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NUMERICAL SOLUTIONS OF INVISCID & VISCOUS FLOWS

ABOUT AIRFOILS BY TVD METHOD

Hamid Reza KHEIRANDISH', Goro BEPPU?
and Jiro NAKAMICHI®

ABSTRACT

The need to properly compute steady and unstcady viscous flows surrounding airfoils at transonic speeds remains an

outstanding problem in fluid dynamics. In transonic flow where viscous effects such as shock-boundary intcractions and

scparation arc dominant, methods based on the Navier-Stokes cquations are nceded. Calculations of unsteady transonic flow

about oscillating airfoils where flutter, dynamic stall, buffct and moving shock waves on these surfaces change the entire

flow fields and aerodynamic characteristics, arc still stiff problems that stimulate more work and studies to be done. To

simulatc these problems correctly a robust computer program is nceded. This report shows the works have been done up to

now i.e., developing a computer program and verifying it by applying to steady viscous and inviscid flow calculations and

inviscid flow about an oscillating airfoil.

INTRODUCTION

With the recent development in super computers either
in specd and memory storage a remarkable progress has
been madc in the field of computational fluid dynamics.
Recent improvement in the theorctical and computational
fluid dynamics has been largely based on finite difference
methods. Several Reynolds-average Navier-Stokes codes
for numerical prediction of airfoil flows have been
developed and applied to many areas of fluid dynamics,
successfully. These schemes arc also extended to
unsteady Navier-Stokes codes by many rescarchers.
Among them, schemes based on Total Varation
Diminishing (TVD) properties arc more actively followed
and extended to scveral different problems of fluid
dynamics nowadays. The TVD property guarantces that
these schemes avoid spurious oscillations but sharp
approximation to shocks and discontinuities. Generally,
TVD schemes have made a possible very robust algorithm
for Euler cquations and other hyperbolic systems.

The implicit TVD schemes originally developed by Yee
& Harten [2]and extended for general curvilincar
coordinates by Yee ct al, for hyperbolic conscrvation laws
have been used as numerical method.

In the present paper this scheme was applicd to stcady
inviscid and viscous flows about NACA0012 airfoil under
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several cases. Unstcady inviscid calculations using
moving grid system around the same airfoil undergoing
pitching oscillation about 1/4 chord were also conducted.
For viscous steady-state application, a simple algorithm
utilizing the TVD scheme for the Navicr-Stokes cquations
is to difference the hyperbolic terms the same way as for
Euler equations, and then central differencing the viscous
term. The algebraic Baldwin-Lomasx [1] turbulence model
is coupled to the governing equations. The scheme was
also applied to viscous flows for several cases and
obtained results and comparison of them with the other

results arc given in the end.

1. Conservative Form of Governing Equations
in Curvilinear Coordinates

Governing equations of viscous fluid flows are Navicr-
Stokes equations. The strong conservative form of these
cquations in two dimensions can be written in vector

form as follows
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Pressure is related to the conservative flow variables, Q,

by the equation of state
[e 1 2 2]
= —1 — - . 1.4
p=(y )l/’ 2(“ +v )J (1.4)

2. NUMERICAL METHOD
2.1. Description of Algorithm

Here the algorithm for inviscid equation (Euler Eqgs) is
cxpresscd and application to viscous flow is given in the
following. In generalized coordinates conscrvation form
of the governing equations for inviscid flow has the form

a0 oF oG
—+—+
X E any

= (0. 2.1

let 4 and B be Jacobians of F and G as
H

BN

A=

(
(

B:Z—g and et the cigenvalues of A be

g l
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A&Az. A 5) and the cigenvalucs of B be
Ao, A ’ s )

Denote f(E and f?n as the matrices whose columns arc
cigenvectors of A and B, and denote R and f(,," as
the inverse of f(; and I%,,

Let the grid spacing be denoted by AX and An such
that £ = jAE and n=kAn . Define Q,,,,, assome
symmetric average of Q“ and Q.'.,I 4 (for example Roe's
dynamic[8]). Let
“;n/z % I.ZM,2 50 R,':,,, R denote  the  quantitics

ay R, R;' related to A evaluated at  Q,.,,,,

average for gas

Similarly the indices (k +1/2 ) show values cvaluated at
k and k +1.
Define a;,,,, as the differcnce of the charactcristic

variables in the local & direction and
Rl Qiﬂ.& QJA
ie))2.k *

0.5*( 1,u'r.ll',‘)

With the above notation, a one parameter family of TVD

jhevz W7

direction as a;,y,,

scheme can be written as

I+ R Fas = Fitlna ] A"6{G 1 - Gl
= Q;",k - )*E(l - H)[F;u/z,k - F;—lll.l]
—A"(l - 016;1/2.& - G;-uz,t ]
(2.2

Where 6 is a parameter, A* = At/AE, and 1" = A&1/A7).
Aspacc second-order form of the numerical flux function

