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Elementary benchmarks of the NWT computer system and program performance

Shigeki HATAYAMA
National Aerospace Labdoratory, 7-44-1 Jindaijihigashi-machi Chofu-shi Tokyo, Japan 152

Abstract

The NWT computer system of the NAL comprises two system administrators, 140 processing elements and a
crossbar network, which operates as a distributed-memory message-passing MIMD computer. Each processing element
itself is a vector computer. This paper presents measurements of the elementary characteristic parameters of the NWT
with SIMD computing and with MIMD computings in the local and global memory access, and measurements of the
maximum actual performance obtained when we execute programs for computation of the xncomprmslble viscous flow
in two- and three-dimensional lid-driven cavities in parallel on the 128-processing element system,

1. Introducing remarks

Most of the overheads incurred in the parallel processing
arise from the time spent in system software routines support-
ing user programs. Hence the obtained results in this report
apply only to the NWT system software available at the NAL
during the period April to June 1993 which we call v1, and
to the NWT system software during the period April to May
1994 which we call v2. This report indicates a comparison
between the actual program performance of the NWT for v1
and one for v2, and the degree of the improvement , I;, which
is the ratio of the start-up time for v1 to the start-up time for
v2. Hence the start-up time for v2 means an I3,-fold decrease
of one for vl. Furthermore the dyadic operation in Sections
2, 3 and 5 means the multiplication of matrices (A=B*C),
and the triadic operation the multiplication and addition of
matrices (A=B*C+D). By the way all the berchmark pro-
grams were run with other users on the system.

2. The (r,71/2) benchmark
The characteristic parameters for a dyadic and triadic op-
eration on a long-vector of length, n, with SIMD computing
are given as follows: for dyads and vl
Teo = 3.897824 * 10° (M flop/s),
n)2 = 2.885078 » 107 (flop),
ny = 2.473941 + 10" (flop);
for dyads and v2
(4
()

(6)

Teo = 3.928646 * 107 (M flop/s),
nyy2 = 3.014385 % 102 (flop),
ny = 2.562819 = 10' (flop);
and for triads and v1
Teo = 5.514041 x 107 (M flop/s), (7)

n172 = 4.447699 + 10 (flop), ®

np = 4.197182 + 10! (flop); 9)
for triads and v2

Teo = 5.603720 « 10? (M flop/s), (10)
(11)

(12)

nis2 = 4.473542 % 102 (flop),
ny = 4.149311 + 10! (flop),

where 7 is the maximum rate, n;;; the half-performance
length and ny the vector breakeven length which is the vector
length above which the vector processing takes less time to
perform the operation on a vector than the scalar processing.
Hence the actual performance, r, with SIMD computing can
be computed from

T =100 [(1 + nyy2/n) (M flop/s). (13)
Fig.1 shows a comparison between vl and v2 of actual pro-
cessing rates as a function of vector length with SIMD com-
putation on a single processing element. Futhermore, since
the start-up time #o is 2o = t!ny/s, J21=0.9647 (dyads) and
I;;=1.0104 (triads) (see [1),[3] for details). Finally we note
the followings:

(1) For a dyadic and triadic operation on the short-vector
length and v2, we obtain 7o, = 4.286826%10% (Mflop/s,dyads)
and T = 5.624414 = 107 (Mflop/s,triads).

(2) The theoretical peak performance of each processing
element derived from its architecture is 2-fold for dyads and
3-fold for triads as many as the maximum rate.

(3) Hence we can estimate that the hardware performance
per one arithmetic pipeline of the processing element is
8.505137 x 102 (Mflop/s) on the average.

3. The (re, 51;2) benchmark

When the efficiency of scheduling is perfect, the charac-
teristic parameters for a dyadic and triadic operation on an
amount of computational work, s, with MIMD computing in
the local memory access are given as follows: for dyads and
vl
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Teo = 3.858962 + 10%pe (M flop/s), (14)
(15)

sp = (1.325439+ 10 pe — 2.497182 + 10%) /(pe — 1) (flop);(16)

s1/2 = —2.497182 = 10° + 1.325439 = 10*pe (flop),

for dyads and v2
Teo = 3.850414 * 10%pe (M flop/s), (17)
(18)

sy = (1.092176 + 10*pe — 2.441883 % 10%)/(pe — 1) (flop);(19)

