex-
act wall temperature solution indicated by an arrow. In
addition, the thickness of the boundary layer was very
similar to that solved by the Roe scheme, indicating
high-resolution of the AUSMDV for a non-linear wave
discontinuity as well. Other various numerical experi-
ments including thermo-chemical non-equilibrium flows
are found in {8}.
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Fig. 5a Sod’s shock-tube problem.
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Fig. 5b Shock-tube problem — colliding flow.
AUSMDV : fAp, pa}mpc K10 CFL=1.00 N= 30

——Pressure
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—e— Temperature

Fig. 5¢ Shock-tube problem — strong expansion.
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Fig. 6 Conical flow problem.

4.2 MUSCL Higher-Order Extension

1 is natural to use the MUSCL approach in extend-
ing the AUSMDYV to higher-order accuracy. However,
there are arbitrariness for the choice of variables which
are interpolated or extrapolated. We may choose con-
servative variables q = (p, pu, E), or primitive variables
q = {p,u,p). Even when the characteristic decomposi-
tion is used, there are still many choices about which
kind of governing equations is used in deriving the char-

acteristic variables. For example, the governing equa-
tions for the conservative variables q give LAq as gra-
dient of characteristics, while those for the primitive
ones do LA§, where L and L are left-eigenvector ma-
trix for the conservative variables and primitive ones,
respectively. Here, in order to show the effects of choice
of the variables extrapolated, some numerical results
are presented. Figures 7a and 7b show the solution
for Sod’s shock-tube problem using the primitive vari-
ables § = (p, u,p) and the characteristic variables based
on q. Here the minimod was used as a limiter func-
tion. The MUSCL approach using the characteristic
variables gives obviously better solution than the non-
characteristic ones. This tendency was common for
other sets of variables, (p, pu, E), (p,u,T),(T,u,p) and
(H,u,p), with the difference among the results using
characteristics variables being very minor, aithough they
are not shown in this paper.
AT S WP B o580 N 100
—+—Pressure

—— Density
—e— Temperatre

10

3
10

Fig. 7a Sod’s shock-tube problem — MUSCL A{p, u, p)
ROSNOT 7. 23 Sy 1 ™ G Ega AR

Pressure

-1.0 0!

—+— Density
—e—Tempera

——_

-1.0 -0 10
x

Fig. 7b Sod’s shock-tube problem — MUSCL LA(p, u,p)

Secondly the conical flow problem is solved by the
AUSMDV with the MUSCL higher-order extension.
Figures 8a-e present the results. For this steady state
problem, the characteristic decomposition shows almost
no improvements over the use of raw variables. Within
the boundary layer the pressure is constant, but temper-
ature and density have a steep gradient. Then, the re-
construction using the temperature and density can not
recover the physically correct pressure profile as shown
in Figs. 8c and 8d. On the other hand, when the pres-
sure is included as a element of extrapolated variables,
a fairly good result is obtained as shown in Fig. 8a, 8b
and 8e. The solution in Fig. 8e uses the characteristic
variables in which the total enthalpy H is included as a
extrapolated variable, keeping the conservation of H for
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a steady state solution even at higher-order accuracy.
Also the use of variables (T, u,p) gives a good solution
similar to that by using (H,u, p), being advantageous for
chemically reacting flow problems because of no need of
calculating temperature by the Newton iteration. It is
noted here that there were almost no difference between
the Roe scheme and the AUSMDV as a basic flux split-
ting scheme in the above calculations. More detailed
study about the choice of variables used in the MUSCL
approach will be reported in near futuref11].

itvd= 1 musci: primitive variables(p,u.p) .
AUSMDV : Ap . pu)=p. Kwi0 at:l“-oéao N=10000

15.0 12.0

11.0

6(deg)

1986~ 26 4060 16.0‘[ 10 vl

pp.. T/T..

Fig. 8a Conical flow problem — MUSCL A(p,u,p)
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itvd= 1 musci: char. L(p,up); LR at grid in unified dimension
AUSMDYV : Ap,.px)=pi.K=10 s:”r;;ln-oéso N=10000
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14.0

13.0
g 11.0
E-l

12.0|

1.0

k\.‘) 3
109 N . " ool—u .t
.0 20 4.000 100 | W, (p-poMp.. (%)

/T

pp.. -
Fig. 8b Conical flow problem — MUSCL LA(p,u,p)
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Fig. 8c Conical flow problem — MUSCL A(p,u,T’)

itvd= 1 muscl: char. &(p,s,T); L,R at grid in unified dimension
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Fig. 8d Conical flow problem - - MUSCL LA(p, u,T)

itvd= 1 musci: char. L(H,up); L,R at grid in unified dimension
AUSMDV : Ap. . pa)=p,  K=l0 CF 2.30 N=10000
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Fig. 8e Conical flow problem — MUSCL LA(H, u,p)

5. CONCLUSION

We have presented a flux splitting scheme equipped
with favorable properties: high-resolution for contact
discontinuities; conservation of enthalpy for steady
flows; numerical efficiency; applicability to chemically
reacting flows. Numerical experiments indicate the
soundness of the proposed scheme. Higher-order exten-
sion is also discussed.
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