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ABSTRACT

In this paper, steady and unsteady weak shock waves in a bubbly liquid are treated numerically.
A new system of model equations describing the bubbly flow is applied and the flow structure behind
a shock front is investigated in detail. It is shown that the heat conduction between the liquid and
the gas phases through the bubble surface affects significantly the wave profile near the shock
front. It is, however, shown that the velocity difference between the liquid and the gas phases
affects the wave profile remarkably for weak shock waves. Radial oscillation of bubbles tends to
produce oscillatory profile of the mixture pressure especially near the wave fronts. Numerical
simulation shows that the weak shock consists of a precursor near the shock front and a main shock

downstream of it.

It is confirmed that the stationary shock wave for a constant polytropic-exponent

model is realized as an asymptotic solution for a shock tube problem with uniform conditions in the

low pressure and high pressure chambers.

I. INTRODUCTION

So far, the problem of propagation of shock
waves through a bubbly liquid has received
considerable attention. The speed of shock wave
propagating through a liquid containing small
gas bubbles was first studied theoretically and
experimentally by Campbell and Pitcher'. Later,
Crespo® investigated analytically the shock
structure under some simplifying assumptions
Noordzij & Wijngaarden® performed experiments of
shock propagation in a bubbly liquid and found
that there are three types of shock structure.

Recently, Beylich & Gilhan' performed
systematic numerical simulation and experiment
of shock waves in bubbly liquid and obtained
good agreement between them. In their analysis,
however, a few empirical parameters are intro-
duced to fit the numerical results to the
experiments.

In many previous papers,the effects of velocity
difference between the two-phases on the shock
waves are assumed to be negligible. This assmp-
tion is not always appropriate for the weak
shock wave. Although in general the thermal
dissipation plays the most important role in
the determination of the shock structure, the
effect of the relative translational motion of
the bubbles can not be neglected, especially for
weak shock waves. Dispersion and dissipation
processes associated with the expanding and
contracting motions of bubbles usually affect
the shock structure rather in the region near

the shock front. The shock structure, however,
cannot be predicted precisely without consider-
ing the effect of the velocity difference be-
tween the two phases as well as that of the
thermal dissipation.

In the present paper, first stationary shock
waves in a bubbly liquid are treated. Here the
weak shock wave is defined as the shock with a
pressure ratio less-than or at most equal to the
ratio of specific heats of the gas 7. The de-
tailed flow structure behind the shock front and
the effect of the velocity difference between
the two-phases on the shock structure is inves-
tigated numerically. Next shock tube problems
are treated and unsteady behavior of the shocks
is discussed. All the numerical simulations are
performed on a supercomputer Fujitsu VP-2600 in
the Data Processing Center of Kyoto University.

I1. BASIC EQUATIONS

We consider a one-dimensional flow of a mixture
composed of an incompressible liquid and small
gas bubbles dispersed in it. It is assumed that
the bubbles remain spherical throughout the
flow, have locally uniform size and do not break
up or coalesce, the pressure within each bubble
is uniform, no phase change takes place and the
temperature of the liquid remains constant
throughout the flow.

Under these assumptions, the governing equa-
tions for a one-dimensional unsteady flow are
given as®
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Here the time t,the space coordinate x,the fluid
velocity u, the pressure p., the gas density p g,
the bubble radius R, and the coefficients of
diffusion force and replusive force, Du and H,
are nondimensionalized by Ro/Us, Ro, Uo, p 1Uo?,
P g0, Ro. (4/3) T Ro*p +Uo?, RolUo, respectively,
where Uo is a reference velocity. The subscript
zero denotes the uniform flow conditions ahead
of the shock front and the subscripts g and !
denote the gas phase and the liquid phase, re-
spectively. The parameter A in the added mass
coefficient of a spherical bubble k in Eq.(7) is
given by Wijngaarden® as A =2.78. The bubble
Reynolds number in Eq. (4) is defined by

P 1UoRo

Re = .
H

(9)

The parameters Du and H first introduced by
Batchelor’ are quantities that can be determin-
ed at least in principle from the detailed study
of hydrodynamic interactions beiween bubbles.
Unfortunately, these forces have not yet been
evaluated theoretically. In the following
analysis, therefore, Du and H are assumed to be
small positive constants.

