291

Transonic Aeroelastic Calculation

with Full Implicit Subiteration and Deforming Grid Approach

Guowei YANG' and Shigeru OBAYASHI?

ABSTRACT

Through the coupling of subiteration between aerodynamic and structural governing

equations, a full implicit finite-volume aeroelastic solver has been developed for transonic

flutter simulation. The subiteration algorithm of the Navier-Stokes fluid equations is

constructed based on the LU-SGS scheme and the subiteration formulation is applied directly

to the structural equations of motion in generalized coordinates. In the flutter calculation, a

modified grid deformation approach that maintains the grid quality even under large
deflections and rotations has been applied. Results are presented for the AGARD 445.6

standard aeroelastic wing configuration over subsonic to supersonic Mach number range.

Predictions of flutter points are compared with experimental data and with simulations

previously reported. The effects of grid resolution and time-step sizes are also investigated.

1. Introduction

In recent years, dynamic aeroelastic simulations by
solving three-dimensional Navier-Stokes equations
coupled with structural equations of motion have been
extensively studied [1-3]. However, in these methods,
the flow governing equations are only loosely coupled
with structural equations, namely, after the aerodynamic
loads are determined by solving the flow governing
equations, the structural model is used to update the
position of body. The coupling contains the error of one
time step, thus these methods are always only first-order
accuracy in time regardless of the temporal accuracy of
the individual solvers of the flow and structural
equations. In addition, due to the deformation of
aeroelastic configuration, adaptive dynamic grids need to
be generated at each time step. In the existing aeroelastic
methods, various adaptive algebraic grid-generation
methods were applied for their applications.

A recently developed method by Melville et al [4],
which uses an implicit scheme for the flow and structural
equations, achieves a full implicit coupling between the
fluids and structures via subiterations. The flow solver in
this scheme is the three-dimensional Beam-Warming

algorithm. A grid deformation approach was also
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developed for aeroelastic application, which maintains
the grid quality of the initial mesh near deforming
surface under moderate deflections and rotations.

The aeroelastic applications mentioned are all based
on finite difference schemes. In the paper, a cell-center
finite volume code is implemented for the aeroelastic
calculation. The LU-SGS subiteration algorithm is
constructed for the thin-layer Navier-Stokes equations,
and the modified Harten-Lax-van Leer Einfeldt (HLLE)
scheme by Obayashi et al [5] is used for the
discretization of convective terms of the flow governing
equations. The structural equations of motion in
generalized coordinates are employed for the calculation
of structures. Modified grid deformation approach
suitable for the large aeroelastic deformation is also
developed.

The AGARDA445.6 standard aeroelastic wing test
case [6] is applied to validate the resulting aeroelastic
solver. Two cases with Mach numbers 0.96 and 1.141 are
computed and compared with experimental data, as well
with other computations. Predicted flutter boundary is
compared with the experimental values over the Mach
number range 0.338-1.141. The effects of grid resolution,
time-step sizes are investigated. The computational

efficiency of the full implicit method is evaluated by
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comparison with the loosely coupling method.
2. Governing Equations

Aerodynamic Governing Equations

Aerodynamic governing equations are the unsteady,
three-dimensional thin-layer Navier-Stokes equations in
strong conservation law form, which can be written in

curvilinear coordinates as
0,0 +0:F +3,G+3,H =0,H, +Scc; (1)

In the formulation, all variables are normalized by the
appropriate  combination of freestream  density,
freestream velocity and wing root chord length. The
viscosity coefficient ¢ in H,is computed as the sum of
laminar and turbulent viscosity coefficients, which are
evaluated by the Sutherland’s law and Baldwin-Lomax
model[7]. The source term S, is obtained from the
geometric conservation law [8] for moving mesh, which

is defined as
Soer =0P I+ 10); 4, 1), +(8, 1), ] @

The term vanishes automatically for the common
unsteady flow simulation that the grid is only rotated and

translated with a rigid motion at each time step.

Structural dynamic Governing Equations
Second-order linear structural dynamic governing
equations after normalized similar to the flow governing

equation can be written as

[ }+ (Ko} ={F} ()

[M ] and [K ] are the non-dimensional mass and
stiffness matrices, respectively. {F } and {d} are the
aerodynamic load and displacement vectors, respectively.
In order to solve Equation 3, the Rayleigh-Ritz method is
used and the deduced structural equation in generalized

coordinates is
G; +200,4; +olq, =0 FIMm, (4)

where

fa}=lofq}, of =lo] {kfe], M, =[] {M}o]

The modal damping is readily added on the left hand
side of Equation 4, where ¢, is the damping ratio in the

i th mode. The equation can be written as a first-order
system by defining S = [q,z}]:

§ 0 -1 5= 0 5
" o} 20, | |[@] F/Mm, ®

1

3. Numerical Method

LU-SGS method of Yoon and Jameson [8], employing
a Newton-like subiteration, is used for solving Equation
1. Second-order temporal accuracy is obtained by
utilizing three-point backward difference in the
subiteration procedure. The numerical algorithm can be
deduced as
LD'UAO
=—¢"{(1+9)0” ~(1+2¢)0" +¢0""
‘JAIQP[(ft /J)g +(m, /J)n +(¢, /J)g]p
+JAOF P +6,GP +6,(H” —H]'))}

(©6)

where

L=pI+¢" JAH(AY, Gk FBL L+ C)

D=7l
U= 5I—¢iJAt(Ai_+1,j,k +B; ik +Co )
and

7 =1+ ¢ JAH(P(A)+ p(B) + p(C))
¢ =1/(1+¢) , AQ=0"" -7

Here ¢=05 and Q? is the subiteration

approximation to Q"' . The deduced subiteration

scheme reverts to the standard first-order LU-SGS
scheme for ¢=0 and p=1.

The inviscid terms in Equation 6 are approximated by
modified third-order upwind HLLE scheme of Obayashi
et al [5]. For the isentropic flow, the scheme results in
the standard upwind-biased flux-difference splitting
scheme of Roe, and as the jump in entropy becomes
large in the flow, the scheme turns into the standard
HLLE scheme. Thin-layer viscous term is discretized by
second-order central difference.

The subiteration method can also be applied to the

structural equations of motion in generalized coordinates
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of Equation 6. The resulting scheme is

1 —¢'At
¢ Atw?  1+2¢' 0, At
= 0" ((1+9)S” ~(1+29)S" +5™" )

el &0 T s 0 )
w! 20, [o]f F7 /M,

where AS =SSP 857,

As p—oo, a full implicit second-order temporal
accuracy scheme for aeroelastic computation is formed
by the coupling solutions of Equation 6 and 7. Numerical
experiments indicate the calculated results are nearly
unchangable as p > 3. In the following calculation, the

number of subiteration is set to 3.
4. Grid Deformation Method

For the aecroelastic application, if the grid is
regenerated at every time step, then the elaborate and
time-consuming grid-generation method cannot be used.
So in most common aeroelastic sovlers, only algebraic
grid generation methods are employed. Recently, a grid
deformation method was developed for the aeroelastic
calculation by Melville et al [9]. The initial grid of high
quality can be generated with any elaborate
grid-generation method. The adaptive dynamic grid at
each time step is obtained by an algebraic grid
deformation approach and the grid maintains nearly the

same quality of the initial mesh.

First a reference grid 7, ;, is constructed from the
initial grid x, ,, and the deformed surface grid point

x'; ;1 calculated from the structural equations.

Fijd =% TAX [R](xi,j,k =X 1) (8)

where Ax; ;,=x';;;-x; ;; is the deformed size of the

surface grid and [R] is the surface rotation matrix
defined by unit normal vectors of the original surface
and the perturbed surface. The new dynamic grid can
be generateded by applying a blending function to the
reference grid and the original grid:

Xk =bi X e ¥ =0 )7k ®

A blending choice is a cubic function in arclength
space with zero slope at the endpoints, which maintains
the wall grid orthogonality and grid smoothly transitions
in the far field. This can be written as

byw =3sisu/siin P =2siutsiin Foo10)
where k., is the last node in the grid normal
direction.

The above grid deformation method is only suitable
for moderate aeroelastic deformation. For the larger
aeroelastic deformation, because the far field nodes of
reference grid would deflect too much comparing with
the original grid, the method cannot be used.

The limitation of the above method can be overcome
by generating an initial grid at each time step rather than
simply using the original grid. For the common unsteady
calculation, we usually let the grid rigidly attach to the
body and the grid is rotated and translated in a rigid body
motion fashion after each time step. First the initial
sectional grid is translated and let its leading edge
coincide with the leading edge of the deformed section.
Then the sectional grid is rotated around the leading edge
and let its chord coincide with that of the deformed
section. The grid generated with the rigid translation and
rotation may correspond to the reference grid
determined by Equation 9 at the far field. It is evident
that the limitation of the above grid deformation method
can be overcome using the rotated and translated grid as

an initial grid at each time step.
5. Results and Discussions

The AGARD 445.6 weakened wing model [6] is
considered, which has an aspect ratio 1.6525, a taper
ratio of 0.6576, a quarter-chord swept angle of 45 deg
and a NACA 65A004 airfoil section.