$1/2 = —2.441883 « 10° 4 1.092176 + 10%pe (flop),

and for triads and vl
Teo = 5.468374 x 10%pe (M flop/s), (20)
(21)

sp = (1.878137% 10" pe — 3.451546 % 10%)/(pe — 1) (flop);(22)

sij2 = —3.451546 = 10° + 1.878137 + 10*pe (flop),

for triads and v2

Teo = 5.445832 * 10%pe (M flop/s),

(23)
(24)

s1j2 = —3.496416 = 10° + 1.565948 = 10*pe (flop),
sp = (1.565948 % 10*pe — 3.496416 % 10%)/(pe — 1) (flop),(25)

where pe is the selected number of processing elements, s,/2
the half-performance grain size and s, the breakeven grain
size above which it is faster to suffer the synchronization
overhead and split the job between the pe processing ele-
ments than to avoid synchronization altogether by using a
single processing element. Hence the actual performance, 7,
with MIMD computing in the local memory access can be
computed from

T = 7o /(1 + s1/2/s) (Mflop/s). (26)
Fig.2 shows a comparison between vl and v2 of actual pro-
cessing rates as a function of the amount of arithmetic op-
erations with MIMD computation in the local memory ac-
cess when pe = 64. Futhermore, since the start-up time is
to = t;‘s,/._,, I, = 1.1656 ~ 1.2804, 1.2128 on the average
(dyads) and I, = 1.1876 ~ 1.2610, 1.2176 on the average
(triads) (see [1},[3] for details).Finally we note that the val-
ues of T, well coincide with ones in Section 2 when pe = 1.

4. A variation of the pingpong benchmark
The characteristic parameters on a long-message of length,
n, with the data transfer between the global and local mem-
ory spaces are given as follows: for v1
Teo = 7.554390 % 10%pe (Mbyte/s), (27)

nyja = —3.315542 # 10* + 1.834119 = 10°pe (byte); (28)

2 FEHERPSARSIEN TS

and for v2
Too = T.444648 » 10%pe (Mbyte/s), (29)
ny/2 = —1.372388 % 10* + 5.285085 » 10*pe (byte),  (30)

where 7o, is the maximum bandwidth and n,;; the half-
performance message length. Hence the actual performance,
r, with the data transfer between the global and local memory
spaces can be computed {from

T = 1o [(1 + nyya/n) (Mbyte/s). (31)
Fig.3 shows a comparison between vl and v2 of actual data
transfer rates as a function of message length when pe = 1 ~

16. Futhermore, since the start-up time is

1o = (1.024%1,)~'ny 9, T2y = 3.4212 ~ 3.8765, 3.6082 on the
average (see [2],[3] for details).

5. The (o0, 5172, f1/2) benchmark

The characteristic parameters for a dyadic and triadic op-
eration on an amount of computational work, s, and a com-
putational intensity, f, with MIMD computing in the global
memory access are given as follows: for dyads and v1

Teo = 5.857613 + 10 pe (M flop/s), (32)

s1/2 = 469.8217 + 30817.60pe + 73.00503pe? (flop),  (33)

f172 = 1.932356 (flop/I/O word); (34)
for dyads and v2

Too = 5.824027 x 10'pe (M flop/s), (35)

s1/2 = —2387.097 + 13299.69pe + 56.36769pe” (flop), (36)

f1y2 = 1.972983 (flop/I/O word); (37)
for triads and vl

Teo = 8.619480 * 101 pe (M flop/s), (38)

s1/2 = —1021.786 + 49481.97pe + 121.3604pe? (flop), (39)

f1j2 = 2.783590 (flop/I /O word); (40)
for triads and v2

Too = B.784405 * 10'pe (M flop/s), (41)

s1/2 = —5098.177 4 23233.29pe + 95.54521pe” (flop), (42)

frj2 = 2.790488 (flop/I/O word), | (43)
and

oo = reo(1 + fuya/f) (Mflop]s), (44)

S172 = s12(1 + f1y2/f) (flop), (45)
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where 7o, is the peak maximum rate, 3,/ the peak half-
performance grain size and f);, the half-performance inten-
sity. Hence the actual performance, r, with MIMD computing
in the global memory access can be computed from

T = foo [(1+ 31/2/5+ f1j2/f) (M flop[s). (46)
Fig.4 shows a comparison between vl and v2 of actual pro-
cessing rates as a function of the amount of arithmetic op-
erations with MIMD computation in the global memory ac-
cess when pe = 64. Futhermore, since the start-up time is
to = 131512, I2y = 1.9266 ~ 2.8392, 2.4259 on the average
(dyads) and Iz, 1.8540 ~ 2.6953, 2.2709 on the average
(triads) (see [2],(3] for details). Finally we note the follow-
ings:

(1) The degree of degradation of peak maximum rate due
to communication overheads when s — oo is 1/6.797068 (v1),
1/6.918949 (v2) for dyads and 1/6.56718 (v1), 1/6.580976
(v2) for triads, because data transferred {from the global mem-
ory to the local memory uses only once, i.e., f = 1/3 for dyads
and f = 1/2 for triads.