F, ivv2 Canbe expresscd as

1
Fia= E[Fj.k + F, Jenk +R,.vv k(b;n/z,A] (2.3)

wherc the clement of the ®,,,,,, denoted by ¢M,u, (

I=1,...,m) arc

| !
$ivi2t '2"(",.1/2*)(8,,1 '3;01,&) ( puzk”,nnt)"uuu:

(2.4)

with

g f £ =5 max[(),min (Ia},,,z J‘LS- Gf-uu )}

S osi ! )
S =sign( a; 04

(2.5)

The function y(z) is sometimes referrcd to as the
cocfficient of numerical viscosity.

and can be defined as
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Il bl=e
y(z)= {(zz re)2e bl< e’ (2.6

where ¢ is a small positive number and
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2.7)
wherc “;.:/z , are elements of Eq.(2.4). The scheme is

first-order accurate in time for steady state calculation with

. 1
the selection of ofz) as ofz) = > y(z) and second-order
accurate in time suitable for time accurate calculation with
1 {, I\. o .
ofz) = Ew(z) +A 60— E)z . Similarly we can definc the
numerical flux (~?i Koli2-

The scheme (2.2) is a mixed implicit-cxplicit scheme.
When 8§ =0, Eq.(2.5) is an explicit method; when 9 =1
is an implicit scheme and if 6=1/2 | the time
differencing is the trapezoidal formula, and scheme is

sccond-order in time.

2.2. ADI Form of Linearized Scheme
An ADI form of this equation will be adopted and can be
cxpressed in conservation form as

[nzfal‘ 2g - ASOE 1/2.&]” =

& 2
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where
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2.3. Application of TVD Scheme to Viscous

Flow '
TVD schemes (2.8) can be applied to Navicr-Stokes

equations by simply adding a second-order central finite

difference discretization of viscous terms to the right hand

side of this equation for full Navier-Stokes Egs. For Thin-
Layer approximation first we lincarize viscous term in 5
direction as

R'9 S = R;‘a,,(S“ £ I7M Q). (2.12)
where J>M" = —"—9.—,

then we add central finite difference of (2.12) to (2.8)
3. BOUNDARY CONDITIONS

Boundary Conditions for Euler and Navier-
Stokes Solutions

A particular sct of boundary conditions employed in
airfoil computations are described below. The geometry is
mapped onto the computational rectangle such that all the
boundary surfaces are edge of the rectangle. This
application is for a "C" mesh topology.

Initial condition is set equal to nondimensional free
stream values of Q plus boundary conditions. Stretched
grids are usually used to place far field boundaries far
away from the body surface. When bow shocks and
attached shocks are generated at a body surface carc is
taken to ensure that the shocks are sufficiently weak when
they reach far field boundaries so that they arc not
reflected or at least they reflect outside the flow domain.
At outer boundaries stream values are set equal to frec
stream values or can be calculated from Riemann
invariants.

At a rigid body surface, tangency must be satisfied for
inviscid flow and the no slip condition for viscous flow.
In two dimensions, body surfaces are usually mapped to
n = constant coordinates. The normal component of

velocity in terms of the curvilinear metrics is given by

V - N4+ 0V
o )

U -
V, = _U‘/_,_T_'l_x: Therefore, tangency is satisfied by
(nx + 7ly) :

V =0 (no flow through the body ). The tangential

and the tangential component by

velocity ¥, is obtained at the body surface through lincar
extrapolation for inviscid cases and is set cqual to zero for
viscous cases. The Cartesian velocities arc then formed

from the inverse relation between them which leads to

(o) m{"é, ) G
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The extrapolation of ¥, procedures less error if the mesh
lines are clustered to the body surface.” The normal and
tangential velocities in Eq(3.1) arc scaled such that the
metric variations are removed which decrease the errors in
the extrapolations for nonorthogonal meshes.

The pressure on the body surface is obtained from the
normal momentum equation. In viscous flow cither steady
and unsteady, the contravariant velocities U , ¥V on t_he
body surface are zero and the equation can be written as

P[‘jﬂx -i"y]'k,"(Zn,ny‘xy. "lz'xx. *’l:'ﬂ.)- (3 2)
pelmebe e ny8,) p.,(rrf* nf)

where X,y arc second derivatives with respected to time.

In inviscid flow the viscous terms and only V' are equal
to zero. In this case the normal momentum equation for
inviscid flow can be simplified to

P[-in, -iv,]-;ﬂ(n,w; + 'I,Vg) 'Pg('l;f; + n,f,)*p,,(nf + r)f)
3.3)

For subsonic outflow boundary, three eigenvalues of A
are positive and one is negative thus onc of the stream
variables can be determined from down stream and three
other one from extrapolation. We set the pressure equal to
frec stream value

4. UNSTEADY SOLUTION OF EULER
EQUATIONS

In this method|[3], first a steady state grid is gencrated
around the airfoil at mean angle of attack and since the
motion of airfoil undergoing a force oscillation is
described in advance as a function of time, the
instantancous gird is gencrated at cach time step. The
displaccment of grid points on the surface is determined
from the cquation of motion of airfoil and then whole grid
system is updated in the following manner

X3 = X+ A S(s),
o “4.1)
Yia "ylll + Ay:.lg(s)’

wherc  x7,,y7, arc the coordinates of grid points at
t=nMN and x";', y;'_;' are those at time =(n+1)Ar .
The displacements of grid points on surface Ax},, Ay;, are

calculated by

L] 13
Axjy =X} - Xjs,

4.2)
ij,l -yi,l —yi,r

In Eq.(4.1) S is a function of s which is the distance of a
grid point from body surface along a grid line. Function
S(s) is chosen as

S@E) =1 fors <s,,
, 4.3
S(s) =V1-2? fors>s,, (43)
where
E= (s ~8,y )/(sm - s,4), (4.4)

where s, is some adequatc value between zero and onc.
Here 2/3s,,, is selected.