Since the gas inside each bubble is com-
pressible, two more equations are needed to
close the system. These are the momentum egua-
tion for radial motion of each bubble and the
equation of state of the gas inside the bubble.
The first is given in the nondimensional form as
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which is the so called Rayleigh-Plessel equation
where the parameter ¥ is a correction factor
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due to dissipation processes in the liquid
phases. The damping factor ¥ in Eq.(10) is ap-
proximated to be a constant given by the linear
analysis of Devin®.

The second is given by

pg = fpg" (11)

where n is an effective polytropic exponent of
the gas. The nondimensional parameter [ is
defined by

Po

p Uo?’

(12)

In the analysis of the bubbly liquid, some-
times the polytropic exponent n is assumed to be
some constant in the range from 1 to . In such
a case,the effect of the thermal dissipation can
be included in the parameter ¥ in Eq.(10)°.

Strictly speaking, the gas temperature and the
density inside the bubble is not uniform even
under the reasonable assumption of uniform gas
pressure.® But to make the problem tractable
numerically or analytically, some averaging of
the gas density over each bubble is inevitable.
This averaging process is closely connected to
evaluation of the thermal damping or the poly-
tropic exponent n.

In the present paper, only weak shock waves are
considered and then the temperature field is
solved by a linear approximation to evaluate the
value of n. Although the shock phenomenon is
nonlinear and then the main system of Egs. (1)

to (4) must be solved directly as a nonlinear
system, only the temperature field is solved by
a linear analysis.

By putting

pe = l4pg’, Pg = l*tpg’, (13)

it is given from Eq.(14) tihat

Ps

ps” = Tnpg ., or ..
Tpoo

n-= (14)
Under the simplifying approximation of uniform
pressure in the bubble and the constant tempe-
rature of the liquid at the bubble surface, we
get

1

[pg (1)= —pg (t)
Y

)T
16(1- %;)%:Z § .pa” (s)expl- ?rrzjz(t-s)}ds, (15a)

dx
along 5}2 = ug, (15b)
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X9 K go
D= ==- g = ———_—— (16)
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Here k¢ and x ¢ are the thermal conductivity
and diffusivity of the gas, respectively and
C.9 is the specific heat at constant pressure.
The gas density p g~ in Eq.(15a) is defined as
an averaged density over the bubble.

It is reasonably expected that the gas phase
will bebave nearly adiabatically near the
shock front (n~7) but nearly isothermally far
downstream (n~1). But this is not always the
case and should be modified. Here it has to be
pointed out that the polytropic exponent n can
take, at least theoretically, any value from
-0 to too, This is very important in the
discussion of shock structure.

IT1. STATIONARY SHOCK WAVES
A. Numerical scheme

For stationary shock waves. the coordinate
system (t.x) is transformed into (£ ,7n) by

€= x + Ust, n =1 (17)

where Us is the speed of shock wave defined
After straightforward but lengthy mani-
pulation,Egs. (1) to (4) and (10) in conjunction
with Egs. (5) to (7) are rearranged by making

later.
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The above system is subject to the boundary
conditions

ug=u=0, pe=l, a=ao., p=pe=l. No=7,

at x = -o0, and 1)

Ug=Us, Pg =Pg1, A=a,, p= pg=lIp g, N;=1,

at x = oo,

Numerically the shock front is approximately
located at x = 0. The subscript 1 denotes flow
conditions far downstream of the shock. In thes
equations,lhe diffusion and the repulsive lorce

are neglected. This is because the steady solu-
tion is free from ill-posedness of the system a
an initial value problem and moreover these
forces do not affect appreciably the flow
properties®.

Since Egs. (18) and (19) in conjunction with
Egs. (15) and (20) constitute a system of simul-
taneous ordinary differential equations for g
and p g, they can be solved for the boundary
conditions (21).

The numerical simulations are performed for
bubbly liquids composed of air and water. The
reference velocity Uo is put to 10 m/s so as to
make the parameter I order unity for analytxcal
numerical convenience.

The fourth-order Runge-Kutta-Gill method was
adopted for the numerical simulation of station-
ary shock waves. Undisturbed flow conditions are
ps=1.013%x10° N/m*, To=15 °C, a 0=0.05, and Ro=
0.5mm.

B. Shock front

Before proceeding to the numerical discussions,
here the wave profile near the shock front is
investigated in detail.