(2) The values of 7o, for v1 and v2 computed from (44)
when f = 1/3 for dyads and f = 1/2 for triads well coincide
with ones of 7, in Section 3.

(3) The number of reference of data transferred to the lo-
cal memory to be required to reach 90% of the peak maximum
rate when s — oo can be computed from (46), and is 53 for
dyads and 50 for triads both vl and v2.

6. Program performance

We consider an incompressible viscous flow in two- and
three-dimensional cavities by a uniformly moving upper sur-
face, and measure the maximum actual rate obtained when
we execute programs to compute the flow in the cavity in
parallel on the 128-processing element system of the NWT.

6.1 Square cavity problem

Let H be the depth of cavity, L the width of cavity,
and H = L = 1. The dimensionless steady-state stream-
function vorticity conservation form of the two-dimensional
incompressible Navier-Stokes equations is as follows:

'ﬁz’y(z - ¢:Cy = ﬁl;(Cz: + ny): (47)

'd’:: + "l[’yy = "(1 (48)
where ( is the vorticity, ¥ the stream-function, Re the Reynolds
number, and z and y the axtial and normal coordinates, re-
spectively.

The boundary conditions on (48) for flow in a lid-driven
cavity with the upper surface translating to the right with
uniform velocity u = 1 and with no flow at the other bound-
aries are at the upper surface

Yy=1, 9%.=0, ¥y =0,

(49)

and at the bottom, left and right surfaces

Yy =0, ¥ =0, v =0 (50)
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The boundary conditions on (47) are obtained by applying
the boundary conditions for the stream-function at the solid
boundaries as follows:

(= —(¥2s tdyy), atc=0,1land y=0,1.

(51)

When we could obtain the steady-state solutions ¢ and 4,
the primitive variables can be computed from the following
equations:

u=¢g1 U=_¢Sr

(52)

Pzz + Pyy = (v(): — (u()y =0, (53)

where p,u and v are the total pressure, velocity component

‘in the x-direction and velocity component in the y-direction,

respectively.
The boundary conditions on (52) are at the upper surface
u= (54)

1, v=0,

and at the bottom, left and right surfaces

u=0, v=0. (55)
The following Neumann boundary conditions on (53) are ob-
tained by applying the momentum equations at the solid
boundaries:

(56)

1
p.t:vC_ECyr atz=0,1,

1
py = —u + E(,, aty=0,1. (57)
Solutions to {53) with (56) and (57) are unique within
an arbitrary constant, which can be determined by using the
relation

1 1
/ / pdzdy = constant.
y=0 Jz=0

The existenrce of a solution for (53) with (56) and (57) requires
the satisfaction of the following compatibility condition:

1 1
./y:O /;:0

where n is the outward normal to the boundary contour S,
enclosing the solution domain.

In order to obtain numerical solutions, we adopt finite-
difference approximations for (47)-(59) on non-staggered and
uniform grids. All partial derivatives are approximated us-
ing second order accurate formulas. We note that the finite-
difference approximation for (51) are obtained from (48)-(50)
by enforcing reflection at the boundaries, and that for the
compatibility condition (59) to be exactly satisfied on a non-
staggered grid, we must use the consistent finite-difference
approximations for (53), (56) and (57) [4].

(58)

odzdy = /p,‘dS, (59)
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We use the following four iterative methods to obtain the
stead y-state solutions of {, ¥ and p:

(1) Jacobi's method,

(2) red-black ordering,

(3) conjugate gradient (CG) method,

(4) alternating direction implicit (ADI) method.
Futhermore the solutions of u and v are computed from (52)
after obtained .

A large amount of numerical information on the Reynolds
number range of Re = 10~% ~ 10° has been collected during
this investigation. See [5] for details. Fig.5 shows the square
cavity flow at Re = 20, 000.