A typical C-H grid is generated by the elaborate
elliptic equations, which includes full control of the grid
line distance and the orthogonality at the surface
boundary. Figure 1 shows the root sectional grid and
surface grid of the wing. The far field boundaries of the
grid locate at 9 root chord lengths downstream of the
trailing edge, 8 root chord lengths to the upper, lower,
and upstream surface boundaries, and 4 root chord

lengths from wing tip. For the baseline grid of
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161x51x 43, there are 121 grid points around the wing
surface, and 39 grid points on the spanwise direction of
wing surface. For the refined grid of 181x51x63, 20
grid points are added both in the chord and normal
directions.

The first four structural modes and natural frequencies
provided in the reference [6] are used for the present
computation. To match the given mode shapes to the
corresponding aerodynamic surface grid, linear and
spline interpolations are employed in the chord and
spanwise directions. Although measured values of
structural damping coefficient were not given in
reference [6], in general, they were of the order of 0.01.
It is set to zero in the whole calculations.

First, flutter analysis are carried out at two Mach
numbers, M_ =096 and M_ =1.141. Each Mach
number is run for several dynamic pressures to determine
the flutter point. As the dynamic pressure is varied, the
freestream density and Mach number are held fixed and
Reynolds number is allowed to vary. Then flutter
boundary and frequency are compared with predicted
and experimental values over subsonic to supersonic
Mach number range.

A nondimensional time step Af=0.05 is used for
the flutter compuations unless stated. All simulations are
started from its corresponding steady flow. At ¢=0,a
small initial velocity pertubation 0.0001 for the first
bending mode is applied to the wing.

SN

Fig. 1 Root sectional grid and surface grid for the
AGARD 445.6 wing

The First Computational Test Case M_ =0.96

The response of the first four modes is shown on the
left hand of Figure 2 for the M_ =0.96 case on the
baseline mesh for dynamic pressure ¢q/g, =1.0, where

the experimental dynamic pressure for flutter is
q, =613 Ibf/ft®. The dominant mode appears to be the

first bending mode, and only second mode has some

effects to the first mode. The amplification factor of first
bending mode is analyzed, which is defined as the ratio
of the magnitude of a peak with the magnitude of the
previous peak of the same sign. Its corresponding
response frequency is determined from the period
between these two peaks. For the present case, the
amplification and response frequency calculated from the
average of the values for the last positive and negative
peaks are AF =1.023, and @ =84.135 rad/sec. The
response of the first four modes for a flutter
conditiong/ g, =1.2 is shown on the right hand of Fig. 2.
Its corresponding amplification factor and frequency is
AF =1.093 and @ =89.559 rad/sec.

Based on the results of the above two calculations, the
dynamic pressure and frequency for flutter (AF =1.0)
can be interpolated linearly as g¢q/q,=0934 ,
@ =82.353 rad/sec.

The flutter points are compared with other computed

results [2-4] and with experimental results [6] in Table 1.

where U, is the flutter speed, b, is half the root

chord, @, is the primary torsional frequency, and «
is mass ratio. In reference [4], Gordinier et al computed
in detail the case with central difference scheme and the
implicit approximately factored finite difference
algorithm of Beam and Warming, employing a
Newton-like subiteration procedure. Viscous and inviscid
results were presented for the grid resolution of three
grids. In Table 1, only their viscous computed result for
the medium grid is included. Even for their medium grid,
its grid number is more than that of the present grid used.

For the baseline grid and the size of time step 0.05, the
present computation  slightly — underpredicts  the
experimental flutter speed and frequency. But it is much
closer to the experimental values than that of other
computations. The effect of the size of time step and grid
resolution on the response of the first bending mode for
q/q, =1 is demonstrated on the left hand of Fig. 3 and
Table 2. There are only small differences between them.
To compromise the computational efficiency and
accuracy, the choice of time-step size and grid is
appropriate for the present case. It is seen the reduction
of time-step size leads to slightly reduction of
amplification factor and finer grid grows slightly the
oscillation. This indicates that the effect of small
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time-step size is to reduce the computed flutter speed,
but the effect of improved mesh resolution is to increase
the speed.

Table 1 Summary of flutter point predictions at
M, =0.96

Method glq. U lbo,E)  olao,
Present 0.934 0.301 0.353
Experiment 1.0 0.308 0.365
Reference 2 1.47 0.367 0.349
Reference 3 0.89 0.294 0.346
Reference 4 1.12 0.329 0.376

Genaraiized Displacement

Goneralizad Displacemant

Fig. 2 Dynamic response of first four modes at
M, =096, g/q,=1.0and ¢g/q, =12

Table 2 Effects of grid and time-step sizes,
M, =096,q9/q, =1.