In this method outer boundaries are hold constant when
the inner boundary changes with airfoil motion. Grid
points near to the surface move in the same motion as that
of airfoil surface and the displacements of grid points far
from surface decreases as we move away from the surface
and vanished at outer boundary. It is needed in this
method to calculate Jacobian and metrics at each time step.
The boundary conditions for inviscid calculation on the
body surface are implemented as follow

V =0,

(u+x,\ n, n,](V\‘

V+y,) J Tlx .{,.77’ 7, }. (4'5)

where x,,y, surface velocities are calculated numcrically at
time step "n" and" n+1". As steady statc calculation
pressure is computed from normal momentum Eq.(3.3).

A first-order backward difference approximation of
accelerations can be written as

ol xnol _an +xn-l
X - ‘—'——"2—’
Y
nel y"" _2y-'l +yn-l
y = A
To satisfy Kutta condition physical velocitics at trailing

(4.6)

edge arce set cqual to airfoil surface velocitics

5. NUMERICAL RESULTS

A C-mesh topology with 251x41 grids for inviscid
steady flows, 299x71 for unsteady inviscid flow and with
259x61 grid points about NACAQD12 airfoil have been
used in all of calculations.
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Since the actual grids have widely varying cell size a

spacc varying a is used as a vchicle to improve
convergence ratc.  For inviscid steady flows it is
considered as A= ft.ed7, and for steady viscous
flows a a1 .A:,,,/(IUMVI* EZ+24nen?).
The ¢ is sct cqual to .125 for all cascs. The cases
considered here for inviscid flow are a) a=.8, a =1.25 b)
#=.85 a=1.00 and obtained rcsults arc comparcd with
results obtaincd by Yee & Harten. The numerical results
arc given in Fig.1,2 which show qood agrecment with
thosc of Harten The required CPU time is (0.6 scc/iter on
singlc processor of NWT.

The sccond casc considercd here was unsteady inviscid
flow calculation about airfoil undergoing pitching
oscillation about 1/4 chord with the reduced frequency of
(.1628, Mach number of .755, amplitude 2.51 deg and
zero incidence. The mesh is regeneacd at cach time step by
the mcthod mentioned carlicr. Fig.3 shows how the mesh
is renewed by this method at two different time step. Time
history of acrodynamic cocfficients for six cycles,
pressurc and Mach contours for some instances arc given
in Fig.4 and Fig.5. This calculation requires 1510
itcrations for onc cycle and 15 minutes CPU time.

Finally stcady viscous flows about the same airfoil were
considercd. Some of the obtained results are given here.
Fig.6 show pressurc and friction cocfficient at four
different cascs and Fig.7 pressure cocfficient and mach
contour of two cases. Comparison of current results with
the other numerical results and also cxperimental results
arc given in table.1. The obtained results are close to the
others. For viscous flows second order accurate in space
and timc show better stability. The minimum distance of
the first grid away from surfacc was considered about
order of .yk, to resolve boundary layer. Required CPU

time in this casc is 1.6 sec/iter.

CONCLUSION

A computer program bascd on TVD scheme was
developed and applied to inviscid and viscous flows.
Current results show good agreement with the other
“results. With more improvement in convergence rate this
code is applicable to unsteady viscous flow calculations
such as flutter or dynamic stall prediction which were our
objcctives for doing this work.

Finally I appreciate Mr. Kawai ( of NAL) for his

permiting to usc his block thridiagonal solver.

REFERENCES

[1)Baldwin,B.S. and Lomax,)L,"Thin Laycr Approximation and
Algebraic Model for Separatcd ‘Turbulent Flows,” AIAA papcer,78-257
1978)
(IZ]Yce,H. and llarten,A,"Implicit TVD Schemes for llyperbolic
Conscrvation Law in Curvilincar Coordinates;” AIAA paper, No.85-
1513 also AIAA Joumnal Vol.25, No.2,(1987), pp.266-274
[3]Nakamichi, J.,"Calculation of Unsicady Navier-Stokes Equations
Around an Oscillating 3-D Wing Using Moving Grid System,” AlAA
paper,87-1158-Cp

FIGURES

CpContours (,'P(Innlnnn

Af=.8 a=1.25 AM=85 =l

Fig. 1. Inviscid flow solutions about NACAO0O012

A Harten's results
a-1.0

Tig 2 .
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