6.2 Cubical and 3-D narrow cavity problem

Let L be the length of cavity in the x-direction, H the
height of cavity in the z-direction, and W the breadth of
cavity in the y-direction. For a cubical cavity, L=H =W =
1 and for a 3-D narrow cavity, L= H=1and A= W/L < 1.
The dimensionless divergence form of the three-dimensional
incompressible Navier-Stokes equations is as follows:

Uz +1;,+w= =0,

(60)
1
uy + vur + vy, +wu, = —p: + E;(u“ +uyy +us,), (61)

1
v + uve + VY, + WY = —Py + ‘}Te'(‘uzz + Vyy + 1’1:)1 (62)

1
w; + vwy +vwy + ww, = —p: + E(wzz + wyy + w;,),(63)

and
(Pz)z +(py)y + (p:): = -D: - Q, (64)
where
D=u.+4v 4w, (65)
Q = (uus+vyy +wus)s + (wv: +vyy + wy, )y
+ (vw; + vuy + ww,),, (66)

and Re is the Reynolds number, p the static pressure, ¢ the
time, w, v and w the velocity components in the x-, y- and
z-directions, respectively.

The boundary conditions on the velocity for flow in a lid-
driven cavity with the upper surface translating to the right
with wniform velocity v = 1 and with no flow at the other
boundaries are at the upper surface

u=1, v=0, w=0, (67)
and at the other surfaces
u=0,v=0, w=0. (68)

EFHERTRAFIEN2T S

The following Neumann boundary conditions on the pressure
are obtained by applying the momentum equations at the
solid boundaries: at the y = 0 and y = 1 surfaces

1
—Pp:r = uls + vuy + WU, — I-{;(u” + uyy + uss), (69)
at the z = 0 and = = 1 surfaces
1
—py = uvs + vvy +wy, — E(v,, + vyy + v134), (70)
and at the z = 0 and z = 1 surfaces
1
—p: = vwy + vwy + ww; — Ec-(w,, + wyy + ws;). (71)

The momentum equations (61)-(63) are solved for the ve-
locity components by marching in time. Equation (64) is a
second order elliptic partial differential equation of the Pois-
son type, which is explicitly independent of the Reynolds
number, because the diffusion terms are eliminated by the
continuity equation (60). The governing equations (60)-(64)
for the primitive variables are not independent. The continu-
ity equation (60) is eliminated from the system of equations,
and is iteratively satisfied through the solution of the pressure
equation (64) as following: we can approximate the unsteady
term D, for the dilation in (64) by (D**! — D*®)/ At, where
the superscripts n and n + 1 refer to the time levels ¢t and
t + At, respectively. In order to attempt to be satisfied (60),
we set D*¥1 =0,

Solutions to (64) with (69)-(71) are unique within an arbi-
trary constant, which can be determined by using the relation

1 A 1
/ / / pdzdydz = constant.
2=0Jy=0Jz=0

The existence of a solution for {64) with (69)-(71) requires
the satisfaction of the following compatibility condition:

/;0 /;:o /;0 —(Di'+ Q)dzdydz = //p,.daV,

where n is the outward normal to the boundary surface 8V,
enclosing the solution domain.

In order to obtain numerical solutions, we adopt finite-
difference approximations for (61)-(73) on non-staggered and
uniform grids. All the other partial derivatives except for
the time are approximated using second order accurate for-
mulas. We note that for the compatibility condition (73)
to be exactly satisfied on a non-staggered grid, we must use
the consistent finite-difference approximations for (64) and
(69)-(71) of which method is described in [6] with respect to
two-dimensional case. Futhermore we use the four iterative
methods mentioned in Subsection 6.1 to obtain the pressure
solution.

A large amount of numerical information on the Reynolds
number range of Re = 10! ~ 10* has been collected during
this investigation. Fig.6 shows the cubical cavity flow at Re =
100.

(72)

(73)
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6.3 Measurements of program performance
(1) Definition of the symbols used below
71 = actual rate of the part of the solution method in pro-
grams,
ro = actual rate of programs in case of including the com-
putation part of convergence decision,
73y = actual rate of programs in case of not including the
computation part of convergence decision,
rq = actual rate of programs in case of intentionally sup-
pressing execution of the explicit memory access
statements,
rs = actual rate of programs in case of using the coalesc-
ing technique,
dma = 74/73 = degree of degradation of actual rate due
to the memory access bottleneck.
(2) Maximum program perfoermance
Table 1 shows maximum actual rates for each solution
method of programs to compute the square cavity flow with
respect to the vl and v2 system software when pe = 128.
Table 2 and 3 show maximum actual rates for each solution
method of programs to compute the cubical and 3-D narrow
cavity flow with respect to the vl and v2 system software
when pe = 128.
(3) Remarks
We remark here the followings to obtained results: (a)To
apply ADI method to 2-D problem is not advisable, because
of incurring a large amount of communication overheads by
the global memory access. (b)The reason that actual rates of
the red-black method are inferior to ones of the other meth-
ods is for the amount of works in each parallel section to
become half the others. (c)The reason that the values of dppq
for Jacobi method and 3-D problem are larger than the others
is because dimensional computer variables are stored to and
retrieved from memory each iteration. (d)For 3-D problem,
actual rates for narrow cavity problem rise than for cubical
cavity problem except ADI, but vice versa for shallow cav-
ity problem. (e) Finally we mention that the solution method
shown larger actual rate is not always advantageous to obtain
convergence solutions, and that it is a fact to find difficulty in