Egs. (18) and (19) are combined to yield in
conjunction with (10) and (15)

d?2 a2
Co= Pg+c_ﬂ9 Cz__

TE VR qe tCapg’= 0, (22)

near the shock front, where

1
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Here no is the polytropic exponent at the shock
front and @ = p,/ps. Since D& /Us € 1 near the
shock front, no should be taken as 7r.

If we assume a solution to Eq.(22) in the form
pg = exp(A €), we can get

A y=atib, A :=a-ib, A3 = ¢, for 1{0{nc

(24)

A =a, A: = b, A, =c¢, for 62nc,

where a, b, ¢ and nc are real constants. For the
pressure ratio 6 less than or equal to no(=7),
both a and ¢ are negative and b is not zero.
which means the shock front is a stable spiral
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point in the phase plane. For 7 <{n.{nc. we have
a0, c)0, and b#0, and then the shock front is
an unstable spiral point, where nc is a constant
greater than v depending on py/po.a o, Re and
V. For no)nc, we have a0, ¢>0, and b{0, which
means that the shock front is an unstable saddle
point.

Summarizing the above results, it can be said
that the stationary shock can exit only for 8)
¥ . The shock front is oscillatory for ¥ {6 {nc
and non-oscillatory for nc{(60 .In Fig.1, a sample
of the numerical results for nc is shown.

From the entropy consideration, however, the
. stationary shock can exist for 1{8 as shown by
Campbell and Pitcher'. Experiments have also
shown the possibility of presence of the sta-
tionary shock even for 0{1(6 *. Numerical
results in the present analysis actually show
the presence of stationary shocks even for
1Ke<r.

When some disturbance is added to the shock
front, however small it is, the oscillatory
motion is initiated following the solution to
Eq.(22). Then the polytropic exponent n changes
from v drastically and can take any value less
than 6 at least temporarily. When n becomes
less than 6, the shock front shifts from a
stable spiral point to an unstable saddle or
spiral point and then the solution curve will
tend to proceed toward another stable point,
the downstream end of the shock.

The structure of the weak shock is, therefore,
divided into two parts. The front part is essen-
tially oscillatory and its shape depends on the
initial disturbances introduced at the shock
front. Here we will name this part “precursor”.
The latter part is essentially stable and it
does not depend on the small initial disturb-
ances introduced artificially at the shock
front. We call this “main shock” here.

Theoretically Eq.(11) defining the polytropic
exponent n is responsible for the precursor. As
was shown previously, the polytropic exponent n
can take any value from -c to +oo when the
oscillatory pressure fluctuation is imposed on
the bubble, however small the fluctuation is.
Then the polytropic exponent n. at the shock
front cannot always be specified as ne=7. In
light of this, it will be reasonable to consider
that the approximation with a constant exponent
n (£pi/pe) can be one of the possible approxi-
mations at least for the analysis of the weak
shock wave®. Here we call this “constant ex-
ponent model”.

C. Numerical results

In Fig.2, pressure profiles are shown for p./pe
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Fig.1 Characteristics of shock front in air-
water mixture: A shock front with precursor

B shock front with oscillatory shock front,

C shock front without oscillatory shock front.
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Fig.2 Pressure distributions in air-water mix-

ture for ao = 0.05: a) pi/ps = 1.05, b) p,/pe
= 1.15, ¢) p:/pe = 1.30.
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Fig.3 Precursors in air-water mixture, -
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=1.05, 1,15 and 1.3, respectively. Obviously
the precursor becomes longer as the shock be-
comes weaker. The main shock, on the contrary,
becomes more oscillatory with increasing shock
strength. It is important to point out that the
precursor obtained numerically is never the
numerical noise but has a systematic structure.
To show this, time enlarged pressure profiles
are shown in Fig.3.

in Fig.4, a translational velocity profile for
p1/po=1.15 is shown, where the velocity slip is
appreciable in all flow field.To investigate the
effect of the velocity slip, the corresponding
shocks for the mixture model are calculated by
replacing Eq. (18) by ug=u. or

a o
as ——————— . 24
(1-aolpgtae (24)
The results are shown in Fig.5 for p,/po=1.05,
1.15 and 1.30. Obviously, the difference between
the shocks in Figs.2 and 5 is remarkable.