Grid At AF 0]

Baseline 0.05 1.024 84.135
Baseline 0.025 1.008 84.395
Fine 0.05 1.035 83.877

>

. Genaraiized Displacamant

) L ) L
20 16 ) 3700
Nondimensional Time

0 W0 70
Nondimensiona 1 Time

Fig. 3 Effect of grid, time-step sizes and
subiterations on mode 1 response at M _ =0.96,

g/q,=10and ¢q/q,=12

The computational efficiency of the full implicit
method ( p=3,Ar=0.05) is also evaluated by the

comparison with the method in which subiteration is not
used ( p=1) and structural equations of motion are
solved using the standard four-stage Runge-Kutta
scheme. To ensure the approximate equal total time
consuming of the two methods, the time step
(Ar=0.02) is used for the loosely coupled method. The
comparison of mode 1 response of the two methods is
shown on the right hand of Fig. 3. The loosely coupled

method has significantly enhanced the growth ratio of

the oscillation. Based on the influence study of time-step
sizes, it indicates the corresponding results can be
obtained only for much small time-step. Namely, the
present full implicit coupling method has higher
compuational efficiency under the same requirements of

accuracy and time cost.

Second Computational Test Case M_ =1.141

Based on the baseline grid and the size of time step
At =0.05, computed dynamic responses are given in
Fig. 4 for two dynamic pressures ¢/q, =1.5 and 1.8,
respectively, at a supersonic Mach number M, =1.141,
where g, =105.3 Ibf/ft*. For this Mach number, it has
proved much more challenging to reproduce the reported
experimental flutter behavier [2-4] due to the presence of
the shock and corresponding shock/boundary layer
interaction.

Through the average of the values for the last positive
and nagative peaks, the amplification factors and
response  frequencies are obtained, which are
AF =1.023 , @w=122.62 rad/sec and AF =1.172 ,
w=138.27 rad/sec for the dynamic pressures
q/q,=15and 1.8, respectively, then the dynamic
pressure and response frequency at the flutter point can
be interpolated linearly. Table 3 summarizes the
comparison of the present method with experimental
data and other computations [2-4]. The present
prediction overpredicts the flutter point like other
computations, but the present method predicts a closer
flutter point than that of other computations. To
investigate the possible sources for the difference
between the experiment and computation, Melville et al
[4] examined the effects of various computational
parameters, using 14 modes in structural model, using a
third-order, upwind-based Roe schemes and changing the
location of the computational transition location
downstream from the leading edge to the 30% chord
location. But only minimal effects of these changes were
observed in the flutter response, it is not significant
enough to explain the discrepancies between the
computations and experiment. So their conclusion is that
the actual physical conditions in the experiment may not
be properly reflected in the computations. Significant
changes in flutter speed and frequency could originate in

a small difference in Mach numbers in the supersonic
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flow region. Therefore, any small experimental error in
Mach number could lead to significant differences
between computed and experimental flutter properties.
Using the method aforementioned, the flutter
boundary and frequency are calculated and compared
with the experimental data over subsonic 0.338 to
supersonic Mach numbers 1.141 in Fig. 5. The calculated
results agree very well the experimental data in the
subsonic and transonic range, but are higher than

experimental values in the supersonic range.

oup M=1.141 T Mot
= — = Mods
/a1 it

Generalized Displacement
Generaized Displacement

EJ 80 26 36 50 % 720
Nondimensional Time Nondimensional Time

Fig. 4 Dynamic response of first four modes at
M, =1141, q/q,=15 and ¢q/q,=1.8

Table 3 Summary of Flutter point predictions,
M_ =1.141

Method glq.  Uslbwu ) /o,

Present 1.454 0.492 0.515
Experiment 1.0 0.403 0.459
Reference 2 2.10 0.574 0.597
Reference 3 1.61 0.506 0.521
Reference 4 1.72 0.534 0.598

°
2
T
°
T

Flutter Speed index
°
T

°
T

| L L L ! L L y
%2 [ 05 08 1 12 N 04 06 08
Mach Number Mach Number

L I
1 12

Fig. 5 Flutter speed and frequency for the AGARD
445.6 wing.

6. Concluding Remarks

A full implicit finite volume aeroelastic solver has
been developed for transonic flutter simulation through
the coupled subiteration of the Navier-Stokes equations
and structural equations of motion. Results are presented
for the AGARD 445.6 standard aeroelastic wing

configuration over subsonic to supersonic Mach number

range.

For the subsonic and transonic Mach number range,
predictions of the flutter point agree very well with
experimental data. The computation also shows the
efficiency of the present method is higher than that of
loosely coupled algorithm.

For the supersonic Mach number, due to the presence
of the shock and the corresponding shock/boundary-layer
interaction, the present calculation overpredicts the
experimental flutter point, but the computed results are
better than those of the previous computational results.
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