process for the trafic are desired.
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Table 1 Program performance for a square cavity problem.
(1) pe = 128 and v1.

method gnd r1(Gllop[s) | r3(Gflop/s) | r3(Gflop/s) [ r4(Gfiop[s) I dme
Jacob 16384° 103.938 21.202 100.828 133.873 [} 1.328
red-black 163847 74.108 59.703 68.85¢ 76.731 1.114
CG 120007 100.916 88.901 100.005 105.547 1.055
ADI 120017 3.323 3.391 3.114 3.253 {1 1.045
(2) pe = 128 and v2

metbed T A CLOTORECUCLITYON I CLOYO N (LTI I YL D]
Tacebi 163447 197313 [TRT) 106.314 193360 | tase 17788
eedblack || 163047 13,604 39933 [TEm 19100 || 1,162 3334
[ 120007 93.133 12001 103,118 110288 || 1.009 16391
ADI 13001 374 3.302 3.413 3031 || 1en 1.e00

Table 2 Program performance for a cubical cavity problem.
(1) pe =128 and vl

being converged to solutions when Re grows larger if we did [ ] ar! VLD IO MECT(LOTON (LT AN BN (CLOION IETE
. N N H 1°801°601 | —— 3.330 |
not use the Jacobi-red-black or CG-red-black combination as | Jlsalsei el OETH — JEE [CTEIM X
N [of<] 38193519381 49.64% —— 41.454 ——— ——
a solution method. AoV M TIM ] T iE] —— 3% To50y [ 175

7. Concluding remarks

(1) The degree of the improvement on the start-up times
of v2 to vl is 1.18 to 1.28-fold decrease with MIMD comput-
ing in the local memory access, 3.42 to 3.88-fold decrease with L ETLIN ML LT ) LR ’Tf:-:
the data transfer, and 1.86 to 2.84-fold decrease with MIMD (2B | T I T I
computing in the global memory access. In other words, syn-
chronization overheads have decreased about 1.2 to 1.3-fold,
and communication overheads about 5.0 to 5.7-fold.

(2) pe = 128 and v2
T i {GRep/s) | a(Chep]n)

XCLOYON EACLOTON KEY )
43.914 108.498 3.838
34.366 $3.373 1.459
47.663 ——
40.488 71.200

Cmethed [ ratd
$019601%401

Jacobs

1741

Table 3 Program performance for a 3.D narrow cavity problem (pe =

(2) The parallel compiler can stand improvement on the 128 and v2).
long-vector length performance with SIMD computing, and -
mofe decrease gf a.l{)sorts of the start-up times ix‘: the g’loba.l {_method =] Il 1(Ghlop/s) | r3(Ghiop/s) | rs(GRop/s) )
& Jacobi_ || 128079071280 ]| 2.211 33.718 63.618
memory access. . red-black || 1280°90~1280 || 34.332 30.942 50.839
(3) Saying from the real state of the operating and opera- CG 12807701280 || 84.063 46.540 73.466
tional system, more speedup of the operating system by trace ADI 1280%7071280 || 18.038 21.030 24.075

scheduling, more improvement on the traffic control function
of the operational system, and introduction to the distributed
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Fig.1 The(reo, n1/3) benchmark (actual processing rates with SIMD  Fig.4 The (f oo, 5172, fi72) benchmark (actual processing rates with
computing). MIMD computing in the globalmemory access when pe = 64).
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triads
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128001~ /f 817229.795890710% (v2:triads) - measured (v1)
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Fig.2 The (rco, $1 /3) benchmark (actual processing rates with MIMD

computing in the local memory access when pe = 64).
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Fig.3 The pingpong benchmark (actual rates with data transfer bet- n the nght y

ween the local and global memory spaces when pe = 1 ~ 16). Fig.6 The cubical cavity flow at Re = 100.
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