As was discussed previousiy, one of the inter-
esting approximations is the constant exponent
model. In Fig.6, pressure profiles are shown
for pi/po=1.15 for the constant exponent model
(n=1.0), where the damping coefficients ¥
evaluated following Devin is 114.4. The result
is compared with that for the full model in this
figure. Near the shock front,the constant expo-
nent model yields relatively very sharp increase
in pressure, which means the effect of the
thermal damping will be underestimated near the
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Fig.6 Comparison between the full model solution
and the constant exponent- model solution for
air-water mixture for p,/pe=1.15, o = 0.05:

full model, — — — constant exponent
model .

1.0
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Fig.7 Time-convergency of shock front for mix-
ture model with a constant exponent n=1 for

p2/po=1.2; -~ - - - unsteady shock at t=148,
— - — unsleady shock at t = 444, ————
stationary shock for pi/po = 1.0933. !

0 1000 2000 3000 4000 E 5000
Fig.4 Distributions of bubble velocity ug,liquid
velocity u, and void fraction a in air-water
mixture for pi/po = 1.15, a0 = 0.05.
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Fig.5 Pressure distributions in air-water mix- .
ture for the mixture model (ug = u,) for a o=
0.05: a) pi/pa = 1.05, b) pi/po= 1.15, ¢) p:/po
= 1.30.

shock front in this model.

1V. UNSTEADY SHOCK WAVES
A. Numerical scheme

Next we consider a shock tube problem, where
the undisturbed conditions in the two chambers
are uniform. Mathematically, hyperbolicily or
well-posedness of the system is of crucial im-
portance. Fortunately, the governing eguations
(1-4), (10) and (14) in conjunction with Egs.
(5-8), (18-19) constitute a well-posed system as
an initial value problem, if the coefficient of
diffusion force Du is chosen to be some small
positive constant®. Here we apply an Total-
Variation-Diminishing (TVD) scheme developed by
Chakravarthy & Osher'®.

B. Solutions for constant exponent model

In the shock tube problem, the initial flow
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conditions in the high and the low pressure
chambers separated by a diaphragm are specified
as follows;

U:=ug=0, a=ao, pPg=l, for x>0

(25)
ue=ug=0, a=a:, P 9=pP 92, P=Pg=p:, for xS0

p=pe=T,

where the diaphragm is located at x=0 and the
subscript 2 denotes the high pressure chamber.
Since the initial states are assumed to be in
thermal equilibrium and the initial temperature
is uniform throughout the whole flow region, we
can put

p: = Tp g2, az = Ao/Pg2. (26)

All the numerical results shown later are for
po=1 atm, & 0=0.05,R0=0.5 mm,Dw=0.01 and H=0.001.

A numerical solution to the mixture model (ue=
u:=u) with a constant polytropic exponent (n=1)
was performed and the results are shown in Fig.
7. where the unsteady pressure profiles are
are compared with a stationary shock for p:/po=
1.0933. We can see a good time-convergency of
the unsteady shock to the corresponding station-
ary shock.

The steady and unsteady shocks were calculated
with completely different numerical schemes. In
spile of this, the good agreement between the
stationary and unsteady shocks for large t
suggests sufficient reliability and accuracy of
the present numerical schemes.

C. Solutions for full model

For analytical convenience,the initial condi-
tions are given as follows,

ug=u.=0, a=0.05, pg=1.0, p=pg=l, for x$0,
(27)
ug=u.=-0.04, a=0.05, pg=1.0, p=pg=l, for x>0.

In this case, two uniform flows collide at x=0
at t=0 and two shocks are produced near x=0
which propagate into both the right and the left
directions.

In Fig.8, distributions of the mixiure pres-
sure, the void fraction and the velocities are
shown at the time-step 2700 (t=176). Oscillatory
behavior of the shock front almost disappear and
any symptom of the precursor is not seen at
least in this stage.

V. CONCLUSIONS

Weak shock waves in a bubbly liquid were treat-
ed numerically. The weak shock has always a pre-
cursor which is essentially oscillatory and is
followed by a relatively much more smooth main
shock. The shocks with a precursor has not yel
been observed experimentally. In light of this,

33
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Fig.8 Distributions of mixture pressure and
gas and liquid velocities at t=176.

the constant exponent model can be a good model
at least for the analysis of weak shocks if the
effect of the thermal dissipation is correctly
taken into account,for example,in the correction
factor ¥.

Weak unsteady shocks for the full model were
also treated. Neither instability nor the pre-
cursor was found. This might come from the fact
that the undisturbed conditions are always fixed
numerically.
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